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Abstract 

Mesh deformation method is widely used in unsteady numerical simulations involving moving 

boundaries. This kind of method redistributes the position of grid points in accordance with the 

movement of the computational domain without changing their connectivity relations. In this paper, we 

present a parallel mesh deformation method based on the support vector machine regression (SVR). In 

each time step, the proposed method first trains three SVRs by the coordinates of the boundary points 

and their known displacements in each direction, and then predicts the displacements of the internal 

points using the SVRs. After deforming the mesh, the dual-time step flow solver is used to solve the 

governing equations. To ensure the consistency of the method running in parallel, the training part of 

the method is executed with all global boundary points in each decomposed domain. Therefore, each 

CPU needs to maintain a copy of the entire boundary points via a point-to-point communication. The 

internal evaluation of the method is predicted separately in each decomposed domain without any data 

dependency. An oscillatory and transient pitching airfoil case is simulated to demonstrate the 

applicability of the proposed mesh deformation method, and its parallel efficiency is over 60% with 64 

cores.  
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1. Introduction 

With the rapid development of computer technology, numerical simulations involving moving 

boundaries have been widely applied in various fields like computational fluid dynamics (CFD), and 
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the size of the required grids shows explosive growth along with different cell types. Therefore, a 

robust and efficient mesh deformation approach, which relocating the mesh points to fit the new 

computational domain without changing topological relations, is extremely important to speed up the 

complex simulation in parallel situations. An example of the mesh deformation method deforming an 

unstructured mesh is illustrated in Figure 1. 

 

 

Figure 1. The Schematic Meshes that before and after Moving the Block Using Mesh 

Deformation 

 

There are two categories of deforming strategies in literature. The first utilizes the connectivity 

information of the mesh by analogizing the edges as springs or solid body elasticity (De Boer, Van Der 

Schoot, & Bijl, 2007). These methods solve the mesh motion by reaching a new equilibrium of the 

spring system or through a proposed differential equation using certain boundary conditions. In hence, 

they need to solve an equation whose size equals to the number of grid points, which is 

computationally burdensome for large-scale simulations. The other connectivity free strategy moves 

each grid point independently according to its coordinates or distance to the boundary, and its 

parallelization is easily implemented. In recent years, several connectivity free mesh deformation 

methods have been reported in literature. The radial basis function (RBF) interpolation method is 

robust and widely used in the community (Rendall & Allen, 2009; Sheng & Allen, 2003). It interpolates 

an approximation function describing the displacement of the entire computational domain in each 

coordinate direction. Therefore, substituting the coordinates of the interior point into the function will 

get its offset. An equation system with the scale of the boundary nodes needs to be solved. It is still 

expensive for large-scale simulations. Although a data reduction schemes (Rendall & Allen, 2009) 

based on minimizing an error function is proposed to reduce the selection of boundary nodes, this 

iterative algorithm needs to solve dense linear equations with increasing size, which is difficult to solve 

using standard iterative techniques. 

In this study, we present a new parallel mesh deformation method based on the support vector machine 

(Pal, Basak, & Patranabis, 2007). The final form of this machine learning algorithm is similar to the 

aforementioned RBF method. There are two steps in our approach. The first step is to compute a 

regression function formed by a summation of kernel functions over boundary points, but the SVR 
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method selects key boundary points automatically, and the function coefficients are obtained by solving 

a simple quadratic programming problem instead of a dense linear system of equations (Burges, 1998). 

The second step is to calculate the displacements of internal points individually according to the trained 

function. Since it avoids computationally intensive operations and preserves the parallel ability, this 

approach is more efficient than the RBF interpolation method. To demonstrate the deforming capability 

and parallel efficiency of the SVR method, a typical pitching airfoil case is tested with the inviscid and 

compressible flow. 

 

2. Methodology 

This section first describes the basic methodology of the SVR method; afterwards the parallelization 

and its global procedure applied in real physical problems are discussed. 

2.1 Support Vector Machine Regression 

The support vector machine was originally developed by Vapnik et al. based on statistical learning 

theory since 1979 (Pal, Basak, & Patranabis, 2007; Cherkassky & Ma, 2004). In recent thirty years, 

SVR has been successfully applied in various fields such as face detection, time series and financial 

prediction. There are two main categories of SVR based on classification and regression (Li, Wang, Gu, 

& Ling, 2015; Li, Yin, Lu, Kong, Zhang, & Liu, 2013). For the purpose of mesh deformation, SVR 

regression can be utilized to predict the displacements of grid points. The idea of SVR regression is to 

calculate a linear function in a high-dimensional feature space mapping from the input space via a 

nonlinear kernel function. The resulting function produced by SVR regression only depends on a subset 

of the training data, because it ignores the training data that lie within a threshold ε to the prediction 

function, as shown in Figure 2. 

Supposing the training data {( ⃗    )   ( ⃗    )}   
    , where    denotes the space of input 

data. The case of linear function  ( ⃗) can be described in the form as 

 ( ⃗)  ⟨ ⃗⃗⃗  ⃗⟩          ⃗⃗⃗         

where 〈   〉 denotes the dot product in   . The goal of SVR regression is to find a function that has at 

most   deviation from    for all the training data, and at the same time make the function as flat as 

possible. Flatness means to minimize the Euclidean norm, therefore this can be written as the following 

convex optimization problem: 

   
 

 
  ⃗⃗⃗    sub ect to { 

   ⟨ ⃗⃗⃗  ⃗ ⟩     

⟨ ⃗⃗⃗  ⃗ ⟩        
 

This problem is solvable if f actually exists and approximates all data pairs with ε precision. Figure 2 

graphically demonstrates the regression solution. In the mesh deformation, we assume all training data 

lie in/on the ε-insensitive tube around f without exception.  
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Figure 2. Linear SVR Model 

 

SVR can be easily extended to nonlinear cases by mapping the input space into higher dimensional 

feature space, by using the kernel function 𝑘 defined as a linear dot product of the nonlinear mapping. 

Furthermore, the optimization problem can be dualized by utilizing Lagrange multipliers (Burges, 

1998), and the resultant function can be rewritten as follows: 

 ( ⃗)  ∑  

 

   

(    ̂ )𝑘( ⃗   ⃗)    

The coefficients     ̂   can be efficiently calculated by solving the special dual problem using the 

sequential minimal optimization (SMO) algorithm (Platt, 1998). 

In this work, we applied the Gaussian kernel function to map the input data: 

 
 
 
  ⃗⃗⃗   ⃗⃗⃗  

  

       

where   is the kernel width parameter that controls the radial scope of the function. With the increase 

of  , the faster the Gaussian function decays. In the mesh deformation, we could set the kernel width 

close to the size of the deformable part of the shape (e.g., the chord length of the airfoil), so the 

displacements of the control points mainly affect the appropriate local domain. The coordinates of 

boundary points and their known displacements of the next step are used as training samples in mesh 

deformation. After training the SVRs (one coordinate direction for an SVR), the displacements of 

internal points can be computed individually just like the RBF method. It should be noticed that there is 

no need to pre-scale the data to [0, 1] range as what SVR usually does, because the dimension of each 

component of the grid coordinates is the same, and the normalization may degrade the data accuracy. 

2.2 Global Procedure Coupled with CFD 

While the mesh deformation technique is proposed, it needs to be coupled with CFD calculation for 

moving boundary numerical simulations. The displacements of the moving boundary points are usually 

obtained by boundary movement equations. These equations are independently predefined or coupled 

with flow variables. The global procedure of the parallel mesh deformation solver is presented in 

Figure 3. When the solver runs in parallel, it needs to decompose and distribute the computational 
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domain to each CPU in the preprocess stage. In each time step, the SVR method is first applied to 

deform each sub-mesh according to the same SVRs. Because the topological relationship among mesh 

cells is not changed, there is no need to interpolate new flow quantities in mesh cells. Only geometric 

information like cell volumes and face areas is recalculated. After generating the new mesh, the “CFD 

time iteration” section is executed. Finally, once the unsteady simulation is terminated, it reconstructs 

the mesh and flow fields as a whole. 

To ensure the deformation in each subdomain is consistent, we use the same training data in each CPU 

to form the same SVRs. Therefore, each CPU needs to maintain a copy of the entire boundary points 

and their displacements via a point-to-point communication. After each CPU computes the fitting 

function, the solver evaluates the displacements of internal points in each decomposed domain 

simultaneously. In hence, the proposed mesh deformation solver is successful extended to parallel 

environment coupling with CFD solvers. 

 

 

Figure 3. The Global Procedure of the SVR Mesh Deformation Method 

3. Results 

The new parallel mesh deformation method is tested with a calculation of inviscid flow around a 

pitching NACA0012 airfoil case to demonstrate its deforming applicability and efficiency. The case is 

tested on a high-performance cluster with several nodes. Each node has two Intel Xeon E5-2692 v2 

CPUs, which in all has 24 cores at 2.20 GHz, and 64 GB memory. 
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The initial computational mesh is shown in Figure 4. The mesh has 40,400 internal points, 800 

boundary points and 20,400 quadrilateral elements, and extends 75 times chord length from the airfoil 

with a circular outer boundary. The unsteady calculations are performed for the airfoil pitching 

harmonically about the 1/4 chord with the following formula (Landon, 1982): 

          (𝑘 ) 

where the amplitude of      5 
°, the reduced frequency 𝑘 based on semichord and far-field Mach 

number is    8 4, the far-field Mach number 𝑀∞    755, and        6
°. After transformating 

the above dimensionless formula into dimensional, one oscillatory cycle takes about    47 s.  

The flow solver uses the linear least-squares reconstruction technique, the arbitrary 

Lagrangian-Eulerian (ALE) formulation of HLLC flux function and implicit dual-time step approach 

with the LU-SGS method (Daude, Galon, Gao, & Blaud, 2014; Zhang & Wang, 2004). The flow starts 

with the steady results at     , and the step size is chosen as Δt  4     4 s (about 1/368 cycle). 

 

 

Figure 4. Initial Mesh of the NACA0012 Airfoil with a Detailed View 

 

The initial pressure field calculated with steady condition is presented in Figure 5. The computational 

mesh at the maximum amplitude deformed by the SVR method is illustrated in Figure 6. We can see 

that the boundary mesh still move together with the airfoil and its mesh quality has been preserved well 

during the deformation. In this 2D case, the average number of support vectors (or called control points) 

in each direction is about 144 selected by the SVR method in each time step. This is about 18% of all 

the boundary points. Therefore, it is much more efficient compared with the RBF method using all the 

boundary points. 

In this case, three cycles of motion are computed to obtain a periodic solution. Comparisons of 

calculated and experimental (Landon, 1982) normal and moment coefficients versus the instantaneous 

angle of attack are presented in Figure 7 and Figure 8, respectively. These coefficients show the 

variation as a function of angle of attack during a cycle of motion. The comparisons show that the 

coefficients obtained by the flow solver are nearly close to the experimental data. This demonstrates the 

validity of the flow solver and the applicability of the SVR deformation method. 
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Figure 5. Pressure Field around the Airfoil at Initial 𝟎 𝟎𝟏𝟔° of Attack 

 

 

Figure 6. The Deformed NACA0012 Mesh Using the SVR Method 

 

 

Figure 7. Comparison of the Normal Coefficient with Experimental Data 
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Figure 8. Comparison of the Moment Coefficient with Experimental Data 

 

 

Figure 9. Parallel Speedup of the SVR Method 

 

The parallel speedup of the motion solver relative to the number of CPU cores is presented in Figure 9. 

Due to the regression function is computed in all cores, the time cost of this part cannot be reduced 

while the number of CPU cores increases. Therefore, the pure speedup of the “SVR deformation” 

section is not high. When the number of CPUs is 64, the speedup of this section is only about 13. 

However, when it coupled with CFD calculation, the parallel efficiency of the total computation is over 

60% with 64 CPU cores. 

 

4. Conclusions 

In this work, we have developed a parallel mesh deformation method based on support vector machine. 

This machine learning algorithm solves a simple quadratic programming problem by automatically 

selecting key boundary points to form the regression function. After the regression function is 

computed in each CPU, we use it to predict the displacements of internal points in each computational 

subdomain simultaneously.  
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The proposed method is tested with the Gaussian kernel function for a typical pitching airfoil case. The 

results demonstrate that, with proper parametric setting, the deforming capability and efficiency of the 

SVR method is good enough to perform large-scale numerical simulations. In general, the Gaussian 

kernel width σ can set close to the length of the deformable part of the object, and the regression 

threshold ε should be less than the finest mesh spacing divided by the number of deforming steps to 

avoid mesh cells intersecting. 
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