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Abstract

We show the validity of a complete description of closed ideals of the algebra which is a commutative
Banach algebra Jlajg, that endowed with a pointwise operations act on Dirichlet space of algebra of
series of analytic functions on the unit disk D satisfying the Lipscitz condition of order of square

sequence ajz obtained by (Brahim Bouya, 2008), we introduce and deal with approximation square

functions which is an outer functions to produce and show results in <A 2.
J
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1. Introduction
The Dirichlet space D consists of the sequence of square complex-valued analytic functions sz on

the unit disk D with finite Dirichlet integral
, 2
> p(f7):= j (7 @ 44 <+,
- D ~=
] J
where dA(z) = %(1 —€)d(1 — €)dt? denotes the normalized area measure on ID. Equipped with the
pointwise algebraic operations and the series of norms

2 1 m i+2 N 2 2
DIl =5 [ DlEE S e+ 0(7) = Y Y a+mlol,
j J

n=0 j
D becomes a Hilbert space. For 0 < a]-z <1, let lip,> be the algebra of sequence of square analytic
]

functions sz on I that are continuous on D satisfing the Lipschitz condition of order a]-z on D :

20



www.scholink.org/ojs/index.php/asir Applied Science and Innovative Research \Wol. 5, No. 1, 2021

J

Y@ - fre-ol =Y o(lelT) el -0,
j
Note that this condition is equivalent to
YIEH @I =Y o @-12DT™ (2l > 1),
j j
Then, lipajg is a Banach algebra when equipped with series of norms
ZH)?M%Z, = lef,-zllw + sup Z{u — D) @)+ z € D).
] J ]

Here Zj||f]-2||oo := sup,ep 2 |f(2)|. Unlike as for the case when 0 < a? si, the inclusion
lip,2 € D always holds provided that i< af < 1. In what follows, let 0 < af si and define
J

A,z =D nNlip,2. Itis easy to check that A . is a commutative Banach algebra when it is endowed
J J J

with the pointwise algebraic operations and series of norms

AL L= ZJ'”fJ'Z”a]? +Z]-D%(sz), (fi* € Ag2). In order to describe the closed ideals in
g

subalgebras of the disc algebra A(ID), it is natural to make use of Nevanlinna’s factorization theory.
2 . . o .
For f* € A(D) there is a canonical factorization = C]r],sz];Of];, where ijz is a constant, Usz a

sequence of square inner functions that is }.; |Urz2l =1 a.eon T and Oz the sequence of square
J J

outer functions given by

1 (7o el 42 .
Z Of]_z(z) = exp Efo Z ﬂlong(ezez)ldgz )
J J

Denote by H (D) the algebra of bounded analytic functions. Note that cﬂajz, has the so-called
F-property (Shirokov, 1988; Carleson, 1960): if sz € c/la]g and U is an inner function such that
f7/U € H*(D) then

ff/U € Ay and il ]l Y Ca}”sz”cﬂ _» Where C,z is independent of f?. Korenblum

o o

(1972) has described the closed ideals of the algebra HZ of sequence of square  analytic functions sz
such that (sz)’ € H?, where H? is the Hardy space. This result has been extended to some other
Banach algebras of sequence of square analytic functions, by Matheson (1978) for 1ipajz and by
Shamoyan (1994) for the algebra ,1;’?6 of sequence of square analytic functions sz on D such
that ¥; |f)™((z - 26)1) — (FH™((z — 2€); — )| = o(w(|€])) as |e] » 0, where n is a non
negative integer and w an arbitrary nonnegative non decreasing subadditive function on (0, 40).

Shirokov (1982, 1988) had given a complete description of closed ideals for Besov algebras

1
=+
ABl(je_ie of sequence of square analytic functions and particularly for the case € > 0.
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ABZ(,E;E) _ (sz € A(]D)):ZZIEE(n)'Z a +n)(1+2€) < oo b

nz0 j

1
Note that the case of ABZ2 = A(D) N D the problem of description of closed ideals appears to be
much more difficult (see Hedenmalm & Shields, 1990; El-Fallah, Kellay, & Ransford, 2006). Brahim
Bouya (2008) described the structure of the closed ideals of the Banach algebras c/lqu. More precisely

he proved that these ideals are standard in the sense of the Beurling-Rudin characterization of the
closed ideals in the disc algebra (Hoffman, 1988), we show the general validation following (Brahim

Bouya, 2008):
Theorem (1.1): If I is closed ideal of Jla]_z, then

T={f € A (e, = 0and f7/Uz € H2(D)},

where Ex :={z € T: ¥ f?(z) = 0,Vf? € X} and Uy is the greatest common divisor of the inner
parts of the non-zero functions in <.
Such characterization of closed ideals can be reduced further to a problem of approximation of outer

functions using the Beurling— Carleman—-Domar resolvent method. Define d(¢,E) to be the distance
from £ €T tothe set E c T. Suppose that ¥ is a closed ideal in A 2 suchthat Us = 1. We have
]

Zy = Eg, Where

Zq = Zelﬁ):z/‘jz(z)zo, VP €T
J
Next, for f7? € Az such that

Ma_z
LifF@ < XCdE Ey) 9 € €M),
where Mal_z is a positive constant depending only on c/lajz, we have sz € T (see section 3 for more

precisions). Now, to show Theorem (1.1) we need Theorem (1.2) below, which states that every
function in c/la]_z\ {0} can be approximated in cﬂajz by functions with boundary zeros of arbitrary high

order.
Theorem (1.2): Let sz be a function in c/410(]_2\{0} and let € > 0. There exists a sequence of

functions {(g;)n}n=1 € A(D) such that

(i) For all n € N, we have ¥;(f")n =X, (gD € A and Limp oo 2| () _szllﬂ , =

)

0.
(i) 21 (PO < Tj ™ (§,E2) (€ € Thwhere Epz:= § €T+ 3, f2(©) = 0}

To show this Theorem, we give a refinement of the classical Korenblum approximation theory
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(Korenblum, 1972; Matheson, 1978; Shamoyan, 1994; Shirokov, 1982; Shirokov, 1988).

2. Main Result on Approximation of Functions in A .
)

Let sz € A,z and let {y, := (a,, (a + €),)}n=o be the countable collection of the (disjoint open)
]

arcs of T \E,z. We can suppose that the arc lengths of y, are less than é In what follows, we denote
J

by T the union of a family of arcs y,,. Define

1 ef® 4+ 7z .
§ (f7), (@) = exp —an E T, _Zlog|sz(e‘92)|d62 :
n r "
] ]

The difficult part in the proof of Theorem (1.2) is to establish the following

Theorem (2.1): Let f}* € A,z\{0} be an outer function such that illF2l, <1 andlet ex1
2
e

and € > 0. Then we have

fRate (f]_)i(“@ € Ay and supr 3 ||ij(1+6) (f)

2(1+€)
r

< Cl+e,1+e 4 (1)

where Ci,e14¢ IS a positive constant independent of T.

Remark (2.2): For a set S c A(D), we denote by co(S) the convex hull of S consisting of the
intersection of all convex sets that contain S. Set I}, = U.sg Ynae and let sz be as in the Theorem
(2.1) It is clear that the sequence (}Cjz(”e)(]j-)?fl“e)) converges uniformly on compact subsets of D
to fj2(1+6)-

We use (2.1) to deduce, by the Hilbertian structure of D, that there is a sequence
(h), € co({sz(“e)(fj)ﬁ(”e)}gio) converging to £+ inD. Also, by (Matheson, 1978, section 4),

1+€

2(1+€)

we obtain that (hf-)n converges to f; in lipajz, for sufficiently large (14 ¢€) (in fact, we can

show that this result remains true for every e=0 ). Therefore

ZJ'”(h?)n _ij(He) ”:/1 -0, as n-o o,
2

%

Define J(F) to be the closed ideal of all functions in c%lo(jz that vanish on F c . In the proof of

Theorem (1.2), we need the following classical lemma (see Brahim Bouya, 2008), see for instance

(Matheson, 1978, Lemma 4) and (Korenblum, 1972, Lemma 24).
Lemma (2.3): Let f7 € c/la]_z and E' be a finite subset of T such that ¥; f#|E' = 0.Let € >0 be

given. For every ¢ > 0 there is an outer function F in J(E") such that

O SlF -7, <
(i) IF)I < Cd™(§,E) (ET).
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Proof of Theorem (1.2): Now, we can deduce the proof of Theorem (1.2) by using Theorem (2.1) and

Lemma (2.3) Indeed, let £ be a sequence of functions in Az \{0} such that Zj||sz||ﬂ <1 and
2
o

let € > 0.For € = 0 we have

1 ! 1 1
1+e — 1+e / 1 1+en’
2 (1705 = 17) = (057 = 17) U7y + Q530503
j j j

The F-property of A . implies that Of; € A 2. Then, there exists n, € N such that
] ] ]
Jlaz

> j

Set I}, = Uqtesn Yite and a]-z <1 for a given € = 0. By Remark (2.2) applied to ijz (with € =>

< (e20)
3 € = .

1
2 N1+e 2
ff ijzs_ff

1+e
TI;

0), there is a sequence k;, 14¢ € co <{(fj) }w ) such that
e=0

1+€

2+e 2+e 1

04k —0¢ < — eEN, € >0).

Z sz n,1+€ sz p 1+e (Tl € )
J a?
Itis clear that

= 2(1+€) =

sz (ff)r - Of'2 —0 (n — +00).
Jj n JARLPS

J

Then for every € = 0 we get
J

So, there is a sequence kq,. € co ([(fj)z(“e)}o ) such that

Ite

—0 (n — +o0).

1 1
ite ite
Ofg kn,1+e - sz
J JANLLPS

2+€ 2+€

1

0% €k e — O€ < €=0),
Z| 7oe U a4, l+e ( )

J o

) s -

0F k — Qe < (E > 0)

: o Tl T1+e
We have

!

5 (£207 kuse = 1705) = 5, (07 = U002 ) (05 ke = 0777) 4 5, (U205 Ko -
i\JJj sz 1+e j sz J\MJj 175 sz 1+e sz J\"ff f]? 1+e
ﬁ 1A

0}};5) Since Y ||sz <¥iCellf? . £%;Ce we obtain
i i, J 9 ]

]

Z' fzoﬁ k _ f20$ Z fZOﬁ k _f_ZO% +

J || sz 1+e J sz P J |/ sz 1+e J sz
2 (o)
o

)

- |( 207 &) H 2ot +
Sup e {zj(l—m)l F (7205 kuve = £7075) @ }+2,-Dz (17058 ke = £20557) <
J J J J

4_

oo}

1 1
1+e 1+e
sz k1+€ - sz
J J

5|

1 1
F07 kv 1207 +3scall
J 7 Ny J %
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oy oz 2tey N N i
SuPep {z,-(l — 12D | (05 kuve - 057) @) } + 0305 kuve = 0%+ 503(5) +
J J ] J o)
C
CD%Z-(ng —0$)<z. Mok, — o +cxlloFen,. — o] <3.-%
Jj sz 1+e sz == Lij o sz 1+e sz - Jj sz 1+e sz 2 = & qte

Then, fix € = 0 such that
<e/3 (e = 0).
cﬁlaz

2 j

_ 2(1+€) _ _
We have k1+€ = Zi5j1+er C; Ty ) where ZiSjH.e Ci = 1. Set E]’_+€ =V

1 1
szo;;e k1+e _ szo;;s
] J

dy;. Using Lemma

iSj1+e

(2.3), we obtain an outer function F,,. € J(E;.c) suchthat |Fi, ()| < Ci1cd*€({,E{4c) for (ET

and
S 705 krsebie = 705 k| <o ez
j ] f] € € ] f] € P , 1 +E =
4
Then fix e = 0 such that
1 1
Do kebise = f205 k| <er3 ez 0.
- J J A 2
] o
Consequently we obtain
1
z [P0 kyyeFure = ij” <e (e > 0).
7 ! A2
)]
It is not hard to see that
a1
Y| ke @] < Y cned e (s.8g) G e
' j

a
Therefore Zj(gf)ue =Y Ofl;f ki4cFi4c isthe desired series of sequence, which completes the proof
i

of Theorem (1.2).

3. Beurling — Carleman — Domar Resolvent Methed
Since A2 c lip,z2, then for all sz € Ay, Ep satisfies the Carleson condition
] ] ] J

1
log————dt? < +oo.
For f € Agz, We denote by B> the Blashke product with zeros Zg2\E>, where 7 := {z € D:
2 sz (z) = 0}. We begin with following lemma (see Brahim Bouya, 2008).
Lemma (3.1): Let T be a closed ideal of Jlajz. Define By to be the Blashke product with zeros
Z\Eq. There is a sequence of functions f;” € T such that ijz = Bg.

Proof. Let g7 € T and let B, be the Blashke product with zeros Zgjg ND, ,where D, ={z€D:

n-1

|z| <—, n€N}. Set ¥;(g7 . = Y97 /Kn, Where K, = B, /I, and I, is the Blashke product

n

25
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with zeros Zg]z N D,, .We have (g]?)n € I forevery n. Indeed, fix n € N.

It is permissible to assume that Z, consists of a single point, say Zx, = {z —€}.Letm : c/410(]_2 -

Jlajz/z be the canonical quotient map. First suppose (z —¢€) € Z¢, then w(K,) is invertible in

cflmjz/%. It follows that ¥; w(g?), = X;m(g;)n*(K,) = 0, hence (g7), € T.

If (z—€) € Zy, we consider the following ideal J,_. := {f/ € Agz : ffI, € T}. It is clear that

Jz-e is closed. Since (z—¢€) & Z;, _, it follows that K, is invertible in the quotient algebra
z/JZ ¢ and so gJ/(I K,) € J,_.. Hence (g )n € T. It is clear that (g]?)n converges uniformly

on compact subsets of D to ¥; f? = X¥;(g7 /B, z)Bg and we have }; B, 2 = = B¢. In the sequel we

prove that f? € T. If we obtain

Z |((gfz)n)l (Z)| = Z ? (511?) (zeD),
j j )

uniformly with respect to n, we can deduce by using (Matheson, 1978, Lemma 1) that

limy, 100 2 ||(g12)n - ff”w2 = 0. Indeed, by the Cauchy integral formula
)

Z((g?))()_ﬁ 291(2—2@;2(2_26)( B
J
jz(gJ(Z—ZE) 92z / 12))Kn(z — 26)
= 2mi

4e2

d(z — 2¢) (z e D).
Then, for z = (1 —¢€)e®* e D

Z((gf) ) B nllezlg](z—Zeild;q,(Z/l z))| d(z—20)
f Elgz(el(tz”’z)) g3 (e

(2e —1)cost? + (1 —€)?

de?.

Forall € > 0, thereis n > 0 such that if |t2| <, we have

Zj|gf(ei(t2+92)) —gf(ei92)| < Zj£|t2|°‘l'2 (6% € [—m, +m]).
Then

26
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dt?

f n D, |7 (")) - g ()]

& (2e — 1) cost? + (1 —€)?

12|
< sf E dt?
|t2|577 - 62 + 4‘(1 - E)tz /7‘[2
j

Nela [ D Ll
g.
: o2 21 €2+ 4(1 —e)t? / m?

2
too u%
< f —————du
1+af 1+ (2u/n)?
S (1-ez

g7 s
* - 1+aj2 2 flulzm — 1+ (Zu / ”)2 du
2 € ] € J

|g]z(ei(t2+92))_g]z,(ei92)

< Yoo )+ Dot (s
> ez < 310700 (<) 2
-n &~ (26—-1) cos t2+(1-€)? = 2jll9; 0‘]'2 el_aiz . ()

We obtain

Consequently

a_2> (z € D).

Y l(@,) @] = Ylstl o=
j 7 bo\e

By the F-property of c/laiz, we have Y; ||(g]2)n|| <% o

(99),]|, .- sing the  Hilbertian
%

structure of D, we deduce that there is a sequence (h]-z)n € co({(g]?)k},;”zn) converging to sz in D.

It is clear that (hf)n €T and limy, 40y ||(hj2)n—fj2||0(_2 =0. Then lim, 4o Y, ||(hj2)n—
]
ff ”ﬂ = 0. Thus f* € T. This completes the proof of the lemma.
F

1 1
o(Z7)=20(=%)
€ ] € j

As a consequence of Theorem (1.2), we can show Theorem (1.1) and deduce that each closed ideal of
c/lajz is standard. For the sake of completeness, we sketch here the proof, (see Brahim Bouya, 2008).

We can see that Y, ”(gj Al
04

Proof of Theorem (1.1): Define y on D by y(z) =z and let = : c/lajz - c/la]_z/z be the canonical
quotient map. Also, let f7 € J(Ey) be such that f?/U; € H>(D) and (f?), be the sequence in
Theorem (1.2) associated to sz with € = 2. More exactly, we have

i (On = X, f(gPn, where 3;1(g7) ()] < ;4@ Ep2) < d*(§, Ex). Define

27
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(@) = £ ()

P ifz# 4,
Li(fA)(2) =1
Z : D™ ifz=2
J
Then
(@) - D7 = L FD@EE) - 07+ 2w (L)), @3)

It is clear that ((y) — A)~! is an analytic function on C\Zs. Note that the multiplicity of the pole
Zo € Zz N D of (m(y) —A)~! is equal to the multiplicity of the zero z, of Us. Since Ug divides
]2, then according to (3) we can deduce that }:; n(sz)(rt(y) — )71 is a series of square analytic

functions on C\Eg. Let |4| > 1, we have

i) =7, <l Zn 0 Zjlly "l 1177 < 7

(4)

Nl w

Aa? (-2
By Lemma (3.1), there is g7 € T such that Bg]g =By. Let k=3;f/ (gj/Bng). Then, k =
Y,;(f?/Bx)g? € Tandfor 1] < 1, we have k(D) (m(y) — )~ = —m(Ly (k).

Therefore

LA G)lla_,
Yillm(F2) () —/1)‘1||ﬂ S D@ —/1)‘1lldqa_2 +Z,~||L/1(f,-2)||ﬂ ) Z/B—’+
onl- ] ot] g]-
SlaCAl, | <%0 <3 c(7 ke (al <. (5)
otlz 912'/3912_ (@)

We use (Taylor & Williams,1970, Lemmas 5.8 and 5.9) to deduce

C(ftk
> (7)) - 71| < —dg’Ez)l (1<E1<2, §€E).
n ] )

J
Then, we obtain ¢ — 3; |((9)n )OI|IrF) () — 7| € L=(T).
With a simple calculation as in (Esterle, Strouse, & Zouakia, 1994, Lemma 2.4), we can deduce that
1
D () = 5 | D (@hn) @) -7z,
j J
Denote Ty, (Ey) = {h? € A(D): (h?)\s, = 0and h} / Uy € A(D)}.

From (Hoffman, 1988, p. 81), we know that Iy} (Eg) has an approximate identity (ejie)eso €
Tsuch that [legyellee < 1. T isdense in Ty (Eg) with respect to the sup norm |||, so there exists
(Urse)eso € T With |Jugsellee <1 and limy ooty 4(§) = 1 for & € T\E+. Therefore

Zim((fDn) = i ((Fn = (FPnttaae) = 0 as € > o0, Then (f?), €T and f7 € T.
Note that: if lim,_e 3;|(99)n ()| = Z;[(g)| €] then, T;cd*€ (¢, Epz) =%; d3(f'Eff)'
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4. Proof of Theorem (2.1)
The proof of Theorem (2.1) is based on a series of lemmas. In what follows, C;,. will denote a

positive number that depends only on 1 + ¢, not necessarily the same at each occurrence. For an open

ZII(( Dl = | Zl(f, Y@I'aA@.

We begin with the following key lemma (see Brahim Bouya, 2008).

subset A of D), we put

Lemma (4.1): Let £} € Az be such that Ljllf?ll,, <1 andlet e >0 begiven. Then
2

2(1+¢€)

f 2 I (el(tzz)ct dt* < ZC“E”(EZ),”;(v) ’
7

where a,a +€ €EEg,y =(a,a+¢€)C ']I‘\Esz, d(z) :=min{|z—al,|z—(a+€)|]} and A,={z€

D:z/|z| € y}.
Proof: Let e*” € y and define z,2 := (1 — d(e*))et”. Since |y| < 1/2, we obtain |z,2| > % We
have
Zj |f}2(€it2)|2(1+6) < Zj 226+1(|f}2(eit2) _ f}2(2t2)|2(1+€) + |f}2(zt2)|2(1+e))- (6)
By Holder’s inequality combined with the fact that }; ]|| f] || < ]” f] || <1, we get
of
Z |ij(eit2) _ sz(ztz)|2(1+€) — Z|]c}.2(eitz) _ f]_2(2t2)|25|f}2(eit2) _ sz(ZtZNZ
j j
1 a2
< 2%€(1 - |Zt2|)f| |Z|(ff)’((1 —e)e)| 1-ed(1-¢
th ]
. 1 . 2
< 226+1d(elt2)f Z|(sz)'((1 —e)e'”)| (1-e)d(1-e).
05
Hence

2(1+€)

fyzjlff(el );(f:igfsz)l de? <200 [ U5 (ret®)[ (1 - ©d(1 - )de? <

Z}. 2(26+1)ﬂ||(f}2),||22(Ay)_ (7)

d(e

Since d(e'**) < 1/2, we obtain ==

) < d(z,2) < VZd(eit). Put d(z,2) = |z, — &| and note that

either { =a or é =a+e. Let ze(w)=0A-wze+ué O<Lu<l).

With a simple calculation, we can prove that for all eit’ € y and for all u,0 <u <1, we have
|z,2(w) — w| > %(1 —w)d(e™**) (w € dA,), where A, is the boundary of A,. Then

Dz, = {z € D: |z — z2t*(u)| < ;(1 —w)d(e**)} c A, for all i’ €y and for all u,0 <u<1.
Since ;; |(sz)’(z)| is a series of subharmonic on D, it follows that
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4
DN @) S mmmis | D |0 @laac)
j tu - j

17721
_n%(l—u)d(e”z),- ey

Set £(14¢) = 2af€. We have
2(1 2 2(1 2(1 2
DIFC Gl = Y106 - 0]
j j

2

— (14 &)z — &2 j > 2 @) (P (22 w)du
0 =
J

) (zp2(w))|du

1
< Cpped?(eit) j letz(u)—f
0 =
J

1
e1+e(pit?
< Cl+ed (e )(L (1 £1+e ) Z”(f] ) ||L2(A )
< C1+ed81+e(eit2)Z”(sz)’“LZ(Ay)'
j

Hence

12

2
fyzl d(eitz) dtz = Z] CP”(fJZ) ”LZ(AY). (8)
Therefore the result follows from (6), (7) and (8).

In the sequel, we denote by £} a series of square outer functions in A, such that LA, <1
2
%

and we fix a constant 1+¢0<e<1. By (Matheson, 1978 Theorem B), we have

2(1+ 2(1+e€) . 2(1+ 2(1+€)
f,-( € (fj)r € hpajz and ¥; ”f]_( € (fj)r < Crierte

hpajz

2
To prove Theorem (2.1) we need to estimate the integral [ 3|9 (F24*9)|" dA(z). Define

5(7), ) = 1,5y s log 7 )| e ©)

Clearly we have i) =2 7 ((@Dr + @Dnr) and
Z] ((fj)z(1+e)) Z](l + )(f])2(1+6) Z)F,

ijjz(1+e)(fj_2(1+e)), =1+ E)ij(He)(fj)i(HE) (g]g)r (10)

=5 7@+ 9D () - 2, + 9O ()X (gD me (12)
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2(1+€)

Since 3,[|f7||_ < 1, itis obvious that 3, ||(f,)F

< 1land X;[|f7]|_ < 1. Hence, by (11) we
get

2| (702 (10 | da) <2+ 02 f,5] (72040 (19 | dae. @2
We fix y=(a,a+e¢)c T\Esz such that ¥;f?(a) =X;f#(a+¢€) =0. Our purpose in what

follows is to estimate the integral

fAy 5, |(sz(1+e) (ﬁ)i(1+e))’|2 dA(zZ) (13)

which we can rewrite as

[ 2l ) e [+

Where
Ay= {Z €A,:d(z) <2(1- |Z|)}
A}Z,:z {z €A,:d(z) 22(1— |Z|)}
The integral on the region Aj. We begin with the following lemma (see Brahim Bouya, 2008).

Lemma (4.2):

IF? @) = f7 /12D 1 ,
LZ TP Z 2107 Y iz,

Proof: Let z = (1 —€)el*” € A, and put &, = 2af€. We have

Z(l -6 |f}2 ((1 _ E)eitz ) _ij (eit2 )

J

2(1+¢€)

= D =0l (A= e )= £ ()| I (1 - 9e™ ) £7 ()]
J

’ dG+e) <(1

< (1-e)etreuso f( 11 )Z |F2) (Cteeit)
ey

i G+e) dG+e).

_ €)€1+8(1+s) J: )z |(f]-2)’((%+€)eit2)
-~ %

Therefore
2(1+€)

2 _ £2
f Zlf, (2) = f7 (z/lz))| 4AG)
Ay 55

(1 —|z])?

20+6) (1 —e)dt \d(1 — €)

s €2

_ f: LZVJZ ((1 _ E)eitz)—sz (eitz)

o1
< 2N ey | g dt=o.
]

This completes the proof.
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Now, we can state the following result (see Brahim Bouya, 2008).
Lemma (4.3):

L% Zlfﬁ @

Proof:. By Cauchy’s estimate, it follows that ¥; |((f7)r)' (1 — eelth)| < é Using Lemma (4.2), we

(7)) @I ¢4 <3 Caso 107V T,
j

get
(1+e)
[u Sl @10 @ dAw < [, 5 ol dA2) < 3, CarollF s+
Ay~ jr A AT (1-)z)? = ajra+allVy J iz,
2 2(1+€)
(2e41) |if iz
2(2e fAl ErTE dA(2). (14)
Using Lemma (4.1), we obtain
€ . (1+€)
T 1 172 ()"

fA)l, Z]WdA(z) = ;fA%,ZleiZ(l - E)d(l - E)dtz <

2(1+€)

e G e
P B At <5 Caso |07 Ly (15)
The result of our lemma follows by combining the estimates (14) and (15).
The integral on the region A7 . In this subsection, we estimate the integral
Sy Tl (Z)|2(1+e)|((sz )F)’(z)|2dA(z). Before this, we make some remarks. For z € D define
Y
—log|f}* (e“ ) .
f Z ¢|92 | if yer
@ e
a,(z) =
' —10g|f2 (e“ o .
3 f Z . if y€T.
a T\T elG
Using the equation (10), it is easy to see that
2 (\IHECCF2Y Y 2 2 \1+e L _1°g|fj2 (eit2)| 2 ’
T @YD) @] <4 | @ ZLW‘M (16)
eld"—z
Using the equation (11), it is clear that
2 2 1 —log)ff (i) ’
SilfF @) @] < 2% D] + 8% |ff (Z)1+€;f1r\r|9’2—|dé’2 - (A7)
Then
2(1+€) , 2 1|2
[ B @I @ dA@ < 2517 Y 1z, ) + 8 Zi 7 P HOa3()dAG). (18)

Since log|f;? | € L*(T), we have

a,(z) < (ze€ Ay) (19)

_c
dz(z)

Given such inequality, it is not easy to estimate immediately the integral of the series of functions
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Y17 (@) **9aZ(z) on the whole AZ. In what follows, we give a partition of A2 into three parts

so that one can estimate the integral [ ¥ j| sz( )|2(1+6) 2(z)dA(z) on each part. Let z € A2 three
situations are possible :

[log(d(2))|
a,(z) < 8?’ (20)
[log(d(2))| [log(d(2))|
8—d(z) <a,(2)< 8——— (21)
log(d
8 | Og(e(Z))l < ay(z) (22)

We can now divide A into the following three parts
AZt= {z € AZ: z satisfying (20)},
AZ%:= {z € AZ: z satisfying (2 1)},
AZ3:= {z € AZ: z satisfying (22)},
The integral on the regions AZ' and A7*. In this case we begin by the following (see Brahim Bouya,
2008).
Lemma (4.4):

IA%IZV];( )|2(1+6) 2(2)dA(z) <ZC(1+6)||(fJ )’ ||L2(A )

Proof: Using Lemma (4.2), we get
[ @ a@ane
Ay N

<2009 [ N2 @17 @) - 77 @D <P A
A

#2009 [ SN |17 @/12D| e
Azt 7

<Cl+ef ZIf, @) — f7 (z/12D|™" 4AD)
Ay 7

-~ 12D?
|7 (e l”)l )
+Cuee f Z ey (- 9d ot

G
< Y 0 I+ e [ Z"M L - oar -,
j

Let eit* € y and denote by (z— 2€),2 the point of 0AZ N D such that (z —2€).2/|(z — 2€)2| =
e't”. We have

d((z — 2€)2)

|eit2 —(z—-26) 2| =1—1(z — 2€)2] = 5

< d(eitz).

Then
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an |fjd(2(ltlzt)2| —e)dt* < J;z Z |f1d(2(ltlzt)2| d(1 —e)dt?
IF2 (eith)| ™ , IF2 (eieh)| ™
fz ]dze(elt ,[|-(Z_26) | eyt fz JdZe(eltz

Using Lemma (4.1), we get I,y < X Cyyc||(F?)’ || This proves the result.

L2(8y)’
Lemma (4.5):
2(1+¢€)
f DIl d@dae) <cas,)
0P
where A(A, )is the area measure of A,.

Proof: Set

A __{I‘ for YET,
Y7 T\T for ycr.

Let z € A]2,3. We have

Zlf, )| = exp{ f Z loglf, (e17")|dp?

= exp an Z loglf} (e'8%)]d6? ;= exp{~ea,(2)} < d°(2).

Using (19), we obtain the result.

The integral on the region A}2,3. Here, we will give an estimate of the following integral

2(1+€)
f E 17 @] ai(z)dA(2).
AR

Before doing this, we begin with some lemmas (see Brahim Bouya, 2008).
The next one is essential for what follows. Note that a similar result is used by different authors:
Korenblum (1972), Matheson (1978), Shamoyan (1994) and Shirokov (1982, 1988).

Lemma (4.6): Let z € A2% and let pu, =1 — WZL?Z()Z))'. Then
v

Yilff (ue2)| < d?(2). (23)
Proof: Let z € A, and let u < 1. We have
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1- 2 2
Z|f] (#Z)|—6Xp — f Z — (u( E)) |f] (eze )|d92

|6192

1- 2
<owiz . Z - 6)) log| 7 (e1**)|ae?

|6162

i92 2

el®® — yz
For z € AZ2 itisclear that 1 — puz < d(z) < [e'®” — 2| forall ! € A,.

Then

= exp {—(1 —u(l—--¢) infgzEAY

a, (z)].

(ze€ A,Z,Z).

Thus

1- z
Z'sz (1,2)| < exp {— 4” ay(z)} (z € £22).
j

Then, we have

Y7 (2)| < exp {—im - uz)ay(z)} =d2(z) (z € A%2), which yields (23).

For e > 0 define y_o) :={z€D:|z| =1—€ and z/|z| € y}. Without loss of generality, we can
suppose that d(z) < % ZE Af,. We need the following (see Brahim Bouya, 2008).

Note that: we deduce that Y;|f;? (u,2)| < ” ” where ¢’ = =.

Lemma (4.7): Let € > 0. Then

J

Y(-e)

2 it2 2 2 2(1+¢€) ) 42 ,
ﬂAZZZ |f] (A=) =1 ('u(l—e)e“2 (1 =€) )| a;((1—€)e'" )1 - e)dt
v

C1+E 2
< Z 61_8(1"'5) ”(f}z) ”LZ(Ay) ) where €(1+6) = (XZE.
j
Proof: Let (1—€)e!** € A22. Then

D17 (@ =) = 2 (o1 = 0e)| (1= 1) (@ = )]
J

& € .
< 64 (1 - #(1—6)5“2) o )logz (d((l - e)e”z)> < Ciqe-

. 112 1 1 2
Itis clear that e <1—p .2 < d((1-e)eit") < ~andso - < d((1-eet") < (1—e). We

have
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J

27 (=00 = 7 (i1 - e )| 7 a2((1 - 9e)1 - e
j

(1-e)Ndy
< Cl+e.[
Y

Z |f1 (=) - ff (“(1 geird ~ E)eltz) - ¢t

2
(1-eNAF? (1 —H E)ewz)
—€)dt?
C (1-¢€) 2
e f Z|(f] Croe)| di+e) |
€ (1+E) 22 2
Y (1-¢)NAY (1 e)ele(l €)
2 Cive 2y (1 ie2\|* 1 1 2
—e)dt? < s Z|(fj ) (GHee ) Gte) dCte) dt
( +6) (1-e J
e Ny - ol dacz -
el=€a+e) @+e) J !

(1-e) J
Where

Sa-e) :={(z—e)E]D):0SIz—els(l—e)and

Z — € e }
lz—el -1

The last result that we need before giving the proof of Theorem (2.1) is the following one (see Brahim
Bouya, 2008).
Lemma (4.8):

The proof is therefore completed.

5 2(1+€) , 5
ngz ZV/’ @]  aj(@dA(2) < Z Crrell 057 12, + CAY)-

Proof: Using (19) and Lemmas (4.6) and (4.7), we find that
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2(1+€)
f dYIF@l @@
AP

1t ;2 2(1+¢€) ) 2 ,
=;f" <fv<1_e>nA%ZZ|fj2((1_6)e I a(a-ee )(1—6>dt>d(1

)
< CA(s,)

1
z 2
+ 2(26+1)f f |f;2 ((1 _ e)e” )
0 V(l—e)nA%lZ i

J

o\ 2(1+€) .,
B sz (”(1—e)eit2 (1—-e)e ) alz’((l —€)e't )(1 - f)dt2> d(l1—e¢)

< CA(A},) + Z C1+e||(sz )’HzZ(Ay)'
Jj

This completes the proof of the lemma.

Conclusion. Now, according to (18) and Lemmas (4.4), (4.5) and (4.8), we obtain

2(1+¢€) 2
f 7@ (P @ daw)
1’(1—5)rmzz j

»:
<2 Y1671+ |
j (

< Z C1+e||(sz )’||22(Ay) + CA(AY)'
j

D17 @ g aac)
j

1_5)ﬂA§

Combining this with Lemma (4.3), we deduce that
2(1+€)
[ Yol ool <Y ada@ ., , + cae,)
&5 7 Y
Hence

2(1+¢€) ) ] 5 2(1+e) gr 2
fDZW(zn (7)) @) dA(z)=nZl fAyan @ () @[ dA)

< Z Crie Z”(sz )’II;(AM) +C Z A, < Crye
j n=1 n=1

This completes the proof of Theorem (2.1)
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