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Abstract 

This paper proposes a model with two preys of facultative mutualist type and one predator. Linear 

predation functions are considered and preys are only considered to be harvested. The stability of the 

model is analyzed theoretically and numerically in this paper. The optimal harvest policy is studied and 

the solution is derived in the interior equilibrium case using Pontryagin’s maximum principle. Finally, 

some numerical simulations are discussed. 
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1. Introduction 

Mutualism is an interaction in which species help one another. Janzen (1985) has argued that most of 

the mutualisms can be classified into one of the four classes: seed-dispersal mutualism, pollination 

mutualisms, digestive mutualisms, and protective mutualisms. In this paper we are interested to discuss 

the protective mutualisms of fish species. This type of mutualisms may be facultative mutualism or 

obligate mutualism. In facultative mutualism the interaction between the species is helpful but not 

essential but in obligate mutualism neither mutualist can survive without the other. Many fish species 

form protective mutualisms. A particularly well-known example involves tropical anemone fishes, or 

clown fishes, and their anemones. Clown fishes are immune to stinging nematocysts of giant sea 

anemones and will and nest amongst their tentacles. Horse mackerels appear to have a similar 

relationship with Portuguese man-of war jellyfish. 

In recent past many works on mutualism have done (Lengeler et al., 1999; Wallin, 1923, 1927; 

Margulis, 1970, 1981). Those are not harvesting models. Simultaneously, some extraordinary 

harvesting models are studied by Clark (1985, 1990) and some other ecologists and scientists 

(Mesteron-Gibbons, 1998; Kot, 2001; Kar & Chaudhuri, 2004; Strobele & Wacker, 1995; Dai & Tang, 
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1998) also studied the management and behaviour dynamic harvesting models. Mark Kot (2001) 

discussed a two species protective mutualism model. In which there are two species with population 

sizes 1N  and 2N , and each species grows logistically in the absence of other. The model is  
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where 12  and 21  are the measures of the strength of positive effect of species 2 on the species 1 

and of species 1 on species 2. This model is for facultative mutualism so far 2121 ,,, kkrr  are all 

positive. That is each species can, in other words, survive without its mutualist. The species may 

surpass their carrying capacity or may undergo unlimited growth what has been called “an orgy of 

mutual benefaction” (May, 1981) depending upon the values of the strength of one species on another. 

The equations (1) and (2) may be used for obligate mutualism if we take 2121 ,,, kkrr
 all negative. 

In this case neither species can survive on its own; each species is banking on the other to save it. The 

facultative models are generally more stable than obligate models. We state the definition of facultative 

or co-operative models. 
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In this paper, we study the problem of harvesting two facultative species in the presence of a predator 

species which feeds on both the facultative prey species. The predator species is not harvested. The 

problem is clearly stated in the section 2. We have examined the equilibrium of the system and the 

conditions of their existence in section 3. The local stability of the steady state solutions is examined in 

section 4. We derive an optimal harvesting policy in section 5. Numerical examples are discussed in 

section6. The paper ends with a brief conclusion in section 7.  

 

2. Formulation of the Model 

The governing equations of our model are, 
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where 21 , NN  are population sizes of the prey species and 3N
 the population size of the predator 

at any time t. Here, )0(),0( 21  rr  are intrinsic growth rate of the first two species. Since we are 

not making a case study in respect of a specific prey-predator community, we have opted logistic 

growth rate. The parameters )0(),0( 21  KK  are carrying capacities of first two species; 21 , aa , 

both positive, are predation rates on which the third species feeds on the first two species respectively; 

21 , EE  are the harvesting efforts given on the first two species, the third species is not harvested; 

21, qq (both positive) are catchability co-efficients of 21,NN
 respectively. The catch rate functions 

111 NEq  and 222 NEq  are based on CPUE (catch per unit effort) hypothesis. The parameters 

)0(),0( 21    are known as conversion factors and d is the mortality rate of predator species. Here 

12 measures the strength of the positive effect of the species 2N  on the species 1N  and 21  

measures the strength of the positive effect of the species 1N  on the species 2N
. Considering the 

definition (1.1) we see that in absence of predator 
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Thus our model is co-operative. We hypothetically consider that the predator does not disturb the 

facultative mutualism of prey species. 

 

3. The Equilibria of the Model and the Existence Conditions 

The biological equilibria or the steady state solutions are obtained by solving 0
.
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.

iN (i=1,2,3) are time derivatives of iN (i=1,2,3) respectively. Solving these equations 

we get the points 6543210 ,,,,,, PPPPPPP  of equilibrium. The co-ordinates of these points and 

corresponding conditions of existence are given bellow. 
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111 Eqr  > 0 , 222 Eqr  > 0 and 12112  .                (10) 

The other equilibrium point is interior equilibrium and is ),,( *
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The interior equilibrium point exists if  
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4. Local Stability Analysis 

To analyze the local stability at the different equilibria we consider the following community matrix 

and use variational principle. 
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whose eigenvalues are 111
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 that is if the harvesting efforts are more than the corresponding biotechnical 

productivity of the two facultative prey species. We also see that if the system be stabilized at origin 

then no other equilibrium of the system will be found. 
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Now, when 2P  exists, 0)( 222  Eqr . Thus the above eigenvalues are negative i.e., the equilibrium at 

2P  is asymptotically stable if  
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 is asymptotically stable if  
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interior equilibrium at ),,( *
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5. Optimal Harvesting Policy 

Once the process of harvesting the resources is started, the problem of management of the fisheries can 

be viewed in terms of rent maximization. Now we shall use Pontryagin’s maximum principle to solve 

our optimization problem and obtain optimal harvest policies )(,)( 21 tEtE  such that our objective 

functional is maximized. Importance of discount rate cannot be underestimated in addressing 

environmental and resources issues. In fact the optimal stock size for a given fishery will vary 

depending on discount rate. Now we assume that  

1p Constant price per unit of biomass of 1N species, 

2p Constant price per unit of biomass of 2N species, 

21 ,cc are constant costs of fishing for the two facultative prey species per unit effort. 
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to maximize the profits of harvesting agencies and to keep the populations at an optimum level. The 
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and  
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From these we get the following expressions of harvesting efforts,  
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   (33) 

Hence solving the steady state equations together with (32) and (33) we get an optimal equilibrium 

solution   321 ,, NNN  and optimal harvesting efforts 1E  and 2E . 

 

6. Numerical Simulation 

Example 1. For numerical analysis we first consider the following set of values of parameters,  

2.0,4.0,3.0,12,05.0,02.0,2.0

,100,5.2,10,04.0,01.0,1.0,100,09.2

21222`21

221111211





dEqa

KrEqaKr





 

Then the equilibrium points are 0P (0,0,0), 1P (0,25,63.75), 2P (0,76,0), 3P (80.86124,0,0), 

4P (66.6666,0,29.6666), 5P (90.2666,94.0533,0), 6P (38.2647,10.6507,91.2527). 
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Figure 1. Solution Curves of the Species 
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Figure 2. Solution Curves When the Prey Species N2 is Absent 
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Figure 3. Solution Curves When the Prey Species N1 is Absent 
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Figure 4. Phase Diagram in Terms of the Values of the Parameters Taken in Example 1 

 

In Figure 1, we see the solution curves which exhibits the stability of the system at 6P
 and in Figure 2, 

Figure 3 we see that in absence of one prey the other survives in presence of the predator also. Thus, 

this numerical example supports our hypothesis that the facultative mutualism is not disturbed in the 
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presence of the predator. In Figure 4, we see that for the considered values of the parameters the system 

is also globally stable.  

Example 2. We consider the following set of values of parameters for numerical analysis of optimal 

equilibrium. 

04.0,6,5,15,10,2.0,4.0,3.0,05.0

,02.0,2.0,100,5.2,04.0,01.0,1.0,100,09.2

2121212

2`2122111211









ccppdq

aKrqaKr

Then optimal harvesting efforts are, 9632.131 E , 4487.322 E and corresponding optimal 

equilibrium point is )823.48,082.6,529.50(),,( 321  NNN . From the Figure 7 and Figure 8, it 

can be realized that the mutualism between the prey species remains facultative even when optimal 

harvesting efforts are used. 
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Figure 5. Optimal Solution Curves 
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Figure 6. Phase Diagram Corresponding to the Optimal Harvesting Efforts 
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Figure 7. Solution Curves Showing Survival of N2 Species in Absence of N1 Species 
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Figure 8. Solution Curves Showing Survival of N1 Species in Absence of N2 Species 

 

7. Conclusion 

In this paper, we have presented a mutualism model with independent harvesting efforts on mutualist 

prey species in presence of a predator. During equilibrium analysis and numerical simulation we have 

seen that the predator survives even when one species is extinct. The important fact is that the 

mutualism remains facultative in presence of the predator. This is due to the survival of one species in 

absence of other and in presence of the predator. We derive the optimal harvesting policy and 

numerically the optimal equilibrium, optimal harvesting efforts are obtained. Numerical illustrations 

show that, the mutualism remains facultative even when optimal harvesting efforts are used on prey 

species. This paper includes simple linear predation functions and does not include obligate mutualism 

between the prey species. We used Mat Lab for numerical calculations and graphs. 
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