Original Paper

Validity of Closed Ideals in Algebras of Series of Square

Analytic Functions

Musa Siddig ${ }^{1 *}$, Shawgy Hussein ${ }^{2}$ \& Amani Elseid ${ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Science, University of Kordofan, Sudan
${ }^{2}$ Department of Mathematics, College of Science, Sudan University of Science and Technology, Sudan
${ }^{3}$ Aldayer University College, Jazan University, Saudi Arabia
*Musa Siddig, Department of Mathematics, Faculty of Science, University of Kordofan, Sudan

Received: December 31, 2020
Accepted: January 16, 2021
Online Published: January 22, 2021 doi:10.22158/asir.v5n1p20

URL: http://doi.org/10.22158/asir.v5n1p20

Abstract

We show the validity of a complete description of closed ideals of the algebra which is a commutative Banach algebra $\mathcal{A}_{\alpha_{j}^{2}}$, that endowed with a pointwise operations act on Dirichlet space of algebra of series of analytic functions on the unit disk \mathbb{D} satisfying the Lipscitz condition of order of square sequence α_{j}^{2} obtained by (Brahim Bouya, 2008), we introduce and deal with approximation square functions which is an outer functions to produce and show results in $\mathcal{A}_{\alpha_{j}^{2}}$.

Keywords

Dirichlet space, Lipschitz condition, Banach algebra, Besov algebras, Beurling-Rudin characterization, Beurling-Carleman-Domar resolvent method, F-property

1. Introduction

The Dirichlet space \mathcal{D} consists of the sequence of square complex-valued analytic functions f_{j}^{2} on the unit disk \mathbb{D} with finite Dirichlet integral

$$
\sum_{j} D\left(f_{j}^{2}\right):=\int_{\mathbb{D}} \sum_{j}\left|\left(f_{j}^{2}\right)^{\prime}(z)\right|^{2} d A(z)<+\infty
$$

where $d A(z)=\frac{1}{\pi}(1-\epsilon) d(1-\epsilon) d t^{2}$ denotes the normalized area measure on \mathbb{D}. Equipped with the pointwise algebraic operations and the series of norms

$$
\sum_{j}\left\|f_{j}^{2}\right\|_{\mathcal{D}}^{2}:=\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{j}\left|f_{j}^{2}\left(e^{i t^{2}}\right)\right|^{2} d t^{2}+D\left(f_{j}^{2}\right)=\sum_{n=0}^{\infty} \sum_{j}(1+n)\left|\widehat{f_{j}^{2}}(n)\right|^{2}
$$

\mathcal{D} becomes a Hilbert space. For $0<\alpha_{j}^{2} \leq 1$, let $\operatorname{lip}_{\alpha_{j}^{2}}$ be the algebra of sequence of square analytic functions f_{j}^{2} on \mathbb{D} that are continuous on $\overline{\mathbb{D}}$ satisfing the Lipschitz condition of order α_{j}^{2} on $\overline{\mathbb{D}}$:

$$
\sum_{j}\left|f_{j}^{2}(z)-f_{j}^{2}(z-\epsilon)\right|=\sum_{j} o\left(|\epsilon|^{\alpha_{j}^{2}}\right) \quad(|\epsilon| \rightarrow 0)
$$

Note that this condition is equivalent to

$$
\sum_{j}\left|\left(f_{j}^{2}\right)^{\prime}(z)\right|=\sum_{j} o\left((1-|z|)^{\alpha_{j}^{2}-1}\right) \quad\left(|z| \rightarrow 1^{-}\right)
$$

Then, $\operatorname{lip}_{\alpha_{j}^{2}}$ is a Banach algebra when equipped with series of norms

$$
\sum_{j}\left\|f_{j}^{2}\right\|_{\alpha_{j}^{2}}:=\sum_{j}\left\|f_{j}^{2}\right\|_{\infty}+\sup \sum_{\mathrm{j}}\left\{(1-|z|)^{1-\alpha_{j}^{2}}\left|\left(f_{j}^{2}\right)^{\prime}(z)\right|: \quad z \in \mathbb{D}\right\} .
$$

Here $\sum_{j}\left\|f_{j}^{2}\right\|_{\infty}:=\sup _{z \in \mathbb{D}} \sum_{j}\left|f_{j}^{2}(z)\right|$. Unlike as for the case when $0<\alpha_{j}^{2} \leq \frac{1}{4}$, the inclusion $\operatorname{lip}_{\alpha_{j}^{2}} \subset \mathcal{D}$ always holds provided that $\frac{1}{4}<\alpha_{j}^{2} \leq 1$. In what follows, let $0<\alpha_{j}^{2} \leq \frac{1}{4}$ and define $\mathcal{A}_{\alpha_{j}^{2}}:=\mathcal{D} \cap \operatorname{lip}_{\alpha_{j}^{2}}$. It is easy to check that $\mathcal{A}_{\alpha_{j}^{2}}$ is a commutative Banach algebra when it is endowed with the pointwise algebraic operations and series of norms $\sum_{j}\left\|f_{j}^{2}\right\|_{\mathcal{A}_{\alpha_{\mathrm{j}}^{2}}}:=\sum_{j}\left\|f_{j}^{2}\right\|_{\alpha_{\mathrm{j}}^{2}}+\sum_{j} D^{\frac{1}{2}}\left(f_{j}^{2}\right), \quad\left(f_{j}^{2} \in \mathcal{A}_{\alpha_{j}^{2}}\right)$. In order to describe the closed ideals in subalgebras of the disc algebra $A(\mathbb{D})$, it is natural to make use of Nevanlinna's factorization theory. For $f_{j}^{2} \in A(\mathbb{D})$ there is a canonical factorization $=C_{f_{j}^{2}} U_{f_{j}^{2}} O_{f_{j}^{2}}$, where $C_{f_{j}^{2}}$ is a constant, $U_{f_{j}^{2}}$ a sequence of square inner functions that is $\sum_{j}\left|U_{f_{j}^{2}}\right|=1$ a.e on \mathbb{T} and $O_{f_{j}^{2}}$ the sequence of square outer functions given by

$$
\sum_{j} O_{f_{j}^{2}}(z)=\exp \left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{j} \frac{e^{i \theta^{2}}+z}{e^{i \theta^{2}}-z} \log \left|f_{j}^{2}\left(e^{i \theta^{2}}\right)\right| d \theta^{2}\right\}
$$

Denote by $\mathcal{H}^{\infty}(\mathbb{D})$ the algebra of bounded analytic functions. Note that $\mathcal{A}_{\alpha_{j}^{2}}$ has the so-called F-property (Shirokov, 1988; Carleson, 1960): if $f_{j}^{2} \in \mathcal{A}_{\alpha_{j}^{2}}$ and U is an inner function such that $f_{j}^{2} / U \in \mathcal{H}^{\infty}(\mathbb{D})$ then
$f_{j}^{2} / U \in \mathcal{A}_{\alpha_{\mathrm{j}}^{2}}$ and $\sum_{j}\left\|f_{j}^{2} / U\right\|_{\mathcal{A}_{\alpha_{j}^{2}}} \leq \sum_{j} C_{\alpha_{j}^{2}}\left\|f_{j}^{2}\right\|_{\mathcal{A}_{\alpha_{j}^{2}}}$, where $C_{\alpha_{j}^{2}}$ is independent of f_{j}^{2}. Korenblum (1972) has described the closed ideals of the algebra H_{1}^{2} of sequence of square analytic functions f_{j}^{2} such that $\left(f_{j}^{2}\right)^{\prime} \in H^{2}$, where H^{2} is the Hardy space. This result has been extended to some other Banach algebras of sequence of square analytic functions, by Matheson (1978) for $\operatorname{lip}_{\alpha_{j}^{2}}$ and by Shamoyan (1994) for the algebra $\lambda_{z-\epsilon}^{(n)}$ of sequence of square analytic functions f_{j}^{2} on \mathbb{D} such that $\left.\sum_{j} \mid f_{j}^{2}\right)^{(n)}\left((z-2 \epsilon)_{1}\right)-\left(f_{j}^{2}\right)^{(n)}\left((z-2 \epsilon)_{1}-\epsilon\right) \mid=o(\omega(|\epsilon|))$ as $|\epsilon| \rightarrow 0$, where n is a non negative integer and ω an arbitrary nonnegative non decreasing subadditive function on $(0,+\infty)$. Shirokov (1982, 1988) had given a complete description of closed ideals for Besov algebras $A B_{1+\epsilon, 1+\epsilon}^{\left(\frac{1}{2}+\epsilon\right)}$ of sequence of square analytic functions and particularly for the case $\epsilon>0$.

$$
A B_{2,2}^{\left(\frac{1}{2}+\epsilon\right)}=\left\{\left(f_{j}^{2} \in A(\mathbb{D}): \sum_{n \geq 0} \sum_{j}\left|\widehat{f_{j}^{2}}(n)\right|^{2}(1+n)^{(1+2 \epsilon)}<\infty\right\}\right.
$$

Note that the case of $A B_{2,2}^{\frac{1}{2}}=A(\mathbb{D}) \cap \mathcal{D}$ the problem of description of closed ideals appears to be much more difficult (see Hedenmalm \& Shields, 1990; El-Fallah, Kellay, \& Ransford, 2006). Brahim Bouya (2008) described the structure of the closed ideals of the Banach algebras $\mathcal{A}_{\alpha_{j}^{2}}$. More precisely he proved that these ideals are standard in the sense of the Beurling-Rudin characterization of the closed ideals in the disc algebra (Hoffman, 1988), we show the general validation following (Brahim Bouya, 2008):
Theorem (1.1): If I is closed ideal of $\mathcal{A}_{\alpha_{\mathrm{j}}^{2}}$, then

$$
\mathfrak{I}=\left\{f_{j}^{2} \in \mathcal{A}_{\alpha_{j}^{2}}:\left(f_{j}^{2}\right)_{\backslash E_{\mathfrak{I}}}=0 \text { and } f_{j}^{2} / U_{\mathfrak{I}} \in \mathcal{H}^{\infty}(\mathbb{D})\right\}
$$

where $E_{\mathfrak{I}}:=\left\{z \in \mathbb{T}: \sum_{j} f_{j}^{2}(z)=0, \forall f_{j}^{2} \in \mathfrak{I}\right\}$ and $U_{\mathfrak{I}}$ is the greatest common divisor of the inner parts of the non-zero functions in \mathfrak{T}.
Such characterization of closed ideals can be reduced further to a problem of approximation of outer functions using the Beurling- Carleman-Domar resolvent method. Define $d(\xi, E)$ to be the distance from $\xi \in T$ to the set $E \subset \mathbb{T}$. Suppose that \mathfrak{T} is a closed ideal in $\mathcal{A}_{\alpha_{\mathrm{j}}^{2}}$ such that $U_{\mathfrak{I}}=1$. We have $Z_{\mathfrak{I}}=E_{\mathfrak{Z}}$, where

$$
Z_{\mathfrak{I}}:=\left\{z \in \overline{\mathbb{D}}: \sum_{j} f_{j}^{2}(z)=0, \quad \forall f_{j}^{2} \in \mathfrak{T}\right\}
$$

Next, for $f_{j}^{2} \in \mathcal{A}_{\alpha_{j}^{2}}$ such that

$$
\sum_{j}\left|f_{j}^{2}(\xi)\right| \leq \sum_{j} C d\left(\xi, E_{\mathfrak{T}}\right)^{M_{\alpha_{j}^{2}}} \quad(\xi \in \mathbb{T})
$$

where $M_{\alpha_{j}^{2}}$ is a positive constant depending only on $\mathcal{A}_{\alpha_{\mathrm{j}}^{2}}$, we have $f_{j}^{2} \in \mathfrak{T}$ (see section 3 for more precisions). Now, to show Theorem (1.1) we need Theorem (1.2) below, which states that every function in $\mathcal{A}_{\alpha_{j}^{2}} \backslash\{0\}$ can be approximated in $\mathcal{A}_{\alpha_{j}^{2}}$ by functions with boundary zeros of arbitrary high order.
Theorem (1.2): Let f_{j}^{2} be a function in $\mathcal{A}_{\alpha_{j}^{2}} \backslash\{0\}$ and let $\epsilon \geq 0$. There exists a sequence of functions $\left\{\left(g_{j}\right)_{n}\right\}_{n=1}^{\infty} \subset A(\mathbb{D})$ such that
(i) For all $n \in \mathbb{N}$, we have $\sum_{j}\left(f_{j}^{2}\right)_{n}=\sum_{j} f_{j}^{2}\left(g_{j}^{2}\right)_{n} \in \mathcal{A}_{\alpha_{\mathrm{j}}^{2}}$ and $\operatorname{Lim}_{n \rightarrow \infty} \sum_{j}\left\|\left(f_{j}^{2}\right)_{n}-f_{j}^{2}\right\|_{\mathcal{A}_{\alpha_{\mathrm{j}}^{2}}}=$
0.
(ii) $\sum_{j}\left|\left(g_{j}^{2}\right)(\xi)\right| \leq \sum_{j} C_{n} d^{1+\epsilon}\left(\xi, E_{f_{j}^{2}}\right) \quad(\xi \in T)$, where $E_{f_{j}^{2}}:=\left\{\xi \in T: \sum_{j} f_{j}^{2}(\xi)=0\right\}$.

To show this Theorem, we give a refinement of the classical Korenblum approximation theory
(Korenblum, 1972; Matheson, 1978; Shamoyan, 1994; Shirokov, 1982; Shirokov, 1988).

2. Main Result on Approximation of Functions in $\mathcal{A}_{\alpha_{j}^{2}}$

Let $f_{j}^{2} \in \mathcal{A}_{\alpha_{\mathrm{j}}^{2}}$ and let $\left\{\gamma_{n}:=\left(a_{n},(a+\epsilon)_{n}\right)\right\}_{n \geq 0}$ be the countable collection of the (disjoint open) arcs of $\mathbb{T} \backslash E_{f_{j}^{2}}$. We can suppose that the arc lengths of γ_{n} are less than $\frac{1}{2}$. In what follows, we denote by $\quad \Gamma$ the union of a family of arcs γ_{n}. Define

$$
\sum_{j}\left(f_{j}^{2}\right)_{\Gamma}(z):=\exp \left\{\frac{1}{2 \pi} \int_{\Gamma} \sum_{j} \frac{e^{i \theta^{2}}+z}{e^{i \theta^{2}}-z} \log \left|f_{j}^{2}\left(e^{i \theta^{2}}\right)\right| d \theta^{2}\right\}
$$

The difficult part in the proof of Theorem (1.2) is to establish the following
Theorem (2.1): Let $f_{j}^{2} \in \mathcal{A}_{\alpha_{j}^{2}} \backslash\{0\}$ be an outer function such that $\sum_{j}\left\|f_{j}^{2}\right\|_{\mathcal{A}_{\alpha_{j}^{2}}} \leq 1$ and let $\epsilon \geq 1$ and $\epsilon>0$. Then we have

$$
\begin{equation*}
f_{j}^{2(1+\epsilon)}\left(f_{j}\right)_{\Gamma}^{2(1+\epsilon)} \in \mathcal{A}_{\alpha_{\mathrm{j}}^{2}} \text { and } \sup _{\Gamma} \sum_{j}\left\|f_{j}^{2(1+\epsilon)}\left(f_{j}\right)_{\Gamma}^{2(1+\epsilon)}\right\|_{\mathcal{A}_{\alpha_{\mathrm{j}}^{2}}} \leq C_{1+\epsilon, 1+\epsilon} \tag{1}
\end{equation*}
$$

where $C_{1+\epsilon, 1+\epsilon}$ is a positive constant independent of Γ.
Remark (2.2): For a set $S \subset A(\mathbb{D})$, we denote by $\operatorname{co}(S)$ the convex hull of S consisting of the intersection of all convex sets that contain S. Set $\Gamma_{n}=U_{\epsilon \geq 0} \gamma_{n+\epsilon}$ and let f_{j}^{2} be as in the Theorem (2.1) It is clear that the sequence $\left(f_{j}^{2(1+\epsilon)}\left(f_{j}\right)_{\Gamma_{\mathrm{n}}}^{2(1+\epsilon)}\right)$ converges uniformly on compact subsets of \mathbb{D} to $f_{j}^{2(1+\epsilon)}$.
We use (2.1) to deduce, by the Hilbertian structure of \mathcal{D}, that there is a sequence $\left(h_{j}^{2}\right)_{n} \in \operatorname{co}\left(\left\{f_{j}^{2(1+\epsilon)}\left(f_{j}\right)_{\Gamma_{1+\epsilon}}^{2(1+\epsilon)}\right\}_{\epsilon=0}^{\infty}\right)$ converging to $f_{j}^{2(1+\epsilon)}$ in \mathcal{D}. Also, by (Matheson, 1978, section 4), we obtain that $\left(h_{j}^{2}\right)_{n}$ converges to $f_{j}^{2(1+\epsilon)}$ in $\operatorname{lip}_{\alpha_{j}^{2}}$, for sufficiently large $(1+\epsilon)$ (in fact, we can show that this result remains true for every $\epsilon \geq 0$). Therefore $\sum_{j}\left\|\left(h_{j}^{2}\right)_{n}-f_{j}^{2(1+\epsilon)}\right\|_{\mathcal{A}_{\alpha_{j}^{2}}} \rightarrow 0$, as $n \rightarrow \infty$.
Define $\mathcal{J}(F)$ to be the closed ideal of all functions in $\mathcal{A}_{\alpha_{\mathrm{j}}^{2}}$ that vanish on $F \subset \overline{\mathbb{D}}$. In the proof of Theorem (1.2), we need the following classical lemma (see Brahim Bouya, 2008), see for instance (Matheson, 1978, Lemma 4) and (Korenblum, 1972, Lemma 24).
Lemma (2.3): Let $f_{j}^{2} \in \mathcal{A}_{\alpha_{\mathrm{j}}^{2}}$ and E^{\prime} be a finite subset of \mathbb{T} such that $\sum_{j} f_{j}^{2} \mid E^{\prime}=0$. Let $\epsilon \geq 0$ be given. For every $\varepsilon>0$ there is an outer function F in $\mathcal{J}\left(E^{\prime}\right)$ such that
(i) $\sum_{j}\left\|F f_{j}^{2}-f_{j}^{2}\right\|_{\mathcal{A}_{\alpha_{\mathrm{j}}^{2}}} \leq \varepsilon$,
(ii) $|F(\xi)| \leq C d^{1+\epsilon}\left(\xi, E^{\prime}\right) \quad(\xi \in \mathbb{T})$.

Proof of Theorem (1.2): Now, we can deduce the proof of Theorem (1.2) by using Theorem (2.1) and Lemma (2.3) Indeed, let f_{j}^{2} be a sequence of functions in $\mathcal{A}_{\alpha_{\mathrm{j}}^{2}} \backslash\{0\}$ such that $\sum_{j}\left\|f_{j}^{2}\right\|_{\mathcal{A}_{\alpha_{\mathrm{j}}^{2}}} \leq 1$ and let $\epsilon>0$. For $\epsilon \geq 0$ we have

$$
\sum_{j}\left(f_{j}^{2} O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}}-f_{j}^{2}\right)^{\prime}=\sum_{j}\left(O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}}-f_{j}^{2}\right)\left(f_{j}^{2}\right)^{\prime}+\sum_{j} \frac{1}{1+\epsilon} U_{f_{j}^{2}} O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}} O_{f_{j}^{2}}^{\prime}
$$

The F-property of $\mathcal{A}_{\alpha_{j}^{2}}$ implies that $O_{f_{j}^{2}} \in \mathcal{A}_{\alpha_{j}^{2}}$. Then, there exists $\eta_{0} \in \mathbb{N}$ such that

$$
\sum_{j}\left\|f_{j}^{2} O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}}-f_{j}^{2}\right\|_{\mathcal{A}_{\alpha_{j}^{2}}}<\frac{\epsilon}{3} \quad(\epsilon \geq 0)
$$

Set $\Gamma_{n}=U_{1+\epsilon \geq n} \gamma_{1+\epsilon}$ and $\alpha_{\mathrm{j}}^{2} \leq 1$ for a given $\epsilon \geq 0$. By Remark (2.2) applied to $O_{f_{j}^{2}}$ (with $\epsilon=>$ 0), there is a sequence $k_{n, 1+\epsilon} \in \operatorname{co}\left(\left\{\left(f_{j}\right)_{\Gamma_{1+\epsilon}}^{1+\epsilon}\right\}_{\epsilon=0}^{\infty}\right)$ such that

$$
\sum_{j}\left\|O_{f_{j}^{2}}^{\frac{2+\epsilon}{1+\epsilon}} k_{n, 1+\epsilon}-O_{f_{j}^{2}}^{\frac{2+\epsilon}{1+\epsilon}}\right\|_{\mathcal{A}_{\alpha^{2}}}<\frac{1}{1+\epsilon} \quad(n \in \mathbb{N}, \epsilon \geq 0)
$$

It is clear that

$$
\sum_{j}\left\|O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}}\left(f_{j}\right)_{\Gamma_{n}}^{2(1+\epsilon)}-O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}}\right\|_{\infty} \rightarrow 0 \quad(n \rightarrow+\infty)
$$

Then for every $\epsilon \geq 0$ we get

$$
\sum_{j}\left\|O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}} k_{n, 1+\epsilon}-O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}}\right\|_{\infty} \rightarrow 0 \quad(n \rightarrow+\infty)
$$

So, there is a sequence $k_{1+\epsilon} \in \operatorname{co}\left(\left\{\left(f_{j}\right)_{\Gamma_{1+\epsilon}}^{2(1+\epsilon)}\right\}_{0}^{\infty}\right)$ such that

$$
\left\{\begin{array}{l}
\sum_{j}\left\|O_{f_{j}^{2}}^{\frac{2+\epsilon}{1+\epsilon}} k_{1+\epsilon}-O_{f_{j}^{2}}^{\frac{2+\epsilon}{1+\epsilon}}\right\|_{\mathcal{A} \alpha_{j}^{2}} \leq \frac{1}{1+\epsilon} \quad(\epsilon \geq 0) \\
\sum_{j}\left\|O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}} k_{1+\epsilon}-O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}}\right\|_{\infty} \leq \frac{1}{1+\epsilon} \quad(\epsilon \geq 0)
\end{array}\right.
$$

We have

$$
\begin{aligned}
& \sum_{j}\left(f_{j}^{2} O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}} k_{1+\epsilon}-f_{j}^{2} O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}}\right)^{\prime}=\sum_{j}\left(\left(f_{j}^{2}\right)^{\prime}-U_{f_{j}^{2}} O_{f_{j}^{2}}^{\prime}\right)\left(O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}} k_{1+\epsilon}-O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}}\right)+\sum_{j}\left(U_{f_{j}^{2}} D_{f_{j}^{2}}^{\frac{2+\epsilon}{1+\epsilon}} k_{1+\epsilon}-\right. \\
& \left.O_{f_{j}^{2}}^{\frac{2+\epsilon}{1+\epsilon}}\right)^{\prime} \quad \text { Since } \quad \sum_{j}\left\|O_{f_{j}^{2}}\right\|_{\mathcal{A}_{\alpha_{j}^{2}}} \leq \sum_{j} C_{\alpha_{j}^{2}}\left\|f_{j}^{2}\right\|_{\alpha_{\mathrm{j}}^{2}} \leq \sum_{j} C_{\alpha_{j}^{2}}, \quad \text { we } \quad \text { obtain } \\
& \sum_{j}\left\|f_{j}^{2} O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}} k_{1+\epsilon}-f_{j}^{2} O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}}\right\|_{\mathcal{A}_{\alpha_{j}^{2}}} \sum_{j}\left\|f_{j}^{2} O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}} k_{1+\epsilon}-f_{j}^{2} O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}}\right\|_{\infty}+ \\
& \sup _{z \in \mathbb{D}}\left\{\sum_{j}(1-|z|)^{1-\alpha_{j}^{2}}\left|\left(f_{j}^{2} O_{f_{j}^{2}}^{\frac{1}{11 \epsilon}} k_{1+\epsilon}-f_{j}^{2} O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}}\right)^{\prime}(z)\right|\right\}+\sum_{j} D^{\frac{1}{2}}\left(f_{j}^{2} O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}} k_{1+\epsilon}-f_{j}^{2} O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}}\right) \leq \\
& \sum_{j}\left\|f_{j}^{2} O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}} k_{1+\epsilon}-f_{j}^{2} O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}}\right\|_{\infty}+\sum_{j} C_{\alpha_{j}^{2}}\left\|f_{j}^{2}\right\|_{\alpha_{j}^{2}}\left\|O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}} k_{1+\epsilon}-O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}}\right\|_{\infty}+
\end{aligned}
$$

$$
\begin{aligned}
& \sup _{z \in \mathbb{D}}\left\{\sum_{j}(1-|z|)^{1-\alpha_{j}^{2}}\left|\left(O_{f_{j}^{2}}^{\frac{2+\epsilon}{1+\epsilon}} k_{1+\epsilon}-O_{f_{j}^{2}}^{\frac{2+\epsilon}{1+\epsilon}}\right)^{\prime}(z)\right|\right\}+C \sum_{j}\left\|O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}} k_{1+\epsilon}-O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}}\right\|_{\infty}+\sum_{j} D^{\frac{1}{2}}\left(f_{j}^{2}\right)+ \\
& C D^{\frac{1}{2}} \sum_{j}\left(O_{f_{j}^{2}}^{\frac{2+\epsilon}{1+\epsilon}} k_{1+\epsilon}-O_{f_{j}^{2}}^{\frac{2+\epsilon}{1+\epsilon}}\right) \leq \sum_{j} C_{\alpha_{j}^{2}}\| \|_{f_{j}^{2}}^{\frac{1}{1+\epsilon}} k_{1+\epsilon}-O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}}\left\|_{\infty}+C \sum_{j}\right\|\left\|_{f_{j}^{2}}^{\frac{2+\epsilon}{1+\epsilon}} k_{1+\epsilon}-O_{f_{j}^{2}}^{\frac{2+\epsilon}{1+\epsilon}}\right\|_{\mathcal{A}_{\alpha_{j}^{2}}} \leq \sum_{j} \frac{c_{\alpha_{j}^{2}}}{1+\epsilon}
\end{aligned}
$$

Then, fix $\epsilon \geq 0$ such that

$$
\sum_{j}\left\|f_{j}^{2} O_{f_{j}^{1+\epsilon}}^{\frac{1}{1+\epsilon}} k_{1+\epsilon}-f_{j}^{2} O_{f_{j}^{1+\epsilon}}^{\frac{1}{1+\epsilon}}\right\|_{\mathcal{A}_{\alpha_{j}^{2}}}<\epsilon / 3 \quad(\epsilon \geq 0) .
$$

We have $k_{1+\epsilon}=\sum_{i \leq j_{1+\epsilon}} \sum_{j} c_{i} f_{\Gamma_{i}}^{2(1+\epsilon)}$, where $\sum_{i \leq j_{1+\epsilon}} c_{i}=1$. Set $E_{1+\epsilon}^{\prime}=U_{i \leq j_{1+\epsilon}} \partial \gamma_{i}$. Using Lemma (2.3), we obtain an outer function $F_{1+\epsilon} \in \mathcal{J}\left(E_{1+\epsilon}^{\prime}\right)$ such that $\left|F_{1+\epsilon}(\zeta)\right| \leq C_{1+\epsilon} d^{1+\epsilon}\left(\zeta, E_{1+\epsilon}^{\prime}\right)$ for $\zeta \in T$ and

$$
\sum_{j}\left\|f_{j}^{2} O_{f_{j}^{1+\epsilon}}^{\frac{1}{1+\epsilon}} k_{1+\epsilon} F_{1+\epsilon}-f_{j}^{2} O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}} k_{1+\epsilon}\right\|_{\mathcal{A}_{\alpha_{j}^{2}}}<\frac{1}{1+\epsilon},(\epsilon \geq 1)
$$

Then fix $\epsilon \geq 0$ such that

$$
\sum_{j}\left\|f_{j}^{2} O_{f_{j}^{1+\epsilon}}^{\frac{1}{1+\epsilon}} k_{1+\epsilon} F_{1+\epsilon}-f_{j}^{2} O_{f_{j}^{1}}^{\frac{1}{1+\epsilon}} k_{1+\epsilon}\right\|_{\mathcal{A}_{\alpha_{j}^{2}}}<\epsilon / 3 \quad(\epsilon \geq 0)
$$

Consequently we obtain

$$
\sum_{j}\left\|f_{j}^{2} O_{f_{j}^{1+\epsilon}}^{\frac{1}{1+\epsilon}} k_{1+\epsilon} F_{1+\epsilon}-f_{j}^{2}\right\|_{\mathcal{A}_{\alpha_{j}^{2}}}<\epsilon \quad(\epsilon \geq 0)
$$

It is not hard to see that

$$
\left.\sum_{j}| |_{f_{j}^{2}}^{\frac{1}{1+\epsilon}} k_{1+\epsilon} F_{1+\epsilon}(\xi) \right\rvert\, \leq \sum_{j} C_{1+\epsilon} d^{1+\epsilon}\left(\xi, E_{f_{j}^{2}}\right) \quad(\xi \in \mathbb{T})
$$

Therefore $\sum_{j}\left(g_{j}^{2}\right)_{1+\epsilon}=\sum_{j} O_{f_{j}^{2}}^{\frac{1}{1+\epsilon}} k_{1+\epsilon} F_{1+\epsilon}$ is the desired series of sequence, which completes the proof of Theorem (1.2).

3. Beurling - Carleman - Domar Resolvent Methed

Since $\mathcal{A}_{\alpha_{j}^{2}} \subset \operatorname{lip}_{\alpha_{\mathrm{j}}^{2}}$, then for all $f_{j}^{2} \in \mathcal{A}_{\alpha_{\mathrm{j}}^{2}}, E_{f_{j}^{2}}$ satisfies the Carleson condition

$$
\int_{\mathbb{T}} \sum_{\mathrm{j}} \log \frac{1}{d\left(e^{i t^{2}}, E_{f_{j}^{2}}\right)} d t^{2}<+\infty .
$$

For $f_{j}^{2} \in \mathcal{A}_{\alpha_{\mathrm{j}}^{2}}$, we denote by $B_{f_{j}^{2}}$ the Blashke product with zeros $Z_{f_{j}^{2}} \backslash E_{f_{j}^{2}}$, where $Z_{f_{j}^{2}}:=\{z \in \overline{\mathbb{D}}$: $\left.\sum_{j} f_{j}^{2}(z)=0\right\}$. We begin with following lemma (see Brahim Bouya, 2008).
Lemma (3.1): Let \mathfrak{I} be a closed ideal of $\mathcal{A}_{\alpha_{\mathfrak{j}} \text {. }}$ Define $B_{\mathfrak{I}}$ to be the Blashke product with zeros $Z_{\mathfrak{Y}} \backslash E_{\mathfrak{Y}}$. There is a sequence of functions $f_{j}^{2} \in \mathfrak{I}$ such that $B_{f_{j}^{2}}=B_{\mathfrak{I}}$.
Proof. Let $g_{j}^{2} \in \mathfrak{I}$ and let B_{n} be the Blashke product with zeros $Z_{g_{j}^{2}} \cap \mathbb{D}_{n}$, where $\mathbb{D}_{n}:=\{z \in \mathbb{D}$: $\left.|z|<\frac{n-1}{n}, n \in \mathbb{N}\right\}$. Set $\sum_{j}\left(g_{j}^{2}\right)_{n}=\sum_{j} g_{j}^{2} / K_{n}$, where $K_{n}=B_{n} / I_{n}$ and I_{n} is the Blashke product
with zeros $Z_{g_{j}^{2}} \cap \mathbb{D}_{n}$. We have $\left(g_{j}^{2}\right)_{n} \in I$ for every n. Indeed, fix $n \in \mathbb{N}$.
It is permissible to assume that $Z_{K_{n}}$ consists of a single point, say $Z_{K_{n}}=\{z-\epsilon\}$. Let $\pi: \mathcal{A}_{\alpha_{\mathrm{j}}^{2}} \rightarrow$ $\mathcal{A}_{a_{\mathfrak{j}}^{2}} / \mathfrak{I}$ be the canonical quotient map. First suppose $(z-\epsilon) \notin Z_{\mathfrak{I}}$, then $\pi\left(K_{n}\right)$ is invertible in $\mathcal{A}_{\alpha_{j}^{2}} / \mathfrak{T}$. It follows that $\sum_{j} \pi\left(g_{j}^{2}\right)_{n}=\sum_{j} \pi\left(g_{j}^{2}\right) \pi^{-1}\left(K_{n}\right)=0$, hence $\left(g_{j}^{2}\right)_{n} \in \mathfrak{T}$. If $(z-\epsilon) \in Z_{\mathfrak{I}}$, we consider the following ideal $\mathcal{J}_{z-\epsilon}:=\left\{f_{j}^{2} \in \mathcal{A}_{\alpha_{j}^{2}}: f_{j}^{2} I_{n} \in \mathfrak{I}\right\}$. It is clear that $\mathcal{J}_{z-\epsilon}$ is closed. Since $(z-\epsilon) \notin Z_{J_{z-\epsilon}}$, it follows that K_{n} is invertible in the quotient algebra $\mathcal{A}_{\alpha_{j}^{2}} / \mathcal{J}_{z-\epsilon}$ and so $g_{j}^{2} /\left(I_{n} K_{n}\right) \in \mathcal{J}_{z-\epsilon}$. Hence $\left(g_{j}^{2}\right)_{n} \in \mathfrak{T}$. It is clear that $\left(g_{j}^{2}\right)_{n}$ converges uniformly on compact subsets of \mathbb{D} to $\sum_{j} f_{j}^{2}=\sum_{J}\left(g_{j}^{2} / B_{g_{j}^{2}}\right) B_{\mathfrak{X}}$ and we have $\sum_{J} B_{f_{j}^{2}}=B_{\mathfrak{X}}$. In the sequel we prove that $f_{j}^{2} \in \mathfrak{T}$. If we obtain

$$
\sum_{j}\left|\left(\left(g_{j}^{2}\right)_{n}\right)^{\prime}(z)\right| \leq \sum_{j} o\left(\frac{1}{\epsilon^{1-\alpha_{j}^{2}}}\right) \quad(z \in \mathbb{D})
$$

uniformly with respect to n , we can deduce by using (Matheson, 1978, Lemma 1) that $\lim _{n \rightarrow+\infty} \sum_{j}\left\|\left(g_{j}^{2}\right)_{n}-f_{j}^{2}\right\|_{\alpha_{j}^{2}}=0$. Indeed, by the Cauchy integral formula

$$
\begin{aligned}
\sum_{j}\left(\left(g_{j}^{2}\right)_{n}\right)^{\prime}(z) & =\frac{1}{2 \pi i} \int_{\mathbb{T}} \sum_{j} \frac{g_{j}^{2}(z-2 \epsilon) \overline{K_{n}(z-2 \epsilon)}}{4 \epsilon^{2}} d(z-2 \\
& =\frac{1}{2 \pi i} \int_{\mathbb{T}} \sum_{j} \frac{\left(g_{j}^{2}(z-2 \epsilon)-g_{j}^{2}(z /|z|)\right) \overline{K_{n}(z-2 \epsilon)}}{4 \epsilon^{2}} d(z-2 \epsilon) \quad(z \in \mathbb{D}) .
\end{aligned}
$$

Then, for $z=(1-\epsilon) e^{i \theta^{2}} \in \mathbb{D}$

$$
\begin{aligned}
\sum_{j}\left(\left(g_{j}^{2}\right)_{n}\right)^{\prime}(z) & \leq \frac{\left\|K_{n}\right\|_{\infty}}{2 \pi} \int_{\mathbb{T}} \sum_{j} \frac{\left|g_{j}^{2}(z-2 \epsilon)-g_{j}^{2}(z /|z|)\right|}{4|\epsilon|^{2}}|d(z-2 \epsilon)| \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sum_{j} \frac{\left|g_{j}^{2}\left(e^{i\left(t^{2}+\theta^{2}\right)}\right)-g_{j}^{2}\left(e^{i \theta^{2}}\right)\right|}{(2 \epsilon-1) \cos t^{2}+(1-\epsilon)^{2}} d t^{2} .
\end{aligned}
$$

For all $\varepsilon>0$, there is $\eta>0$ such that if $\left|t^{2}\right| \leq \eta$, we have

$$
\sum_{j}\left|g_{j}^{2}\left(e^{i\left(t^{2}+\theta^{2}\right)}\right)-g_{j}^{2}\left(e^{i \theta^{2}}\right)\right| \leq \sum_{j} \varepsilon\left|t^{2}\right|^{\alpha_{j}^{2}} \quad\left(\theta^{2} \in[-\pi,+\pi]\right) .
$$

Then

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \sum_{j} \frac{\left|g_{j}^{2}\left(e^{i\left(t^{2}+\theta^{2}\right)}\right)-g_{j}^{2}\left(e^{i \theta^{2}}\right)\right|}{(2 \epsilon-1) \cos t^{2}+(1-\epsilon)^{2}} d t^{2} \\
& \leq \varepsilon \int_{\left|t^{2}\right| \leq \eta} \sum_{j} \frac{\left|t^{2}\right|^{\alpha_{j}^{2}}}{\epsilon^{2}+4(1-\epsilon) t^{2} / \pi^{2}} d t^{2} \\
&+\sum_{j}\left\|g_{j}^{2}\right\|_{\alpha_{j}^{2}} \int_{\left|t^{2}\right| \leq \eta} \sum_{j} \frac{\left|t^{2}\right|^{\alpha_{j}^{2}}}{\epsilon^{2}+4(1-\epsilon) t^{2} / \pi^{2}} d t^{2} \\
& \quad \leq \sum_{j} \frac{\varepsilon}{(1-\epsilon)^{\frac{1+\alpha_{j}^{2}}{2}} \epsilon^{1-\alpha_{j}^{2}}} \int_{0}^{+\infty} \sum_{j} \frac{u^{\alpha_{j}^{2}}}{1+(2 u / \pi)^{2}} d u \\
& \quad+\sum_{j} \frac{\left\|g_{j}^{2}\right\|_{\alpha_{j}^{2}}}{(1-\epsilon)^{\frac{1+\alpha_{j}^{2}}{2}} \epsilon^{1-\alpha_{j}^{2}}} \int_{|u| \left\lvert\, \frac{\eta \sqrt{1-\epsilon}}{\epsilon}\right.} \sum_{j} \frac{u^{\alpha_{j}^{2}}}{1+(2 u / \pi)^{2}} d u \\
& \quad \leq \sum_{j} \varepsilon O\left(\frac{1}{\epsilon^{1-\alpha_{j}^{2}}}\right)+\sum_{j}\left\|g_{j}^{2}\right\|_{\alpha_{j}^{2}} O\left(\frac{1}{\epsilon^{1-\alpha_{j}^{2}}}\right) .
\end{aligned}
$$

We obtain

$$
\begin{equation*}
\int_{-\pi}^{\pi} \sum_{j} \frac{\left|g_{j}^{2}\left(e^{i\left(t^{2}+\theta^{2}\right)}\right)-g_{j}^{2}\left(e^{i \theta^{2}}\right)\right|}{(2 \epsilon-1) \cos t^{2}+(1-\epsilon)^{2}} d t^{2} \leq \sum_{j}\left\|g_{j}^{2}\right\|_{\alpha_{j}^{2}} O\left(\frac{1}{\epsilon^{1-\alpha_{j}^{2}}}\right) . \tag{2}
\end{equation*}
$$

Consequently

$$
\sum_{j}\left|\left(\left(g_{j}^{2}\right)_{n}\right)^{\prime}(z)\right| \leq \sum_{j}\left\|g_{j}^{2}\right\|_{\alpha_{\mathrm{j}}^{2}} O\left(\frac{1}{\epsilon^{1-\alpha_{\mathrm{j}}^{2}}}\right) \quad(z \in \mathbb{D})
$$

By the F-property of $\mathcal{A}_{\alpha_{\mathrm{j}}^{2}}$, we have $\sum_{j}\left\|\left(g_{j}^{2}\right)_{n}\right\| \leq \sum_{j} C_{\alpha_{\mathrm{j}}^{2}}\left\|\left(g_{j}^{2}\right)_{n}\right\|_{\mathcal{A}_{\alpha_{j}^{2}}}$. Using the Hilbertian structure of \mathcal{D}, we deduce that there is a sequence $\left(h_{j}^{2}\right)_{n} \in \operatorname{co}\left(\left\{\left(g_{j}^{2}\right)_{k}\right\}_{k=n}^{\infty}\right)$ converging to f_{j}^{2} in \mathcal{D}. It is clear that $\left(h_{j}^{2}\right)_{n} \in \mathfrak{T}$ and $\lim _{n \rightarrow+\infty} \sum_{j}\left\|\left(h_{j}^{2}\right)_{n}-f_{j}^{2}\right\|_{\alpha_{j}^{2}}=0$. Then $\lim _{n \rightarrow+\infty} \sum_{j} \|\left(h_{j}^{2}\right)_{n}-$ $f_{j}^{2} \|_{\mathcal{A}_{\alpha_{\mathrm{j}}^{2}}}=0$. Thus $f_{j}^{2} \in \mathfrak{I}$. This completes the proof of the lemma.

We can see that $\sum_{j}\left\|\left(g_{j}^{2}\right)_{n}\right\|_{\alpha_{\mathrm{j}}^{2}} O\left(\frac{1}{\epsilon^{1-\alpha_{j}^{2}}}\right)=\sum_{j} O\left(\frac{1}{\epsilon^{1-\alpha_{j}^{2}}}\right)$.
As a consequence of Theorem (1.2), we can show Theorem (1.1) and deduce that each closed ideal of $\mathcal{A}_{\alpha_{\mathrm{j}}^{2}}$ is standard. For the sake of completeness, we sketch here the proof, (see Brahim Bouya, 2008).
Proof of Theorem (1.1): Define γ on \mathbb{D} by $\gamma(z)=z$ and let $\pi: \mathcal{A}_{\alpha_{\mathrm{j}}^{2}} \rightarrow \mathcal{A}_{\alpha_{\mathrm{j}}^{2}} / \mathfrak{I}$ be the canonical quotient map. Also, let $f_{j}^{2} \in \mathcal{J}\left(E_{\mathfrak{I}}\right)$ be such that $f_{j}^{2} / U_{\mathfrak{I}} \in \mathcal{H}^{\infty}(\mathbb{D})$ and $\left(f_{j}^{2}\right)_{n}$ be the sequence in Theorem (1.2) associated to f_{j}^{2} with $\epsilon \geq 2$. More exactly, we have $\sum_{j}\left(f_{j}^{2}\right)_{n}=\sum_{j} f_{j}^{2}\left(g_{j}^{2}\right)_{n}$, where $\sum_{j}\left|\left(g_{j}^{2}\right)_{n}(\xi)\right| \leq \sum_{j} d^{3}\left(\xi, E_{f_{j}^{2}}\right) \leq d^{3}\left(\xi, E_{\mathfrak{T}}\right)$. Define

$$
\sum_{j} L_{\lambda}\left(f_{j}^{2}\right)(z):= \begin{cases}\sum_{j} \frac{f_{j}^{2}(z)-f_{j}^{2}(\lambda)}{z-\lambda} & \text { if } z \neq \lambda \\ \sum_{j}\left(f_{j}^{2}\right)^{\prime}(\lambda) & \text { if } z=\lambda\end{cases}
$$

Then

$$
\begin{equation*}
\sum_{j} \pi\left(f_{j}^{2}\right)(\pi(\gamma)-\lambda)^{-1}=\sum_{j} f_{j}^{2}(\lambda)(\pi(\gamma)-\lambda)^{-1}+\sum_{j} \pi\left(L_{\lambda}\left(f_{j}^{2}\right)\right) . \tag{3}
\end{equation*}
$$

It is clear that $(\pi(\gamma)-\lambda)^{-1}$ is an analytic function on $\mathbb{C} \backslash Z_{\mathfrak{x}}$. Note that the multiplicity of the pole $z_{0} \in Z_{\mathfrak{Z}} \cap \mathbb{D}$ of $(\pi(\gamma)-\lambda)^{-1}$ is equal to the multiplicity of the zero z_{0} of $U_{\mathfrak{Z}}$. Since $U_{\mathfrak{Z}}$ divides f_{j}^{2}, then according to (3) we can deduce that $\sum_{j} \pi\left(f_{j}^{2}\right)(\pi(\gamma)-\lambda)^{-1}$ is a series of square analytic functions on $\mathbb{C} \backslash E_{\mathfrak{Z}}$. Let $|\lambda|>1$, we have

$$
\begin{equation*}
\sum_{j}\left\|\pi\left(f_{j}^{2}\right)(\pi(\gamma)-\lambda)^{-1}\right\|_{\mathcal{A}_{\alpha_{j}^{2}}} \leq \sum_{j}\left\|f_{j}^{2}\right\|_{\mathcal{A}_{\alpha_{j}^{2}}} \sum_{n=0}^{\infty} \sum_{j}\left\|\gamma^{n}\right\|_{\mathcal{A}_{\alpha_{j}^{2}}}|\lambda|^{-n-1} \leq \sum_{j}\left\|f_{j}^{2}\right\|_{\mathcal{A}_{\alpha_{j}^{2}}} \frac{c}{(|\lambda|-1)^{\frac{3}{2}}} \tag{4}
\end{equation*}
$$

By Lemma (3.1), there is $g_{j}^{2} \in \mathfrak{I}$ such that $B_{g_{j}^{2}}=B_{\mathfrak{I}}$. Let $k=\sum_{j} f_{j}^{2}\left(g_{j}^{2} / B_{g_{j}^{2}}\right)$. Then, $k=$ $\sum_{j}\left(f_{j}^{2} / B_{\mathfrak{I}}\right) g_{j}^{2} \in \mathfrak{I}$ and for $|\lambda|<1$, we have $k(\lambda)(\pi(\gamma)-\lambda)^{-1}=-\pi\left(L_{\lambda}(k)\right)$.
Therefore

$$
\begin{gather*}
\sum_{j}\left\|\pi\left(f_{j}^{2}\right)(\pi(\gamma)-\lambda)^{-1}\right\|_{\mathcal{A}_{\alpha_{j}^{2}}} \leq \sum_{j}\left|f_{j}^{2}(\lambda)\right|\left\|(\pi(\gamma)-\lambda)^{-1}\right\|_{\mathcal{A}_{\alpha_{j}^{2}}}+\sum_{j}\left\|L_{\lambda}\left(f_{j}^{2}\right)\right\|_{\mathcal{A}_{\alpha_{j}^{2}}} \leq \sum_{j} \frac{\left\|L_{\lambda}(k)\right\| \mathcal{A}_{\alpha_{j}^{2}}}{\mid g_{j}^{2} / \beta_{g_{j}^{2}}^{2}(\lambda)}+ \\
\sum_{j}\left\|L_{\lambda}\left(f_{j}^{2}\right)\right\|_{\mathcal{A}_{\alpha_{j}^{2}}} \leq \sum_{j} \frac{c\left(f_{j}^{2}, k\right)}{{ }_{(1-|\lambda|)\left|g_{j}^{2} / B_{g_{j}^{2}}\right|} \mid(\lambda)} \leq \sum_{j} C\left(f_{j}^{2}, k\right) \frac{c}{\frac{c}{1-1 \lambda \mid} \quad(|\lambda|<1) .} \tag{5}
\end{gather*}
$$

We use (Taylor \& Williams,1970, Lemmas 5.8 and 5.9) to deduce

$$
\sum_{j}\left\|\pi\left(f_{j}^{2}\right)(\pi(\gamma)-\xi)^{-1}\right\| \leq \sum_{j} \frac{C\left(f_{j}^{2}, k\right)}{d\left(\xi, E_{\mathfrak{Z}}\right)^{3}} \quad\left(1 \leq|\xi| \leq 2, \quad \xi \notin E_{\mathfrak{Z}}\right) .
$$

Then, we obtain $\xi \mapsto \sum_{j}\left|\left(\left(g_{j}^{2}\right)_{n}\right)(\xi)\right|\left\|\pi\left(f_{j}^{2}\right)(\pi(\gamma)-\xi)^{-1}\right\| \in L^{\infty}(\mathbb{T})$.
With a simple calculation as in (Esterle, Strouse, \& Zouakia, 1994, Lemma 2.4), we can deduce that

$$
\sum_{j} \pi\left(\left(f_{j}^{2}\right)_{n}\right)=\frac{1}{2 \pi i} \int_{\mathbb{T}} \sum_{j}\left(\left(g_{j}^{2}\right)_{n}\right)(\xi)(\pi(\gamma)-\xi)^{-1} d \xi
$$

Denote $\mathfrak{T}_{U_{\mathfrak{I}}}^{\infty}\left(E_{\mathfrak{Z}}\right):=\left\{h_{j}^{2} \in A(\mathbb{D}):\left(h_{j}^{2}\right)_{\backslash E_{\mathfrak{I}}}=0\right.$ and $\left.h_{j}^{2} / U_{\mathfrak{I}} \in A(\mathbb{D})\right\}$.
From (Hoffman, 1988, p. 81), we know that $\mathfrak{T}_{U_{\mathfrak{Z}}}^{\infty}\left(E_{\mathfrak{Z}}\right)$ has an approximate identity $\left(e_{1+\epsilon}\right)_{\epsilon \geq 0} \in$ \mathfrak{I} such that $\left\|e_{1+\epsilon}\right\|_{\infty} \leq 1$. \mathfrak{I} is dense in $\mathfrak{T}_{U_{\mathfrak{I}}}^{\infty}\left(E_{\mathfrak{I}}\right)$ with respect to the sup norm $\|\cdot\|_{\infty}$, so there exists $\left(u_{1+\epsilon}\right)_{\epsilon \geq 0} \in \mathfrak{I}$ with $\left\|u_{1+\epsilon}\right\|_{\infty} \leq 1$ and $\lim _{1+\epsilon \rightarrow \infty} u_{1+\epsilon}(\xi)=1$ for $\xi \in \mathbb{T} \backslash E_{\mathfrak{X}}$. Therefore $\sum_{j} \pi\left(\left(f_{j}^{2}\right)_{n}\right)=\sum_{j} \pi\left(\left(f_{j}^{2}\right)_{n}-\left(f_{j}^{2}\right)_{n} u_{1+\epsilon}\right) \rightarrow 0$ as $\epsilon \rightarrow \infty$. Then $\left(f_{j}^{2}\right)_{n} \in \mathfrak{I}$ and $f_{j}^{2} \in \mathfrak{I}$. Note that: if $\lim _{n \rightarrow \infty} \sum_{j}\left|\left(g_{j}^{2}\right)_{n}(\xi)\right|=\sum_{j}\left|\left(g_{j}^{2}\right)\right||\xi|$ then, $\sum_{j} c d^{1+\epsilon}\left(\xi, E_{f_{j}^{2}}\right)=\sum_{j} d^{3}\left(\xi, E_{f_{j}^{2}}\right)$.

4. Proof of Theorem (2.1)

The proof of Theorem (2.1) is based on a series of lemmas. In what follows, $C_{1+\epsilon}$ will denote a positive number that depends only on $1+\epsilon$, not necessarily the same at each occurrence. For an open subset Δ of \mathbb{D}, we put

$$
\sum_{j} \|\left(\left(h_{j}^{2}\right)^{\prime} \|_{L^{2}(\Delta)}^{2}:=\int_{\Delta} \sum_{j}\left|\left(f_{j}^{2}\right)^{\prime}(z)\right|^{2} d A(z)\right.
$$

We begin with the following key lemma (see Brahim Bouya, 2008).
Lemma (4.1): Let $f_{j}^{2} \in \mathcal{A}_{f_{j}^{2}}$ be such that $\sum_{j}\left\|f_{j}^{2}\right\|_{\mathcal{A}_{\alpha_{\mathrm{j}}^{2}}} \leq 1$ and let $\epsilon>0$ be given. Then

$$
\int_{\gamma} \sum_{j} \frac{\left|f_{j}^{2}\left(e^{i t^{2}}\right)\right|^{2(1+\epsilon)}}{d\left(e^{i t^{2}}\right)} d t^{2} \leq \sum_{j} C_{1+\epsilon}\left\|\left(f_{j}^{2}\right)^{\prime}\right\|_{L^{2}(\gamma)}^{2}
$$

where $a, a+\epsilon \in E_{\mathfrak{T}}, \gamma=(a, a+\epsilon) \subset \mathbb{T} \backslash E_{f_{j}^{2}}, \quad d(z):=\min \{|z-a|,|z-(a+\epsilon)|\}$ and $\Delta_{\gamma}:=\{z \in$ $D: z /|z| \in \gamma\}$.
Proof: Let $e^{i t^{2}} \in \gamma$ and define $z_{t^{2}}:=\left(1-d\left(e^{i t^{2}}\right)\right) e^{i t^{2}}$. Since $|\gamma|<1 / 2$, we obtain $\left|z_{t^{2}}\right|>\frac{1}{2}$. We have

$$
\begin{equation*}
\sum_{j}\left|f_{j}^{2}\left(e^{i t^{2}}\right)\right|^{2(1+\epsilon)} \leq \sum_{j} 2^{2 \epsilon+1}\left(\left|f_{j}^{2}\left(e^{i t^{2}}\right)-f_{j}^{2}\left(z_{t^{2}}\right)\right|^{2(1+\epsilon)}+\left|f_{j}^{2}\left(z_{t^{2}}\right)\right|^{2(1+\epsilon)}\right) \tag{6}
\end{equation*}
$$

By Holder's inequality combined with the fact that $\sum_{j}\left\|f_{j}^{2}\right\|_{\infty} \leq \sum_{j}\left\|f_{j}^{2}\right\|_{\mathcal{A}_{\alpha_{j}^{2}}} \leq 1$, we get

$$
\begin{aligned}
& \sum_{j}\left|f_{j}^{2}\left(e^{i t^{2}}\right)-f_{j}^{2}\left(z_{t^{2}}\right)\right|^{2(1+\epsilon)}=\sum_{j}\left|f_{j}^{2}\left(e^{i t^{2}}\right)-f_{j}^{2}\left(z_{t^{2}}\right)\right|^{2 \epsilon}\left|f_{j}^{2}\left(e^{i t^{2}}\right)-f_{j}^{2}\left(z_{t^{2}}\right)\right|^{2} \\
& \leq 2^{2 \epsilon}\left(1-\left|z_{t^{2}}\right|\right) \int_{\left|z_{t^{2}}\right|}^{1} \sum_{j}\left|\left(f_{j}^{2}\right)^{\prime}\left((1-\epsilon) e^{i t^{2}}\right)\right|^{2}(1-\epsilon) d(1-\epsilon) \\
& \leq 2^{2 \epsilon+1} d\left(e^{i t^{2}}\right) \int_{0}^{1} \sum_{j}\left|\left(f_{j}^{2}\right)^{\prime}\left((1-\epsilon) e^{i t^{2}}\right)\right|^{2}(1-\epsilon) d(1-\epsilon)
\end{aligned}
$$

Hence

$$
\begin{gather*}
\int_{\gamma} \sum_{j} \frac{\left|f_{j}^{2}\left(e^{i t^{2}}\right)-f_{j}^{2}\left(z_{t}\right)\right|^{2(1+\epsilon)}}{d\left(e^{i t^{2}}\right)} d t^{2} \leq 2^{(2 \epsilon+1)} \int_{\gamma} \int_{0}^{1} \sum_{j}\left|\left(f_{j}^{2}\right)^{\prime}\left(r e^{i t^{2}}\right)\right|^{2}(1-\epsilon) d(1-\epsilon) d t^{2} \leq \\
\sum_{j} 2^{(2 \epsilon+1)} \pi\left\|\left(f_{j}^{2}\right)^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2} \tag{7}
\end{gather*}
$$

Since $d\left(e^{i t^{2}}\right) \leq 1 / 2$, we obtain $\frac{d\left(e^{i t^{2}}\right)}{\sqrt{2}} \leq d\left(z_{t^{2}}\right) \leq \sqrt{2} d\left(e^{i t^{2}}\right)$. Put $d\left(z_{t^{2}}\right)=\left|z_{t^{2}}-\xi\right|$ and note that either $\xi=a$ or $\xi=a+\epsilon$. Let $z_{t^{2}}(u)=(1-u) z_{t^{2}}+u \xi \quad(0 \leq u \leq 1)$.
With a simple calculation, we can prove that for all $e^{i t^{2}} \in \gamma$ and for all $u, 0 \leq u \leq 1$, we have $\left|z_{t^{2}}(u)-w\right|>\frac{1}{2}(1-u) d\left(e^{i t^{2}}\right)\left(w \in \partial \Delta_{\gamma}\right)$, where $\partial \Delta_{\gamma}$ is the boundary of Δ_{γ}. Then
$\mathbb{D}_{t^{2}, u}:=\left\{z \in \mathbb{D}:\left|z-z_{t^{2}} t^{2}(u)\right| \leq \frac{1}{2}(1-u) d\left(e^{i t^{2}}\right)\right\} \subset \Delta_{\gamma}$, for all $e^{i t^{2}} \in \gamma$ and for all $u, 0 \leq u \leq 1$. Since $\sum_{j}\left|\left(f_{j}^{2}\right)^{\prime}(z)\right|$ is a series of subharmonic on \mathbb{D}, it follows that

$$
\begin{aligned}
\sum_{j}\left|\left(f_{j}^{2}\right)^{\prime}\left(z_{t^{2}}(u)\right)\right| & \leq \frac{4}{\pi(1-u)^{2} d^{2}\left(e^{i t^{2}}\right)} \int_{\mathbb{D}_{t, u}} \sum_{j}\left|\left(f_{j}^{2}\right)^{\prime}(z)\right| d A(z) \\
& \leq \frac{2}{\pi^{\frac{1}{2}}(1-u) d\left(e^{i t^{2}}\right)} \sum_{j}\left\|\left(f_{j}^{2}\right)^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)^{\prime}}
\end{aligned}
$$

Set $\varepsilon_{(1+\epsilon)}=2 \alpha_{\mathrm{j}}^{2} \epsilon$. We have

$$
\begin{aligned}
\sum_{j}\left|f_{j}^{2(1+\epsilon)}\left(z_{t^{2}}\right)\right|^{2} & =\sum_{j}\left|f_{j}^{2(1+\epsilon)}\left(z_{t^{2}}\right)-f_{j}^{2(1+\epsilon)}(\xi)\right|^{2} \\
& =(1+\epsilon)^{2}\left|z_{t^{2}}-\xi\right|^{2}\left|\int_{0}^{1} \sum_{j} f_{j}^{2 \epsilon}\left(z_{t^{2}}(u)\right)\left(f_{j}^{2}\right)^{\prime}\left(z_{t^{2}}(u)\right) d u\right|^{2} \\
& \leq C_{1+\epsilon} d^{2}\left(e^{i t^{2}}\right)\left(\int_{0}^{1} \sum_{j}\left|z_{t^{2}}(u)-\xi\right|^{\frac{\varepsilon_{1+\epsilon}}{2}}\left|\left(f_{j}^{2}\right)^{\prime}\left(z_{t^{2}}(u)\right)\right| d u\right)^{2} \\
& \leq C_{1+\epsilon} d^{\varepsilon_{1+\epsilon}}\left(e^{i t^{2}}\right)\left(\int_{0}^{1} \frac{1}{\left.(1-u)^{1-\frac{\varepsilon_{1+\epsilon}}{2}} d u\right)^{2} \sum_{j}\left\|\left(f_{j}^{2}\right)^{\prime}\right\|_{L^{2}\left(\Delta_{r}\right)}^{2}}\right. \\
& \leq C_{1+\epsilon} d^{\varepsilon_{1+\epsilon}}\left(e^{i t^{2}}\right) \sum_{j}\left\|\left(f_{j}^{2}\right)^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\int_{\gamma} \sum_{j} \frac{\mid f_{j}^{2}\left(z_{t^{2}}\right)^{2(1+\epsilon)}}{d\left(e^{i t^{2}}\right)} d t^{2} \leq \sum_{j} C_{\rho}\left\|\left(f_{j}^{2}\right)^{\prime}\right\|_{L^{2}\left(\Delta_{Y}\right)}^{2} . \tag{8}
\end{equation*}
$$

Therefore the result follows from (6), (7) and (8).
In the sequel, we denote by f_{j}^{2} a series of square outer functions in $\mathcal{A}_{\alpha_{j}^{2}}$ such that $\sum_{j}\left\|f_{j}^{2}\right\|_{\mathcal{A}_{\alpha_{j}^{2}}} \leq 1$ and we fix a constant $1+\epsilon, 0<\epsilon \leq 1$. By (Matheson, 1978 Theorem B), we have $f_{j}^{2(1+\epsilon)}\left(f_{j}\right)_{\Gamma}^{2(1+\epsilon)} \in \operatorname{lip}_{\alpha_{\mathrm{j}}^{2}}$ and $\sum_{j}\left\|f_{j}^{2(1+\epsilon)}\left(f_{j}\right)_{\Gamma}^{2(1+\epsilon)}\right\|_{\mathrm{lip}_{\alpha_{\mathrm{j}}^{2}}} \leq C_{1+\epsilon, 1+\epsilon}$.

To prove Theorem (2.1) we need to estimate the integral $\int_{\mathbb{D}} \Sigma_{j}\left|f_{j}^{2(1+\epsilon)}\left(f_{j}^{2(1+\epsilon)}\right)^{\prime}\right|^{2} d A(z)$. Define

$$
\begin{equation*}
\sum_{j}\left(f_{j}^{2}\right)_{\Gamma}(z):=\frac{1}{\pi} \int_{\Gamma} \sum_{j} \frac{e^{i \theta^{2}}}{\left(e^{i \theta^{2}}-z\right)^{2}} \log \left|f_{j}^{2}\left(e^{i \theta^{2}}\right)\right| d \theta^{2} . \tag{9}
\end{equation*}
$$

Clearly we have $\quad \sum_{j}\left(f_{j}^{2}\right)^{\prime}=\sum_{j} f_{j}^{2}\left(\left(g_{j}^{2}\right)_{\Gamma}+\left(g_{j}^{2}\right)_{\mathbb{T} \Gamma}\right) \quad$ and $\sum_{j}\left(\left(f_{j}\right)_{\Gamma}^{2(1+\epsilon)}\right)^{\prime}=\sum_{j}(1+\epsilon)\left(f_{j}\right)_{\Gamma}^{2(1+\epsilon)}\left(g_{j}^{2}\right)_{\Gamma}$,

$$
\begin{gather*}
\sum_{j} f_{j}^{2(1+\epsilon)}\left(f_{j}^{2(1+\epsilon)}\right)^{\prime}=\sum_{j}(1+\epsilon) f_{j}^{2(1+\epsilon)}\left(f_{j}\right)_{\Gamma}^{2(1+\epsilon)}\left(g_{j}^{2}\right)_{\Gamma} \tag{10}\\
=\sum_{j} f_{j}^{2 \epsilon}(1+\epsilon)\left(f_{j}^{2}\right)^{\prime}\left(f_{j}\right)_{\Gamma}^{(1+\epsilon)}-\sum_{j}(1+\epsilon) f_{j}^{2(1+\epsilon)}\left(f_{j}\right)_{\Gamma}^{2(1+\epsilon)}\left(g_{j}^{2}\right)_{\mathbb{T} \Gamma} . \tag{11}
\end{gather*}
$$

Since $\sum_{j}\left\|f_{j}^{2}\right\|_{\infty} \leq 1$, it is obvious that $\sum_{j}\left\|\left(f_{j}\right)_{\Gamma}^{2(1+\epsilon)}\right\|_{\infty} \leq 1$ and $\sum_{j}\left\|f_{j}^{2 \epsilon}\right\|_{\infty} \leq 1$. Hence, by (11) we get

$$
\begin{equation*}
\int_{\mathbb{D}} \Sigma_{j}\left|\left(f_{j}^{2(1+\epsilon)}\left(f_{j}\right)_{\Gamma}^{2(1+\epsilon)}\right)^{\prime}\right|^{2} d A(z) \leq 2(1+\epsilon)^{2} \int_{\mathbb{D}} \Sigma_{j}\left|\left(f_{j}^{2(1+\epsilon)}\left(f_{j}\right)_{\Gamma}^{2(1+\epsilon)}\right)^{\prime}\right|^{2} d A(z) \tag{12}
\end{equation*}
$$

We fix $\gamma=(a, a+\epsilon) \subset T \backslash E_{f_{j}^{2}}$ such that $\sum_{j} f_{j}^{2}(a)=\sum_{j} f_{j}^{2}(a+\epsilon)=0$. Our purpose in what follows is to estimate the integral

$$
\begin{equation*}
\int_{\Delta_{\gamma}} \Sigma_{j}\left|\left(f_{j}^{2(1+\epsilon)}\left(f_{j}\right)_{\Gamma}^{2(1+\epsilon)}\right)^{\prime}\right|^{2} d A(z) \tag{13}
\end{equation*}
$$

which we can rewrite as

$$
\int_{\Delta_{\gamma}} \sum_{j}\left|\left(f_{j}^{2(1+\epsilon)}\left(f_{j}\right)_{\Gamma}^{2(1+\epsilon)}\right)^{\prime}\right|^{2} d A(z)=\int_{\Delta_{\gamma}^{1}}+\int_{\Delta_{\gamma}^{2}}
$$

Where

$$
\begin{aligned}
& \Delta_{\gamma}^{1}:=\left\{z \in \Delta_{\gamma}: d(z)<2(1-|z|)\right\} \\
& \Delta_{\gamma}^{2}:=\left\{z \in \Delta_{\gamma}: d(z) \geq 2(1-|z|)\right\} .
\end{aligned}
$$

The integral on the region Δ_{γ}^{1}. We begin with the following lemma (see Brahim Bouya, 2008).

Lemma (4.2):

$$
\int_{\Delta_{Y}} \sum_{j} \frac{\left|f_{j}^{2}(z)-f_{j}^{2}(z /|z|)\right|^{2(1+\epsilon)}}{(1-|z|)^{2}} d A(z) \leq \sum_{j} \frac{1}{2 \alpha_{j}^{2} \epsilon}\left\|\left(f_{j}^{2}\right)^{\prime}\right\|_{L^{2}\left(\Delta_{Y}\right)} .
$$

Proof: Let $z=(1-\epsilon) e^{i t^{2}} \in \Delta_{Y}$ and put $\varepsilon_{1+\epsilon}=2 \alpha_{j}^{2} \epsilon$. We have

$$
\begin{aligned}
\sum_{j}(1-\epsilon) \mid f_{j}^{2} & \left((1-\epsilon) e^{i t^{2}}\right)-\left.f_{j}^{2}\left(e^{i t^{2}}\right)\right|^{2(1+\epsilon)} \\
& =\sum_{j}(1-\epsilon)\left|f_{j}^{2}\left((1-\epsilon) e^{i t^{2}}\right)-f_{j}^{2}\left(e^{i t^{2}}\right)\right|^{2 \epsilon}\left|f_{j}^{2}\left((1-\epsilon) e^{i t^{2}}\right)-f_{j}^{2}\left(e^{i t^{2}}\right)\right|^{2} \\
& \leq(1-\epsilon) \epsilon^{1+\varepsilon_{(1+\epsilon)}} \int_{(1-\epsilon)}^{1} \sum_{j}\left|\left(f_{j}^{2}\right)^{\prime}\left(\left(\frac{1}{2}+\epsilon\right) e^{i t^{2}}\right)\right|^{2} d\left(\frac{1}{2}+\epsilon\right) \leq(1 \\
& -\epsilon) \epsilon^{1+\varepsilon_{(1+\epsilon)}} \int_{(1-\epsilon)}^{1} \sum_{j}\left|\left(f_{j}^{2}\right)^{\prime}\left(\left(\frac{1}{2}+\epsilon\right) e^{i t^{2}}\right)\right|^{2}\left(\frac{1}{2}+\epsilon\right) d\left(\frac{1}{2}+\epsilon\right)
\end{aligned}
$$

Therefore

$$
\begin{gathered}
\int_{\Delta_{\gamma}} \sum_{j} \frac{\left|f_{j}^{2}(z)-f_{j}^{2}(z /|z|)\right|^{2(1+\epsilon)}}{(1-|z|)^{2}} d A(z) \\
=\int_{0}^{1}\left(\int_{\gamma} \sum_{j}\left|f_{j}^{2}\left((1-\epsilon) e^{i t^{2}}\right)-f_{j}^{2}\left(e^{i t^{2}}\right)\right|^{2(1+\epsilon)} \frac{(1-\epsilon) d t}{\pi}\right) \frac{d(1-\epsilon)}{\epsilon^{2}} \\
\leq \sum_{j}\left\|\left(f_{j}^{2}\right)^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)} \int_{0}^{1} \frac{1}{\epsilon^{1-\varepsilon_{(1+\epsilon)}}} d(1-\epsilon) .
\end{gathered}
$$

This completes the proof.

Now, we can state the following result (see Brahim Bouya, 2008).

Lemma (4.3):

$$
\int_{\Delta_{Y}^{1}} \sum_{j}\left|f_{j}^{2}(z)\right|^{2(1+\epsilon)}\left|\left(\left(f_{j}^{2}\right)_{\Gamma}\right)^{\prime}(z)\right|^{2} d A(z) \leq \sum_{j} C_{(1+\epsilon)}\left\|\left(f_{j}^{2}\right)^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2}
$$

Proof:. By Cauchy's estimate, it follows that $\sum_{j}\left|\left(\left(f_{j}^{2}\right)_{\Gamma}\right)^{\prime}\left((1-\epsilon) e^{i t^{2}}\right)\right| \leq \frac{1}{\epsilon}$. Using Lemma (4.2), we get

$$
\begin{gather*}
\int_{\Delta_{\gamma}^{1}} \sum_{j}\left|f_{j}^{2}(z)\right|^{2(1+\epsilon)}\left|\left(\left(f_{j}^{2}\right)_{\Gamma}\right)^{\prime}(z)\right|^{2} d A(z) \leq \int_{\Delta_{\gamma}^{1}} \sum_{j} \frac{\left|f_{j}^{2}(z)\right|^{2(1+\epsilon)}}{(1-|z|)^{2}} d A(z) \leq \sum_{j} C_{(1+\epsilon)}\left\|\left(f_{j}^{2}\right)^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2}+ \\
2^{(2 \epsilon+1)} \int_{\Delta_{\gamma}^{1}} \sum_{j} \frac{\left|f_{j}^{2}(z /|z|)\right|^{2(1+\epsilon)}}{(1-|z|)^{2}} d A(z) \tag{14}
\end{gather*}
$$

Using Lemma (4.1), we obtain

$$
\begin{align*}
& \int_{\Delta_{\gamma}} \sum_{j} \frac{\left|f_{j}^{2}(z /|z|)\right|^{2(1+\epsilon)}}{(1-|z|)^{2}} d A(z)=\frac{1}{\mu} \int_{\Delta_{\gamma}} \sum_{j} \frac{\left|f_{j}^{2}\left(e^{i t^{2}}\right)\right|^{2(1+\epsilon)}}{\epsilon^{2}}(1-\epsilon) d(1-\epsilon) d t^{2} \leq \\
& \frac{C}{\pi} \int_{\gamma} \sum_{j} \frac{\left|f_{j}^{2}\left(e^{i t^{2}}\right)\right|^{2(1+\epsilon)}}{\epsilon^{2}} d t^{2} \leq \sum_{j} C_{(1+\epsilon)}\left\|\left(f_{j}^{2}\right)^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2} \tag{15}
\end{align*}
$$

The result of our lemma follows by combining the estimates (14) and (15).
The integral on the region Δ_{γ}^{2}. In this subsection, we estimate the integral $\int_{\Delta_{\gamma}^{2}} \sum_{j}\left|f_{j}^{2}(z)\right|^{2(1+\epsilon)}\left|\left(\left(f_{j}^{2}\right)_{\Gamma}\right)^{\prime}(z)\right|^{2} d A(z)$. Before this, we make some remarks. For $z \in \mathbb{D}$ define

$$
a_{\gamma}(z):= \begin{cases}\frac{1}{2 \pi} \int_{\Gamma} \sum_{j} \frac{-\log \left|f_{j}^{2}\left(e^{i t^{2}}\right)\right|}{\left|e^{i \theta^{2}}-z\right|^{2}} d \theta^{2} & \text { if } \gamma \nsubseteq \Gamma \\ \frac{1}{2 \pi} \int_{\mathbb{T} \backslash \Gamma} \sum_{j} \frac{-\log \left|f_{j}^{2}\left(e^{i t^{2}}\right)\right|}{\left|e^{i \theta^{2}}-z\right|^{2}} d \theta^{2} & \text { if } \gamma \nsubseteq \Gamma .\end{cases}
$$

Using the equation (10), it is easy to see that

$$
\begin{equation*}
\sum_{j}\left|f_{j}^{2}(z)^{1+\epsilon}\left(\left(f_{j}^{2}\right)_{\Gamma}\right)^{\prime}(z)\right|^{2} \leq 4 \sum_{j}\left|f_{j}^{2}(z)^{1+\epsilon} \frac{1}{2 \pi} \int_{\Gamma} \frac{-\log \left|f_{j}^{2}\left(e^{i t^{2}}\right)\right|}{\mid e^{i \theta^{2}-\left.z\right|^{2}}} d \theta^{2}\right|^{2} \tag{16}
\end{equation*}
$$

Using the equation (11), it is clear that

$$
\begin{equation*}
\sum_{j}\left|f_{j}^{2}(z)^{1+\epsilon}\left(\left(f_{j}^{2}\right)_{\Gamma}\right)^{\prime}(z)\right|^{2} \leq 2 \sum_{j}\left|\left(f_{j}^{2}\right)^{\prime}(z)\right|^{2}+8 \sum_{j}\left|f_{j}^{2}(z)^{1+\epsilon} \frac{1}{2 \pi} \int_{\mathbb{T} \backslash \Gamma} \frac{-\log \left|f_{j}^{2}\left(e^{i t^{2}}\right)\right|}{\mid e^{i \theta^{2}-\left.z\right|^{2}}} d \theta^{2}\right|^{2} \tag{17}
\end{equation*}
$$

Then
$\int_{\Delta_{Y}^{2}} \sum_{j}\left|f_{j}^{2}(z)\right|^{2(1+\epsilon)}\left|\left(\left(f_{j}^{2}\right)_{\Gamma}\right)^{\prime}(z)\right|^{2} d A(z) \leq 2 \sum_{j}\left\|\left(f_{j}^{2}\right)^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2}+8 \int_{\Delta_{Y}^{2}} \sum_{j} f_{j}^{2}(z)^{2(1+\epsilon)} a_{\gamma}^{2}(z) d A(z)$.
Since $\log \left|f_{j}^{2}\right| \in L^{1}(\mathbb{T})$, we have

$$
\begin{equation*}
a_{\gamma}(z) \leq \frac{c}{d^{2}(z)} \quad\left(z \in \Delta_{\gamma}\right) \tag{19}
\end{equation*}
$$

Given such inequality, it is not easy to estimate immediately the integral of the series of functions
$\sum_{j}\left|f_{j}^{2}(z)\right|^{2(1+\epsilon)} a_{\gamma}^{2}(z)$ on the whole Δ_{γ}^{2}. In what follows, we give a partition of Δ_{γ}^{2} into three parts so that one can estimate the integral $\int \sum_{j}\left|f_{j}^{2}(z)\right|^{2(1+\epsilon)} a_{\gamma}^{2}(z) d A(z)$ on each part. Let $z \in \Delta_{\gamma}^{2}$, three situations are possible :

$$
\begin{gather*}
a_{\gamma}(z) \leq 8 \frac{|\log (d(z))|}{d(z)} \tag{20}\\
8 \frac{|\log (d(z))|}{d(z)}<a_{\gamma}(z)<8 \frac{|\log (d(z))|}{\epsilon} \tag{21}\\
8 \frac{|\log (d(z))|}{\epsilon} \leq a_{\gamma}(z) \tag{22}
\end{gather*}
$$

We can now divide Δ_{γ}^{2} into the following three parts

$$
\begin{aligned}
& \Delta_{\gamma}^{21}:=\left\{z \in \Delta_{\gamma}^{2}: z \text { satisfying (20) }\right\} \\
& \Delta_{\gamma}^{22}:=\left\{z \in \Delta_{\gamma}^{2}: z \text { satisfying (21) }\right\} \\
& \Delta_{\gamma}^{23}:=\left\{z \in \Delta_{\gamma}^{2}: z \text { satisfying (22) }\right\},
\end{aligned}
$$

The integral on the regions Δ_{γ}^{21} and Δ_{γ}^{23}. In this case we begin by the following (see Brahim Bouya, 2008).

Lemma (4.4):

$$
\int_{\Delta_{\gamma}^{21}} \sum_{j}\left|f_{j}^{2}(z)\right|^{2(1+\epsilon)} a_{\gamma}^{2}(z) d A(z) \leq \sum_{j} C_{(1+\epsilon)}\left\|\left(f_{j}^{2}\right)^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2}
$$

Proof: Using Lemma (4.2), we get

$$
\begin{aligned}
& \int_{\Delta_{Y}^{21}} \sum_{j}\left|f_{j}^{2}(z)\right|^{2(1+\epsilon)} a_{\gamma}^{2}(z) d A(z) \\
& \quad \leq 2^{(1+\epsilon)} \int_{\Delta_{r}^{21}} \sum_{j}\left|f_{j}^{2}(z)\right|^{\epsilon}\left|f_{j}^{2}(z)-f_{j}^{2}(z /|z|)\right|^{(\epsilon+2)} a_{\gamma}^{2}(z) d A(z) \\
& \quad+2^{(1+\epsilon)} \int_{\Delta_{r}^{21}} \sum_{j}\left|f_{j}^{2}(z)\right|^{j}\left|f_{j}^{2}(z /|z|)\right|^{\epsilon+2} a_{\gamma}^{2}(z) d A(z) \\
& \quad \leq C_{1+\epsilon} \int_{\Delta_{Y}} \sum_{j} \frac{\left|f_{j}^{2}(z)-f_{j}^{2}(z /|z|)\right|^{\epsilon+2}}{(1-|z|)^{2}} d A(z) \\
& \quad+C_{1+\epsilon} \int_{\Delta_{Y}^{21}} \sum_{j} \frac{\left|f_{j}^{2}\left(e^{i t^{2}}\right)\right|^{\epsilon+2}}{d^{2}\left(e^{i t^{2}}\right)}(1-\epsilon) d(1-\epsilon) d t^{2} \\
& \quad \leq \sum_{j} C_{1+\epsilon}\left\|\left(f_{j}^{2}\right)^{\prime}\right\|_{L^{2}\left(\Delta_{Y}\right)}^{2}+C_{1+\epsilon} \int_{\Delta_{r}^{21}} \sum_{j} \frac{\left|f_{j}^{2}\left(e^{i t^{2}}\right)\right|^{\epsilon+2}}{d^{2}\left(e^{i t^{2}}\right)} d(1-\epsilon) d t^{2}=I_{2,1} .
\end{aligned}
$$

Let $e^{i t^{2}} \in \gamma$ and denote by $(z-2 \epsilon)_{t^{2}}$ the point of $\partial \Delta_{\gamma}^{2} \cap \mathbb{D}$ such that $(z-2 \epsilon)_{t^{2}} /\left|(z-2 \epsilon)_{t^{2}}\right|=$ $e^{i t^{2}}$. We have

$$
\left|e^{i t^{2}}-(z-2 \epsilon)_{t^{2}}\right|=1-\left|(z-2 \epsilon)_{t^{2}}\right|=\frac{d\left((z-2 \epsilon)_{t^{2}}\right)}{2} \leq d\left(e^{i t^{2}}\right)
$$

Then

$$
\begin{aligned}
& \int_{\Delta_{\gamma}^{21}} \sum_{j} \frac{\left|f_{j}^{2}\left(e^{i t^{2}}\right)\right|^{\epsilon+2}}{d^{2}\left(e^{i t^{2}}\right)} d(1-\epsilon) d t^{2} \leq \int_{\Delta_{\gamma}^{2}} \sum_{j} \frac{\left|f_{j}^{2}\left(e^{i t^{2}}\right)\right|^{\epsilon+2}}{d^{2}\left(e^{i t^{2}}\right)} d(1-\epsilon) d t^{2} \\
& \quad=\int_{\gamma} \sum_{j} \frac{\left|f_{j}^{2}\left(e^{i t^{2}}\right)\right|^{\epsilon+2}}{d^{2}\left(e^{i t^{2}}\right)} \int_{\left|(z-2 \epsilon)_{t^{2}}\right|}^{1} d(1-\epsilon) d t^{2} \leq \int_{\gamma} \sum_{j} \frac{\left|f_{j}^{2}\left(e^{i t^{2}}\right)\right|^{\epsilon+2}}{d^{2}\left(e^{i t^{2}}\right)} d t^{2}
\end{aligned}
$$

Using Lemma (4.1), we get $\quad I_{2,1} \leq \sum_{j} C_{1+\epsilon}\left\|\left(f_{j}^{2}\right)^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2}$. This proves the result.

Lemma (4.5):

$$
\int_{\Delta_{\gamma}^{23}} \sum_{j}\left|f_{j}^{2}(z)\right|^{2(1+\epsilon)} a_{\gamma}^{2}(z) d A(z) \leq C A\left(\Delta_{\gamma}\right)
$$

where $A\left(\Delta_{\gamma}\right)$ is the area measure of Δ_{γ}.
Proof: Set

$$
\Lambda_{\gamma}:= \begin{cases}\Gamma & \text { for } \gamma \nsubseteq \Gamma \\ \mathbb{T} \backslash \Gamma & \text { for } \gamma \subseteq \Gamma\end{cases}
$$

Let $z \in \Delta_{\gamma}^{23}$. We have

$$
\begin{aligned}
& \sum_{j}\left|f_{j}^{2}(z)\right|=\exp \left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{j} \frac{2 \epsilon-\epsilon^{2}}{\left|e^{i \theta^{2}}-z\right|^{2}} \log \left|f_{j}^{2}\left(e^{i \theta^{2}}\right)\right| d \theta^{2}\right\} \\
& \leq \exp \left\{\frac{1}{2 \pi} \int_{\Lambda_{\gamma}} \sum_{j} \frac{2 \epsilon-\epsilon^{2}}{\left|e^{i \theta^{2}}-z\right|^{2}} \log \left|f_{j}^{2}\left(e^{i \theta^{2}}\right)\right| d \theta^{2}\right\}=\exp \left\{-\epsilon a_{\gamma}(z)\right\} \leq d^{8}(z) .
\end{aligned}
$$

Using (19), we obtain the result.
The integral on the region Δ_{γ}^{23}. Here, we will give an estimate of the following integral

$$
\int_{\Delta_{\gamma}^{22}} \sum_{j}\left|f_{j}^{2}(z)\right|^{2(1+\epsilon)} a_{\gamma}^{2}(z) d A(z)
$$

Before doing this, we begin with some lemmas (see Brahim Bouya, 2008).
The next one is essential for what follows. Note that a similar result is used by different authors:
Korenblum (1972), Matheson (1978), Shamoyan (1994) and Shirokov (1982, 1988).
Lemma (4.6): Let $z \in \Delta_{\gamma}^{22}$ and let $\mu_{z}=1-\frac{8|\log (d(z))|}{a_{\gamma}(z)}$. Then

$$
\begin{equation*}
\sum_{j}\left|f_{j}^{2}\left(\mu_{z} z\right)\right| \leq d^{2}(z) \tag{23}
\end{equation*}
$$

Proof: Let $z \in \Delta_{\gamma}$ and let $\mu<1$. We have

$$
\begin{aligned}
\sum_{j}\left|f_{j}^{2}\left(\mu_{z}\right)\right|= & \exp \left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{j} \frac{1-(\mu(1-\epsilon))^{2}}{\left|e^{i \theta^{2}}-\mu z\right|^{2}} \log \left|f_{j}^{2}\left(e^{i \theta^{2}}\right)\right| d \theta^{2}\right\} \\
& \leq \exp \left\{\frac{1}{2 \pi} \int_{\Lambda_{\gamma}} \sum_{j} \frac{1-(\mu(1-\epsilon))^{2}}{\left|e^{i \theta^{2}}-\mu z\right|^{2}} \log \left|f_{j}^{2}\left(e^{i \theta^{2}}\right)\right| d \theta^{2}\right\} \\
& =\exp \left\{-(1-\mu(1-\epsilon)) \inf _{\theta^{2} \in \Lambda_{\gamma}}\left|\frac{e^{i \theta^{2}}-z}{e^{i \theta^{2}}-\mu z}\right|^{2} a_{\gamma}(z)\right\} .
\end{aligned}
$$

For $z \in \Delta_{\gamma}^{22}$ it is clear that $1-\mu z \leq d(z) \leq\left|e^{i \theta^{2}}-z\right|$ for all $e^{i \theta^{2}} \in \Lambda_{\gamma}$.
Then

$$
\inf _{\theta^{2} \in \Lambda_{\gamma}}\left|\frac{e^{i \theta^{2}}-z}{e^{i \theta^{2}}-\mu z}\right|^{2} \geq \frac{1}{2} \quad\left(z \in \Delta_{\gamma}^{22}\right)
$$

Thus

$$
\sum_{j}\left|f_{j}^{2}\left(\mu_{z} z\right)\right| \leq \exp \left\{-\frac{1-\mu_{z}}{4} a_{\gamma}(z)\right\} \quad\left(z \in \Delta_{\gamma}^{22}\right)
$$

Then, we have
$\sum_{j}\left|f_{j}^{2}\left(\mu_{z} z\right)\right| \leq \exp \left\{-\frac{1}{4}\left(1-\mu_{z}\right) a_{\gamma}(z)\right\}=d^{2}(z) \quad\left(z \in \Delta_{Y}^{22}\right)$, which yields (23).
For $\epsilon>0$ define $\gamma_{(1-\epsilon)}:=\{z \in \mathbb{D}:|z|=1-\epsilon$ and $z /|z| \in \gamma\}$. Without loss of generality, we can suppose that $d(z) \leq \frac{1}{2}, z \in \Delta_{r}^{2}$. We need the following (see Brahim Bouya, 2008).
Note that: we deduce that $\sum_{j}\left|f_{j}^{2}\left(\mu_{z} z\right)\right| \leq \frac{c^{\prime}}{\left\|\log \left(\frac{1}{2}\right)\right\|}$ where $c^{\prime}=\frac{c}{16}$.
Lemma (4.7): Let $\epsilon>0$. Then

$$
\begin{gathered}
\int_{\gamma_{(1-\epsilon)} \cap \Delta_{\gamma}^{22}} \sum_{j}\left|f_{j}^{2}\left((1-\epsilon) e^{i t^{2}}\right)-f_{j}^{2}\left(\mu_{(1-\epsilon) e^{i t^{2}}}(1-\epsilon) e^{i t^{2}}\right)\right|^{2(1+\epsilon)} a_{\gamma}^{2}\left((1-\epsilon) e^{i t^{2}}\right)(1-\epsilon) d t^{2} \\
\leq \sum_{j} \frac{C_{1+\epsilon}}{\epsilon^{1-\varepsilon_{(1+\epsilon)}}}\left\|\left(f_{j}^{2}\right)^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2} \text {, where } \varepsilon_{(1+\epsilon)}=\alpha^{2} \epsilon
\end{gathered}
$$

Proof: Let $(1-\epsilon) e^{i t^{2}} \in \Delta_{\gamma}^{22}$. Then

$$
\begin{gathered}
\sum_{j} \left\lvert\, f_{j}^{2}\left((1-\epsilon) e^{i t^{2}}\right)-f_{j}^{2}\left(\mu_{\left.(1-\epsilon) e^{i t^{2}}(1-\epsilon) e^{i t^{2}}\right)\left.\right|^{\epsilon}\left[\left(1-\mu_{(1-\epsilon) e^{i t^{2}}}\right) a_{\gamma}\left((1-\epsilon) e^{i t^{2}}\right)\right]^{2}} \begin{array}{c}
\\
\leq 64\left(1-\mu_{(1-\epsilon) e^{i t^{2}}}\right)^{\varepsilon_{(1+\epsilon)}} \log ^{2}\left(d\left((1-\epsilon) e^{i t^{2}}\right)\right) \leq C_{1+\epsilon}
\end{array} .\right.\right.
\end{gathered}
$$

It is clear that $\epsilon \leq 1-\mu_{(1-\epsilon)} i t^{2} \leq d\left((1-\epsilon) e^{i t^{2}}\right) \leq \frac{1}{2}$ and so $\frac{1}{2} \leq d\left((1-\epsilon) e^{i t^{2}}\right) \leq(1-\epsilon)$. We have

$$
\begin{aligned}
& \int_{\gamma_{(1-\epsilon)} \cap \Delta_{Y}^{22}} \sum_{j} \mid f_{j}^{2}\left((1-\epsilon) e^{i t^{2}}\right)-f_{j}^{2}\left(\mu_{\left.(1-\epsilon) e^{i t^{2}}(1-\epsilon) e^{i t^{2}}\right)\left.\right|^{2(1+\epsilon)} a_{\gamma}^{2}\left((1-\epsilon) e^{i t^{2}}\right)(1-\epsilon) d t^{2}}\right. \\
& \leq C_{1+\epsilon} \int_{\gamma_{(1-\epsilon)} \cap \Delta_{\gamma}^{22}} \sum_{j} \frac{\left|f_{j}^{2}\left((1-\epsilon) e^{i t^{2}}\right)-f_{j}^{2}\left(\mu_{(1-\epsilon) e^{i t^{2}}}(1-\epsilon) e^{i t^{2}}\right)\right|^{\epsilon+2}}{\left(1-\mu_{\left.(1-\epsilon) e^{i t^{2}}\right)^{2}}\right.}(1 \\
&-\epsilon) d t^{2} \\
& \leq \frac{C_{1+\epsilon}}{\epsilon^{1-\varepsilon_{(1+\epsilon)}}} \int_{\gamma_{(1-\epsilon)} \cap \Delta_{Y}^{22}}\left(\int_{\mu_{(1-\epsilon) e^{i t^{2}}}^{(1-\epsilon)}}^{(1-\epsilon)} \sum_{j}\left|\left(f_{j}^{2}\right)^{\prime}\left(\left(\frac{1}{2}+\epsilon\right) e^{i t^{2}}\right)\right|^{2} d\left(\frac{1}{2}+\epsilon\right)\right)(1 \\
&-\epsilon) d t^{2} \leq \frac{C_{1+\epsilon}}{\epsilon^{1-\varepsilon_{(1+\epsilon)}}} \int_{\left(\frac{1}{2}+\epsilon\right)} \sum_{(1-\epsilon)}\left|\left(f_{j}^{2}\right)^{\prime}\left(\left(\frac{1}{2}+\epsilon\right) e^{i t^{2}}\right)\right|^{2}\left(\frac{1}{2}+\epsilon\right) d\left(\frac{1}{2}+\epsilon\right) d t^{2} \\
& \leq \frac{C_{1+\epsilon}}{\epsilon^{1-\varepsilon_{(1+\epsilon)}} \int_{\left(\frac{1}{2}+\epsilon\right)} \sum_{(1-\epsilon)}\left|\left(f_{j}^{2}\right)^{\prime}(z-\epsilon)\right|^{2} d A(z-\epsilon),}
\end{aligned}
$$

Where

$$
S_{(1-\epsilon)}:=\left\{(z-\epsilon) \in \mathbb{D}: 0 \leq|z-\epsilon| \leq(1-\epsilon) \text { and } \frac{z-\epsilon}{|z-\epsilon|} \in \gamma\right\} .
$$

The proof is therefore completed.
The last result that we need before giving the proof of Theorem (2.1) is the following one (see Brahim Bouya, 2008).

Lemma (4.8):

$$
\int_{\Delta_{\gamma}^{22}} \sum_{j}\left|f_{j}^{2}(z)\right|^{2(1+\epsilon)} a_{\gamma}^{2}(z) d A(z) \leq \sum_{j} C_{1+\epsilon}\left\|\left(f_{j}^{2}\right)^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2}+C A\left(\Delta_{\gamma}\right) .
$$

Proof: Using (19) and Lemmas (4.6) and (4.7), we find that

$$
\begin{aligned}
& \int_{\Delta_{\gamma}^{22}} \sum_{j}\left|f_{j}^{2}(z)\right|^{2(1+\epsilon)} a_{\gamma}^{2}(z) d A(z) \\
&=\frac{1}{\pi} \int_{0}^{1}\left(\int_{\gamma_{(1-\epsilon)} \cap \Delta_{Y}^{22}} \sum_{j}\left|f_{j}^{2}\left((1-\epsilon) e^{i t^{2}}\right)\right|^{2(1+\epsilon)} a_{\gamma}^{2}\left((1-\epsilon) e^{i t^{2}}\right)(1-\epsilon) d t^{2}\right) d(1 \\
&-\epsilon) \\
& \leq C A\left(\Delta_{\gamma}\right) \\
&+2^{(2 \epsilon+1)} \int_{0}^{1}\left(\int_{\gamma_{(1-\epsilon)} \cap \Delta_{Y}^{22}} \sum_{j} \mid f_{j}^{2}\left((1-\epsilon) e^{i t^{2}}\right)\right. \\
&\left.-\left.f_{j}^{2}\left(\mu_{(1-\epsilon) e^{i t^{2}}}(1-\epsilon) e^{i t^{2}}\right)\right|^{2(1+\epsilon)} a_{\gamma}^{2}\left((1-\epsilon) e^{i t^{2}}\right)(1-\epsilon) d t^{2}\right) d(1-\epsilon) \\
& \leq C A\left(\Delta_{\gamma}\right)+\sum_{j} C_{1+\epsilon}\left\|\left(f_{j}^{2}\right)^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2}
\end{aligned}
$$

This completes the proof of the lemma.
Conclusion. Now, according to (18) and Lemmas (4.4), (4.5) and (4.8), we obtain

$$
\begin{aligned}
& \int_{\gamma_{(1-\epsilon)} \cap \Delta_{Y}^{22}} \sum_{j}\left|f_{j}^{2}(z)\right|^{2(1+\epsilon)}\left|\left(\left(f_{j}^{2}\right)_{\Gamma}\right)^{\prime}(z)\right|^{2} d A(z) \\
& \leq 2 \sum_{j}\left\|\left(f_{j}^{2}\right)^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2}+8 \int_{\gamma_{(1-\epsilon)} \cap_{\gamma}^{22}} \sum_{j}\left|f_{j}^{2}(z)\right|^{2(1+\epsilon)} a_{\gamma}^{2}(z) d A(z) \\
& \leq \sum_{j} C_{1+\epsilon}\left\|\left(f_{j}^{2}\right)^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2}+C A\left(\Delta_{\gamma}\right) .
\end{aligned}
$$

Combining this with Lemma (4.3), we deduce that

$$
\int_{\Delta_{\gamma}} \sum_{j}\left|f_{j}^{2}(z)\right|^{2(1+\epsilon)}\left|\left(\left(f_{j}^{2}\right)_{\Gamma}\right)^{\prime}(z)\right|^{2} d A(z) \leq \sum_{j} C_{1+\epsilon}\left\|\left(f_{j}^{2}\right)^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2}+C A\left(\Delta_{\gamma}\right) .
$$

Hence

$$
\begin{gathered}
\int_{\mathbb{D}} \sum_{j}\left|f_{j}^{2}(z)\right|^{2(1+\epsilon)}\left|\left(\left(f_{j}^{2}\right)_{\Gamma}\right)^{\prime}(z)\right|^{2} d A(z)=\sum_{n=1}^{\infty} \int_{\Delta_{\gamma_{n}}} \sum_{j}\left|f_{j}^{2}(z)\right|^{2(1+\epsilon)}\left|\left(\left(f_{j}^{2}\right)_{\Gamma}\right)^{\prime}(z)\right|^{2} d A(z) \\
\leq \sum_{j} C_{1+\epsilon} \sum_{n=1}^{\infty}\left\|\left(f_{j}^{2}\right)^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma_{n}}\right)}^{2}+C \sum_{n=1}^{\infty} A\left(\Delta_{\gamma_{n}}\right) \leq C_{1+\epsilon} .
\end{gathered}
$$

This completes the proof of Theorem (2.1)

References

Bouya, B. (2006). Id’eaux ferm'es de certaines alg`ebres de fonctions analytiques. C. R. Math. Acad. Sci. Paris, 343(4), 235-238. https://doi.org/10.1016/j.crma.2006.06.021
Brahim Bouya. (2008). Closed ideals in some algebras of analytic function. https://doi.org/10.4153/CJM-2009-014-5
Carleson, L. (1960). A representation formula in the Dirichlet space. Math. Z., 73, 190-196. https://doi.org/10.1007/BF01162477

Duren, P. L. (1970). Theory of Hp spaces. Academic Press, New York.
El-Fallah, O., Kellay, K., \& Ransford, T. (2006) Cyclicity in the Dirichlet space. Ark. Mat., 44(1), 61-86. https://doi.org/10.1007/s11512-005-0008-z
Esterle, J., Strouse, E., \& Zouakia, F. (1994). Closed ideal of A+ and the Cantor set. J. reine angew. Math., 449, 65-79. https://doi.org/10.1515/crll.1994.449.65

Hedenmalm, H. (1990). Shields, Invariant subspaces in Banach spaces of ana- lytic functions. Mich. Math. J., 37, 91-104. https://doi.org/10.1307/mmj/1029004068

Hoffman, K. (1988). Banach spaces of analytic functions. Dover Publications Inc., New York. Reprint of the 1962 original.
Korenblum, B. I. (1972) Invariant subspaces of the shift operator in a weighted Hilbert space. Mat. Sb., 89(131), 110-138. https://doi.org/10.1070/SM1972v018n01ABEH001617

Matheson, A. (1978). Approximation of analytic functions satisfying a Lipschitz condition. Mich. Math. J., 25(3), 289-298. https://doi.org/10.1307/mmj/1029002111

Rudin, W. (1974). Real and complex analysis (2nd ed.). McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York.

Shamoyan, F. A. (1994). Closed ideals in algebras of functions that are analytic in the disk and smooth up to its boundary. Mat. \quad Sb. \quad 79(2), 425-445. https://doi.org/10.1070/SM1994v079n02ABEH003508
Shirokov, N. A. (1982). Closed ideals of algebras of B_pq-type, (Russian) Izv. Akad. Nauk. SSSR, Mat., 46(6), 1316-1333.

Shirokov, N. A. (1988). Analytic functions smooth up to the boundary, Lecture Notes in Mathematics, 1312. Springer-Verlag, Berlin.

Taylor, B. A., \& Williams, D. L. (1970) Ideals in rings of analytic functions with smooth boundary values. Can. J. Math., 22, 1266-1283. https://doi.org/10.4153/CJM-1970-143-x

