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Abstract 

This study presents practical and easy-to-implement approaches for determining appropriate, or 

“safe”, sample sizes for routinely conducted statistical surveys. Finite populations are considered 

holistically and independently of whether they are continuous, categorical, or dichotomous. It is 

proposed that in routinely conducted sampling surveys variance-ordered categories of populations 

should be the basis for calculating the safe sample size given that the variance within a target 

population is a primary factor in determining sample size a priori. Several theoretical and operational 

justifications are presented for this thesis. Dichotomous populations are often assumed to have higher 

variances than continuous populations when the latter have been standardized and have all values in 

the interval [0 1]. Herein, it is shown that this is not a valid assumption; a significant proportion of 

dichotomous populations have lower variances than continuous populations. Conversely, many 

continuous populations have variances that exceed the limits that are broadly assumed in literature for 

determining a safe sample size. Finite populations should thus be viewed holistically. A simple first step 

is to partition finite populations into just two categories: convex and concave. These two categories are 

relative to a flat population with a known variance as the threshold between them. This variance is 

used to determine a safe sample size for any continuous population with a flat or positive curvature, 

including approximately 20% of dichotomous populations. For all other populations the value of 0.25 

is recommended for approximating the actual population variance as the primary parameter for sample 

size determination. The suggested approaches have been successfully implemented in fisheries 

statistical monitoring programmes but it is believed that they are equally applicable to other 

applications sectors. 
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1. Introduction 

This study stems from the author’s experience in implementing sample-based data collection 

programmes in the fisheries sector. In such situations the surveys are implemented on a routine basis 

with the purpose of systematically monitoring the exploitation of marine and inland fishery resources.  

A typical fisheries statistical monitoring programme consists of two sampling surveys that are 

conducted in parallel and are independent of each other.  

In the first survey the target populations are fish landings made by different fleet segments, such as 

trawlers, purse seiners, small artisanal boats, etc. The reason for segmenting the boats by vessel type 

and fishing method is to form statistical strata in each of which fish production is more homogeneous 

with respect to species composition, quantities caught, fishing grounds exploited, etc. The objective is 

to estimate on a monthly basis the average daily harvest of a boat from each fleet segment separately. 

Landings populations are continuous with frequency distributions that are specific to the boat type and 

fishing method employed. For instance the distribution of landings by trawlers or boats using traps is 

usually skewed and at times approximately normal. Landings by purse seiners targeting small pelagic 

fish are at times U-shaped since in this type of fishery there are days of large catches and others of little 

or no catch at all. Consequently these data tend to be thin around the mean and denser near the lower 

and upper boundaries of their range. Small-scale fisheries that are practiced by small craft have 

distributions of varying positive curvature; at times the distribution can be flat (or orthogonal) without 

noticeable peaks within the data range.  

The second survey concerns the level of activity of boats. This is expressed by the probability that a 

boat of a fleet segment is active (i.e., fishing) on any given day. This probability is subsequently used to 

estimate the monthly fishing effort of a fleet segment (i.e., total days at sea during a month). There exist 

several sampling scenarios for estimating the level of activity and the respective target populations are 

specific to the sampling scheme in use. For instance one scenario is to sample at random the activity 

state of boats; this state is conventionally expressed by 1 if the boat is found fishing and by zero if it is 

not. In this case the target population is dichotomous and its proportion p is equivalent to the 

probability of a boat being active. Another approach is to sample boats at random on a weekly basis 

and record the number of days fishing over the past week. In this case the population is categorical and 

consists of eight values (0 to 7) that appear with varying frequencies. 

The introductory information given above indicates that in routinely conducted fisheries surveys the 

target populations are of varying types: continuous for landings (comprising skewed, approximately 

normal, flat and U-shaped data) and dichotomous or categorical for boat activity. These populations are 

stratified by boat type and fishing method and by coastal zone, since the latter can also affect the 

species composition and the quantities caught. Thus in a typical fisheries statistical monitoring 

programme sampling operations apply to a large number of statistical strata whose number can be as 

big as 200. It should be added here that in all cases the populations are finite and their respective size is 

known with good accuracy. 
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During the planning phase of a fisheries sample-based programme it is essential to set-up data 

collection norms and standards for each stratum in the statistical area. The most important task is to 

determine the appropriate sample size for each stratum, separately for landings and for boat activities, 

bearing in mind that such settings may vary from month to month due to the dynamics of the fisheries 

populations under study.  

The determination of an appropriate sample size is known to be a key factor in all types of 

sample-based surveys. Data collection schemes in large-scale statistical programmes demand that the 

safe sample size is determined on an a priori basis at the beginning of each reference period (e.g., each 

month) and for each target population of the survey. Various approaches for this a priori determination 

are extensively discussed in the literature; a plethora of studies have been conducted to examine the use 

of Cochran’s formula (1977), either in its original form or with modifications based on specific 

methodological and/or operational requirements. Although this introductory section is not intended for 

methodological presentations, Cochran’s formula for safe sample size merits some brief discussion 

since its parametrization is the main focus of the present study. As shown in Section 2 this formula 

derives directly from the Central Limit Theorem and has the following form: 

2 2

2

t σ
n

ε


 

where n is the resulting sample size, t is the abscissa of the normal curve that cuts off a total area of α at 

the tails, 2σ  is the population variance and ε  is the maximum error that the survey planner is 

willing to tolerate. 

A typical value for t is 1.96 which corresponds to an alpha level of 0.05. In practical terms this means 

that when the sample size is calculated from the above formula 95% of the sampling operations are 

expected to yield a sampling error that is lower than ε .  

An immediate observation on the above formula is that the population variance is unknown. 

Approximating the population variance with the sample variance requires some extent of preliminary 

sampling which defeats the idea of a priori determination of sampling requirements. In dichotomous 

populations this difficulty can be overcome by replacing the population variance with the “pessimistic” 

constant 0.25 which is the maximum variance in dichotomous populations (Note 1) and occurs for 

population proportions that are equal to 0.5. When the population proportion is not 0.5 the approach 

leads to oversampling but most users are quite willing to accept this fact since it provides an even safer 

sample size and at the same time it mitigates the impact of the alpha level described earlier. 

When analyzing continuous data, the recommended actions for parametrizing the sample size formula 

are less straightforward. One would expect that using again a pessimistic maximum for the variance, a 

good and practical approach that works well with dichotomous data, could also apply to continuous 

data. Instead, most case studies in literature focus on the target population in hand and attempt to 

closely approximate the population variance using hypotheses and educated guesses.  

For instance, it has been suggested that the population variance can be estimated with a reasonable 
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degree of accuracy (Valliant et al., 2015; Dell et al., 2002); it has also been hypothesized that the 

population is approximately normal and that its variance can be approximated using a seven-point scale 

that includes six standard deviations (Bartlett et al., 2001). However, in surveys that are routinely 

conducted, such approaches are not always feasible. As described earlier there are several 

sub-populations resulting from stratification schemes that combine geographical and technical criteria 

and that their number could well be as big as 200. In such situations it is impractical to conduct a priori 

approximations of the variances for each of these 200 sub-populations on a monthly basis, even in the 

unlikely event that statisticians are present during the production phase of a routinely conducted 

statistical monitoring programme. Furthermore, the assumption that a continuous population is normal 

or approximately normal is not always valid: it was seen earlier that continuous data (such as fish 

landings) come in various forms and shapes and apart from some knowledge about the general 

configuration of the elements, not much is known in advance about the variance in the data. It is the 

author’s view that in routinely conducted surveys the approximation of variances for each target 

population separately is not a feasible approach.  

Here, it is advocated that in routinely conducted sampling surveys the parametrization of the sample 

size formula should always be based on the “pessimistic” approach, whereby a maximum variance 

replaces the population variance in the formula. To achieve this we need to take a holistic view of the 

variance, irrespective of the population being continuous, dichotomous or categorical. We suggest that 

transforming finite populations into standardized ones (i.e., mapping the original elements onto the 

interval [0 1]) allows all populations of a given size to be ordered on the basis of variance and 

partitioned into two major categories, each with known maximum variance. We can then use the 

“pessimistic” approach by means of which the variance in the sample size formula is replaced by the 

maximum variance of the respective population category. 

An example of such a holistic approach is illustrated in Figure 1 with standardized populations having 

values within the interval [0 1] and ordered on the basis of variance. The threshold line representing a 

flat population corresponds to a variance of 2σ 1/12  and divides all finite populations of same size 

N into two major categories: 

(i) Populations with variances <=1/12. 

(ii) Populations with variances >1/12 and <=1/4. 
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Figure 1. Standardized Populations Sorted in Ascending Order of Variance and the Two Major 

Categories of Populations Based on  

 

The first (upper) category is conventionally referred to as “convex” and includes all continuous 

populations with flat or positive curvatures, including categorical populations whose peak frequencies 

are around the mean. Surprisingly enough, this category also includes dichotomous populations with 

proportions of p < 0.09 or p > 0.91 (this last property is proved in the annex).  

The second category is referred to as “concave” and includes continuous populations with negative 

curvatures (i.e., U-shaped populations), categorical populations with peak frequencies near the 

boundaries and dichotomous populations with proportions 0.09 ≤ p ≤ 0.91. 

This introductory section concludes with a brief description of the main body of the document. 

Section 2 provides definitions and notations and describes the application of a population 

standardization process to map a finite population to values in the interval of [0 1]. Next, all 

standardized populations of the same size are ordered by the variance and two major population 

categories are identified. The final step determines safe sample size for each category. 

Four case studies are included that show the practical application of the proposed approach. All datasets 

contain actual data collected in the field and specifically from the fisheries statistical programmes that 

operate in Qatar, the UAE, Lebanon and Algeria. All data have been standardized to take values within 

the interval [0 1] using the standardization method presented at the beginning of the section.  

Section 3 opens a discussion regarding the proposed approaches. A number of conclusions are drawn in 

Section 4. 

The methodologies presented in Sections 2 and 3 are further analyzed in the annex in the form of 

mathematical proofs for most propositions. This was done with the purpose of providing the theoretical 

2 σ 1/12
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basis for the categorization of populations using as criterion the variance. Most of the mathematical 

proofs in the annex concern the very questions of: (i) how the variance increases or decreases when the 

population elements change positions and, (ii) what are the global minimum and maximum variances in 

standardized populations of a given size. Admittedly the proofs of some known and/or self-evident 

facts might seem superfluous but the author has opted to include them nevertheless, more for his own 

reassurance than that of the reader. 

 

2. Materials and Methods 

The topics in this section are presented in the following order: 

(1) Assumptions, definitions, and conventions concerning finite populations; 

(2) Transformation method of a finite population into a standardized population; 

(3) Description of variance-ordered standardized populations and the pessimistic approximation of 

variances; 

(4) Examples of error-prediction functions; 

(5) Examples of safe sample size determination. 

2.1 Assumptions, Definitions, and Conventions 

All populations in this study are finite, have a known size (N), and contain at least two elements that 

are different from each other. The population elements are denoted by an indexed variable iy  (i = 

1, …, N). The population mean is denoted by y . Without any loss of generality, the population 

elements are assumed to be arranged in increasing order so that i i 1y y   for all i = 1, …, N-1. Hence, 

there is always a minimum element, 1y , and a maximum element, . 

Herein, there is a distinction between the terms “curvature” (or “shape”) and “configuration”: the 

former refers to the form of the frequency distribution of the population while the latter refers to the 

positioning of the population elements within the interval defined by its boundaries. An example of this 

distinction is shown in Figure 1 that illustrates standardized populations (with elements between 0 and 

1), which are ordered by the variance. Let us examine the U-shaped population shown near the bottom. 

The curvature of the population is described by its frequency distribution, whereas the configuration of 

population elements is described (just above it) by the positioning of its elements within the interval [0 

1]. 

For a random sample of size n denoted as ki
y  (k = 1, …, n) with a sample mean of y , the relative 

error, ε , is computed as follows: 

 

N 1

y y
ε

y y





         (1) 

It is recalled that 
1y , 

Ny  are the minimum and maximum elements respectively. 

Herein, all populations in the study are assumed to have been transformed into standardized 

populations as shown in the following section in order to simplify the discussion of the relationship 

between sample size and relative error. 

Ny
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2.2 Standardized Populations 

Using the minimum and maximum elements 1y , Ny  the finite population, iy , described above can 

be transformed into a standardized population, ix , according to the following formula: 

 
i 1

i
N 1

y y
x

y y





        (2) 

The resulting standardized population has the following basic properties (these are self-evident and do 

not require a formal proof): 

(a) 1x 0   Nx 1    i = 2, …, N-1. 

(b)  Mean of the standardized population is 1

N 1

y y
μ

y y





 

(c) Sample elements, ki
y , are mapped onto standardized sample elements, ki

x , which have a 

sample mean of  

(d) From (a), (b), and (c), it follows that the relative error given in (1) is also equal to: 

 ε μ x          (3) 

Property (d) indicates that the relative error can be measured directly from the unitless standardized 

population generated according to (2). An illustrative example of this property is provided in the annex. 

(e) If 2σ  is the variance of a standardized population then, according to the central limit theorem, 

for error, ε , in (3) we will have: 

 
tσ

ε
n

             (4) 

where n is the sample size and t is the abscissa of the normal curve that cuts off a total area of α at the 

tails. To simplify the calculations we assume that the populations are large enough, so that formula (4) 

need not contain the Finite Population Correction factor (FPC).  

Assuming the equal sign in (4) and solving the equation for n, we obtain Cochran’s general formula 

(1977) for a safe sample size: 

 
2 2

2

t σ
n

ε
         (5) 

Based on properties (d) and (e), it can be concluded that sampling aspects can be examined with respect 

to standardized populations only. The propositions following, (f)–(j), hold for all standardized 

populations of size N and are proved in the annex. 

(f)  When an element is moved away from the mean and toward either of the two boundaries, 0 and 1, 

the variance of the population increases. 

(g)  When an element is moved toward the mean, the variance of the population decreases. 

(h)  In standardized populations, the variance has a global maximum of 
2
maxσ = 1/4. This maximum 

occurs in dichotomous populations with a proportion of p = 0.5 and when the population size, N, is an 

i0 x 1 

1

N 1

y y
x

y y





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even number. When N is an odd number this maximum is slightly lower, as shown in Proposition 2 in 

the Annex, but the difference between the two maximum values is quite negligible so that the value of 

1/4 is accepted in all cases. 

(i)  The variance has a global minimum of 2
min

1
σ

2N
 , which is practically zero for large values of N. 

(j) There is a unique “flat” standardized population that does not contain regions of high or low 

element densities. The variance of this type of population is 
2
f

N 1
σ

12(N 1)





 and has a limit of 1/12 for 

large values of N. 

2.3 Convex and Concave Populations 

Once all populations have been standardized and ordered by their variance, 2σ , they can be 

partitioned into two major categories based on the “flat” variance, 2
fσ , defined in property (j) above as 

follows: 

Convex populations:      (6) 

Concave populations: 2 2
f

1
σ σ

4
 

    

    (7) 

The classification for convex populations relies on the use of flat variance, 2
fσ , as a pessimistic 

substitute for the variances of all convex populations, including those with Gaussian and Laplacian 

distributions and those with slight positive curvatures, etc. Likewise, the global maximum, 2
maxσ = 1/4, 

can be used as a pessimistic substitute for the variances of all concave populations including those that 

have U-shaped distributions and those that are dichotomous without high or low proportions. Cochran 

(1977) and Krejcie and Morgan (1970) have used 2
maxσ for dichotomous populations. However, as 

shown in Section 3, not all dichotomous populations have high variances and not all continuous 

populations have low variances. Therefore, in the case where the researcher considers only two 

population categories, it would be more accurate to use the term “convex” for populations with 

variances between 0 and 1/12 inclusive and “concave” for populations with variances that are higher 

than 1/12 and lower than or equal to 1/4. 

The pessimistic variance approach using two major population categories (i.e., convex and concave) is 

efficient and easy to implement. The author has been involved in the design and implementation of 

routinely conducted fishery surveys in several countries, and in his experience, the use of these two 

major categories is robust and durable. It should be noted here that fishery surveys involve 

simultaneous dealing with various population types: normal (or about normal), convex with a slight 

curvature, flat, U-shaped, and dichotomous. The examples presented in this section are based on actual 

data compiled from the field. 

Therefore, it is recommended that this approach is used as a first step when determining safe sample 

size, considering that it could later be replaced by a more refined categorization scheme as long as this 

2 2
f

1
0 σ σ

12
  
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new scheme is equally reliable, robust, and durable. One such case is illustrated in Figure 1: a thin line 

representing a variance of 1/24 (which is half of the flat variance 1/12) further divides the convex 

populations into those that have normal or relatively sharp curvatures and those with zero or slightly 

positive curvatures. This shows that more refined classifications of populations yield safe sample sizes 

that are more economical because the pessimistic variances were designed to be applicable to smaller 

population categories. As an example, assuming that the population size, N, is large enough to permit 

the use of the limit-values for variances, the following refined categorization can be used: 

(i) Convex with a normal or relatively sharp curvature:  

(ii) Convex with no curvature or a slight curvature:  

(iii) Concave:  

It should be noted that categories (i) and (ii) also contain dichotomous populations with proportions in 

the ranges of p < 0.09 or p > 0.91 while category (iii) contains U-shaped continuous populations and 

dichotomous populations with proportions in the range of . 

As mentioned earlier, the use of two major categories, convex and concave, as described by (6) and (7), 

is recommended here. The sub-division of convex populations into two sub-categories, (i) and (ii), is 

done in order to show that the general approach presented here is flexible enough to accommodate the 

use of more refined categorizations if it can be justified by available information about the shape of the 

target populations. 

2.4 Error Fluctuation and Sample Size 

In Section 2.2, it was shown that formula (5) for determining the safe sample size is a rearranged form 

of formula (4), in which the error, ε , is a function of the sample size, n. This error-prediction function 

envelops most of the error points resulting from the varying sample size with some exceptions 

depending on the selected alpha level, which is represented by t value in the formula. For instance, for 

an alpha level of 0.05 (or 5%), it is expected that if sampling is repeated 100 times, in 95 cases the 

relative error ε  will be lower than the allowable error margin (such as 0.1 and 0.05). This expectation 

is based on the actual population variance that appears in formula (5). Evidently, when the population 

variance is substituted by a higher (e.g., pessimistic) value, the sample size will increase, with 

increasing proportion of “good” occurrences for the error ε . 

As the sample size increases, the error decreases and its fluctuation is mitigated. In case of large 

samples and when the sample size continues to increase, the error curve begins to converge toward 

zero. 

In the following examples, the sample size, n, ranges from 1 to 500. For each sample size, a random 

sample is taken and its mean is combined with the population mean to derive the relative error, given in 

formula (3). The series of plotted errors form an oscillating curve that becomes smoother as the sample 

2 2
N

1
0 σ σ

24
  

2 2
f

1 1
σ σ

24 12
  

2 2
max

1 1
σ σ

12 4
  

0.09 p 0.91 
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size increases. In each example, the three error-prediction curves defined for categories (i)-(iii) (as 

defined in Section 2.3) are plotted together in order to illustrate how efficiently each one envelops the 

actual error fluctuation. As mentioned earlier, this efficiency (or lack thereof) depends on the 

pessimistic value that is chosen to represent the population standard deviation in (4). 

In the error plots presented for the following examples, the horizontal axis represents the ratio, 

log(n)/log(N), where N is the population size, rather than the sample size, n. This is done simply for the 

sake of convenience because plotting the error as a function of sample size has a hyperbolic shape so 

much that the error function is very close to the axis and, thus, is blurred and difficult to visualize. 

Conversely, with a logarithmic scale, the plot is magnified horizontally and the curve takes on an 

exponential shape that is easier to analyze. This type of graphical representation is only for plotting 

purposes and it does not affect the methods or the formulae used. 

2.5 Illustrative Examples of Error Prediction 

Example 1 

Figure 2 illustrates an application of the error-prediction formula (4) to a standardized population of 

fish landings by trawlers (Note 2), which is known to be approximately normal. The function 

represented by the dotted line was parametrized for populations that are normal or sharper than normal 

(i.e., those in category (i) as defined in Section 2.3). The pessimistic variance was set to 1/24 and the 

acceptable margin of error was chosen to be 0.05. 

 

 

Figure 2. Error Prediction for a Normal Population 

 

The plot shows that the error fluctuation is well enveloped by the dotted line with no exceptions. This is 

because the upper limit for the variance (1/24) is higher than the actual population variance, which 

diminishes the impact of t in formula (4). The dashed line in the same plot corresponds to the flat 

variance of 1/12. This variance is intended for populations in category (ii); it thus yields, as expected, 

an even safer sample size with an acceptable extent of oversampling. Regarding the external curve 

(solid line), its use would clearly result in large oversampling, as it is based on the global maximum 

value for variance (e.g., 0.25). 
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Example 2 

Figure 3 illustrates another variance parametrization for a standardized population of fish landings by 

small artisanal craft. The population elements are placed at approximately regular intervals, resulting in 

a frequency distribution that is flat. Therefore, the pessimistic variance is 1/12, which corresponds to 

category (ii) as defined in Section 2.3. Alpha level and margin of error are both 0.05. 

 

 

Figure 3. Error Prediction for a Flat Population 

 

The applied error-prediction curve (dashed line) effectively envelops the error fluctuation with some 

sporadic exceptions, which are due to the chosen alpha level of 0.05. It is notable that the curve that 

was acceptable for a normal population (dotted line) is no longer adequate for enveloping a flat 

population as several error points that penetrate it are due to the lower variance limit applied rather than 

the chosen alpha level. The use of external curve (solid line) would result in large oversampling, as the 

external curve is based on the global maximum value for variance (e.g., 0.25). 

Example 3 

In this example we deal with a standardized population of fish landings by purse seiners. As mentioned 

in the introduction such populations are at times U-shaped, with higher element density near the 

boundaries and a lower density around the mean. The pessimistic variance used in the error-prediction 

formula (4) is now set to the maximum value of 1/4, which applies to concave populations (category 

(iii) as defined in Section 2.3). Alpha level and error margin are again set to 0.05. 

The plot in Figure 4 shows that the error-prediction curve (solid line) effectively envelops the error 

fluctuation as the maximum variance of 1/4 is higher than the population variance. Thus, the impact of 

the parameter t in the error-prediction formula is mitigated. The first two curves, which were used for 

convex and flat populations (dotted and dashed lines, respectively) are no longer adequate as there are 

several error points that lie outside them due to their lower variance limits rather than the chosen alpha 

level. 
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Figure 4. Error Prediction for a U-shaped Concave Population 

 

Example 4 

Here, the target population is dichotomous with elements of 0 and 1 and a proportion of p = 0.765. This 

standardized population represents the average state of activity of fishing boats over a period of one 

month. Its proportion expresses the probability that a boat is active on any day. The pessimistic 

variance used in the error-prediction formula (4) is again set to a maximum of 1/4, which applies to 

concave populations (category (iii) in Section 2.3). Again, alpha level and error margin are set to 0.05. 

The error-prediction curve shown in Figure 5 (solid line) effectively envelops the error fluctuation with 

some sporadic exceptions that are allowed by the chosen alpha level of 0.05. The two other curves are 

no longer adequate as they are penetrated by the error fluctuation at several points due to their lower 

variance limits rather than the chosen alpha level. 

 

 

Figure 5. Error Prediction for a Dichotomous and Concave Population 

 

2.6 Safe Sample Size 

The previous section paved the way for an effective determination of a safe sample size. It has been 

shown that error formula (4), when appropriately parametrized, efficiently envelops the error 

fluctuation for varying sample size. Such a parametrization is primarily dependent on the pessimistic 

variance that substitutes the population variance. Thus, it is expected that applying pessimistic variance 
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and desired error margin ε to formula (5) will yield a sample size that will guarantee that the relative 

error will generally be lower than ε. 

This concept is demonstrated by the example illustrated in Figure 6. The three error-prediction 

functions applied earlier use the same alpha level of 0.05. The horizontal line starting from any error 

value intercepts each curve at a point that corresponds to the safe sample size for that error margin for 

each major category or sub-category. For instance, the line starting from ε = 0.1 yields safe sample 

sizes of 32 and 96 for convex and concave populations, respectively. 

 

 

Figure 6. Determination of the Safe Sample Size by Using Error-prediction Functions 

 

Table 1 shows examples of safe samples size computed for each of the four populations examined in 

the examples in Section 2.5. At first, the error margin, ε, is set to 0.1, which is acceptable in most 

routinely conducted large-scale surveys. The sample size is determined based on two major population 

categories described in Section 2.3 - convex and concave. Since the population size, N, is large enough 

in all cases, we can use the limit-values for the upper boundaries of the variance: 1/12 for convex 

populations and 1/4 for concave populations. The chosen alpha level is 0.05, which corresponds to t = 

1.96 in formula (5) for calculating the safe sample size. 

 

Table 1. Determination of Safe Sample Sizes for Populations in the Two Major Categories with an 

Alpha Level of 0.05 and an Error Margin of 0.1 

Population 
Population 

variance 

Population major 

category 

Pessimistic 

variance 

Safe sample 

size 

Cases where error ε 

> 0.1 (1000 trials) 

Example 1 – approx. normal 0.016 Convex 1/12  32 0 

Example 2 – flat 0.082 Convex 1/12  32 1 

Example 3 – U-shaped 0.158 Concave 1/4 96 0 

Example 4 – dichotomous 0.179 Concave 1/4 96 3 
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With these parameters, the formula yields a safe sample size of 32 for convex populations and 96 for 

concave populations. If the formula contained the actual population variance, these sample sizes would 

have been lower and 95 out of 100 times, the error, ε, would have been lower than or equal to the 

acceptable limit of 0.1 (recall that alpha level is 0.05 or 5%). In this specific case, we have substituted 

the population variance in (5) with a pessimistic (i.e., higher) value. As a result, the proportion of 

results in which ε   0.1 should be increased. 

Table 1 was generated by computing the error, ε, using the safe sample size and comparing it to 0.1; 

this was repeated 1000 times for each population. As shown in the last column of Table 1, there are no 

exceptions in which the error, ε, exceeded the desired margin of 0.1 for the normal population. 

Similarly, there are no exceptions for the U-shaped population as the error was below 0.1 in all 1000 

trials. However, there was one exception for the flat population and three for the dichotomous 

population. 

Table 2 was formed using the same two major population categories as in Table 1 (convex and concave) 

but applying a more rigorous error margin of 0.05. The increase in precision resulted in a significant 

increase in the safe sample size: the new sampling requirements are four times higher than those 

determined for an error margin of 0.1. 

Table 3 uses the three population categories, (i)–(iii) as defined in Section 2.3. Alpha level and error 

margin are both set to 0.05. The upper boundaries of the variance for the different populations are as 

follows: 

Population in Example 1:  

Population in Example 2:  

Population in Example 3:  

Population in Example 4:  

 

Table 2. Determination of Safe Sample Sizes for Populations in the Two Major Categories with an 

Alpha Level of 0.05 and an Error Margin of 0.05 

Population 
Population 

variance 

Broad 

category 

Pessimistic 

variance 

Safe sample 

size 

Cases where error ε > 

0.05 (1000 trials) 

Example 1 – approx. normal 0.016 Convex 1/12 128 0 

Example 2 – flat 0.082 Convex 1/12 128 0 

Example 3 – U-shaped 0.158 Concave 1/4 384 0 

Example 4 – dichotomous 0.179 Concave 1/4 384 2 

2
N

1
σ

24


2
f

1
σ

12


2
max

1
σ

4


2
max

1
σ

4

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Table 3. Determination of Safe Sample Sizes Using Three Categories of Populations with an 

Alpha Level of 0.05 and an Error Margin of 0.05 

Population 
Population 

variance 
Refined category 

Pessimistic 

variance 

Safe 

sample 

size 

Cases where 

error ε > 0.05 

(1000 trials) 

Example 1 – approx. normal 0.016 Normal, sub-category (i) 1/24 64 1 

Example 2 – flat 0.082 Flat, sub-category (ii) 1/12 128 1 

Example 3 – U-shaped 0.158 Concave, sub-category (iii) 1/4 384 0 

Example 4 – dichotomous 0.179 Concave, sub-category (iii) 1/4 384 2 

 

The sampling scheme shown in Table 3 is slightly more economical than in Table 2 owing to the 

refined categorization of target populations and has resulted in lower sample size for normal population 

(first table entry). However, this improvement is counteracted by a loss of stability since this population 

may at times have higher variance than that which was assumed (1/24). An obvious solution to prevent 

this issue is to opt for the broader categorization shown in Tables 1 and 2 in cases of uncertainty 

regarding the stability of target population shape. 

 

3. Results and Discussion 

As it was pointed out in the introduction several known methods in the literature make use of the 

pessimistic variance approach, albeit for dichotomous populations only. With continuous data they 

attempt to approximate the population variance on the basis of a general idea about the shape of the 

population distribution. To this effect Cochran (1977) suggests a number of mathematical distributions 

with known variances to serve as models for the target populations. For dichotomous populations the 

model variance is 1/4=0.25; this has already been discussed thoroughly in this study. For a standardized 

distribution shaped like a right triangle the model variance is 0.056, while for an isosceles triangle it is 

0.042. For standardized rectangular (i.e., flat) populations the model variance is 1/12=0.083. We can 

see here that standardized flat populations have already been earmarked as potentially useful models, 

albeit not as a threshold between major population categories.  

Seeking a population model that closely fits the characteristics of the target population results in a more 

economical safe sample size and this is a much desirable result. In fact such a refined approach is 

justified if the sampling survey is of large-scale, it is to be conducted only once and the error level is as 

low as 0.05 or 0.01 (such error levels require large samples and therefore any reduction in sampling 

effort would mean lower operational costs). 

In contrast to the above situation this study addresses the question of regularly conducted sampling 

programmes in which the target populations are many and of various types, thus making it practically 

impossible to associate each of them, on a monthly basis, with a population model of known variance. 
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It has been shown that the categorization of populations into convex and concave allows for a 

generalized use of the pessimistic approach by means of which only two model variances are used as 

pessimistic substitutes in formula (5): the flat variance of 1/12=0.083 for convex populations and the 

global maximum 1/4=0.25 for the concave ones.  

The concept of using two categories of finite populations was used by the author some time back 

(Stamatopoulos, 2004), when examining the geometric properties of sampling error in finite 

populations. To be sure an important aspect of this approach is the correct placement of a target 

population into the appropriate category. However this task is a relatively simple one and it is definitely 

easier than approximating population variances that keep changing between periods and across 

statistical strata; a problem addressed by several authors and most notably by Israel (1992) and Bartlett 

et al. (2001).  

The introductory part of the study presented some examples of populations and their placement into 

each of the major two categories. It has been mentioned that fish landings are generally populations of 

zero or positive curvature which makes them convex. For all these populations the flat variance of 1/12 

= 0.083 is used as a pessimistic substitute for the population variance in formula (5). Exceptions are 

fish landings by purse seiners which can at times be U-shaped. For these the pessimistic variance of 

0.25 for concave populations is used. In fact, it is never wrong to use the global maximum of 0.25 at all 

times (in the annex it is proved that 0.25 is a global maximum for the variances of all standardized 

populations). This over-pessimistic approach would often lead to over-sampling but this shortcoming 

would be justified in situations of uncertainty regarding the correct categorization of the target 

population.  

Here some other examples are provided to show that continuous, dichotomous or categorical 

populations should be examined holistically and not as separate categories.  

For instance, we may encounter dichotomous populations (which are generally expected to be concave) 

that are actually convex; this would be the case with dichotomous data in which the population 

proportion lies outside the range 0.09-0.91. Proposition 6 of the annex proves this. With such 

dichotomous populations, the use of the pessimistic variance of 0.25 in formula (5) for determining the 

safe sample size would lead to a significant level of oversampling. 

Figure 7 illustrates an example of such a case: a dichotomous population that has a proportion of p = 

0.95 and a variance of 0.073. As the population variance is lower than the flat variance of 1/12, formula 

(5) for safe sample size determination should contain 1/12 and not 1/4. In the plot, the error curve 

associated with the flat variance of 1/12 (dotted line) is very close to the curve formed based on the 

actual population variance (dashed line), whereas the use of the curve representing the maximum 

variance of 1/4 would lead to a large extent of oversampling. However, in the case of dichotomous 

populations, the application of a lower pessimistic variance should be allowed only with the firm 

knowledge that the target population has always high or low proportion (p). Without this knowledge, 

the maximum variance of 1/4 is the safest choice. According to Fink (1995) oversampling is often 
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necessary if the main issue is obtaining a really safe sample size.  

 

 

Figure 7. Error Fluctuation in A Dichotomous and Convex Population 

 

Here it should be noted that in dichotomous populations with very high or very low p values, the main 

concern may not be obtaining a safe sample size but rather deriving important conclusions as to the 

presence or absence of an event in the population. If the objective of the survey is to furnish a 

reasonably good estimate of the mean for strictly statistical monitoring purposes, then the approaches 

described above hold well. However, such an estimate would be of significantly lower utility if the 

main object is to draw conclusions of a strong impact, such as the presence of a disease in a population 

of animals. In a fisheries context an example of such a finding would be to determine the proportion of 

(few) fishermen who do not comply with fishing regulations during closed seasons. According to 

Shuster (1990), not all sample-size-related problems are the same and the importance of the sample size 

varies greatly between studies. 

Naing et al. (2006) posited that a much larger sample size than that calculated by the safe sample size 

approach is needed in cases of extreme values of the proportion (p). For example, in a medical survey 

that examines the probability of a person contracting a disease, the real p-value is very small and 

sampling with the predicted sample size may result in subjects with no disease. 

The author does not share this view. He believes that in situations where it is important to reveal rare 

facts of significant impact, the regularly conducted surveys for statistical monitoring purposes are not 

the right tools. Cochran (1977) suggests the method of continuing sampling until a pre-fixed number of 

rare items have been found in the sample. This method is known as inverse sampling.  

The other parameters used in formula (5), namely the alpha level and the corresponding value of t, are 

briefly discussed here. The reader may have noticed that the choice of an appropriate alpha level was 

not examined in much detail. The study posits that, although this point is important, its role in safe 

sample size determination becomes less significant if the substitute for the population variance in 

formula (5) is not appropriately set-up. Furthermore in using a pessimistic variance approach, the effect 

of the alpha level is reduced because the error-prediction curve will be higher than the curve based on 

the actual population variance (Figure 7). Likewise the Finite Population Correction term that adjusts 
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the variance of the sample mean was omitted because its effect on sample size would be of no 

importance if the substitute for the population variance has not been set-up appropriately. The same 

consideration applies to adjusting the safe sample size according to its proportion to the population size; 

such finishing touches are important but the predominant factor in this study is the appropriate variance 

substitution in formula (5). 

Another deliberate omission concerns Yamane’s formula (1967) for safe sample size determination. 

Yamane’s formula is frequently recommended in the literature because it is simple, robust, and efficient. 

However, it is omitted here because its use is limited to dichotomous populations. Whether it can be 

generalized to offer a more uniform approach similar to that described here it remains to be seen. The 

same could be said of other reputable approaches (Krejcie & Morgan, 1970). 

 

4. Conclusions 

Based on the methodology and examples presented in this study, it would seem reasonable to suggest 

that in routinely conducted surveys, formula (5) remains a viable tool for safe sample size 

determination when it is used properly. Its two most notable merits are that (i) it is directly derived 

from the central limit theorem and (ii) it is stable and robust. 

Herein, two broad categories of standardized populations (convex and concave) were used for 

substituting the population variance in formula (5). In the author’s experience, this population grouping 

tends to remain reasonably stable in regularly conducted sampling operations. It is also fairly 

sustainable when the desired alpha level is 0.05 and the error margin is 0.1 since it yields an achievable 

maximum of 32 samples for convex and 96 samples for concave populations. 

It is worth noticing that the categorization of populations into convex and concave provides us with a 

quick way of determining safe sample size. When the alpha level of 0.05 remains constant (and this 

occurs in many surveys) all is needed is to memorize the number 32 which is the safe sample size for 

convex populations with a desired error of 0.1 and an alpha level of 0.05. This number is the base for 

the simple calculations given below: 

Desirable error=0.1 

Since in formula (5) the flat variance of 1/12 is one third of 1/4, it follows that the safe sample size for 

concave populations is 3 x 32 = 96. 

Desirable error=0.05 

Using this error in formula (5) the denominator will be 4 times lower than the one containing 0.1. It 

thus follows that the new safe sample size for convex and concave populations will be 4 x 32 = 128 and 

4 x 96 = 384, respectively.  

The safe sample size of 384 used for concave populations, as shown above and in Tables 2 and 3, is 

comparable with that recommended in recent literature for an alpha level of 0.05 and an error margin of 

0.05 (Taherdoost, 2017; Conroy, 2016). However, it is stressed here that the maximum population 

variance in use (e.g., 0.25) also applies to continuous populations, specifically to those with a negative 
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curvature. When dealing with continuous data that are convex this study tends to yield higher sample 

sizes than those presented in the literature, the reason being that the pessimistic variance of the flat 

population used in this study (e.g., 1/12) is higher than those used in other studies to approximate the 

population variance in the sample size formula. 

Further, it was demonstrated that the presented holistic approach is open to more refined population 

groupings in which, for the same error margin, a more economical sample size can be achieved. It is 

worth emphasizing however that in regular surveys statistical parameters that are based on refined 

categorizations tend to be less stable than those that use broader ones because of the variance 

eventually falling outside the foreseen category boundaries. 
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Notes 

Note 1. In fact the constant 0.25 constitutes a global maximum for the variances of all population types 

with values within the interval [0 1]. This is proved in the annex. 

Note 2. Such populations result from small-scale censuses that serve the purpose of cross-checking the 

validity of the sampling approaches in use. They are usually conducted only once, after completion of a 

pilot operational cycle. 

 

Appendix 

In this section, more detailed derivations of the formulas used in the main document are presented. In 

the following propositions and their proofs, some assumptions and mathematical calculations are 

repeated from the main document to maintain continuity. 

a. Standardized populations and their properties 

First step is to re-examine the standardization process to facilitate the subsequent presentation of 

propositions and proofs. 

Let us consider a population, iy , of size N with a mean of y . The population is assumed to have been 

arranged in increasing order so that i i 1y y   for all i = 1, …, N-1. In this manner, the minimum 

element is 1y  and the maximum element is Ny . 

Consider also a random sample of size n with a sample mean of y . The relative error, ε  is defined as 

N 1

y y
ε

y y





                  (A.1) 

The next step concerns the transformation of the population, iy , onto a standardized population, , 

according to the following formula: 

i 1
i

N 1

y y
x

y y





                      (A.2) 

The mean of the standardized population is denoted as μ . The expression (A.2) generates the 

standardized elements, ix , hence, the standardized population mean, μ , will be given by: 

     
1

N 1

y y
μ

y y





  (A.3) 

The elements,
ki

y , of a sample from the original population are mapped onto sample elements, 
ki

x , 

of the standardized population with a sample mean of x . This can simply be verified using (A.2): 

     1

N 1

y y
x

y y





      (A.4) 

Figure A1 illustrates the result of this transformation process. 

ix
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Figure A1. Transformation of a Finite Population into a Standardized Population of the Same 

Size 

 

According to the definition of relative error in (A.1) and the fact that the range of the standardized 

population is 1, the relative error for the mapped sample will be given by 

 ε x μ         (A.5) 

The relative errors in (A.1) and (A.5) are identical, which can be readily verified by substituting the 

values of μ  and x  (from expressions (A.3) and (A.4), respectively) into (A.5). 

Therefore, the relative error in (A.1) can be directly measured from a unitless segment, x μ , of the 

standardized population. This conclusion is of good use because it allows all analyses of the relative 

error to focus on standardized populations only. 

If 
2σ  is the variance of the standardized population then, according to the central limit theorem, for 

the error, ε , in (A.5), we will have 

tσ
ε

n
                                (A.6) 

where t is determined according to the selected alpha level. With varying sample size, the above 

expression becomes an error-prediction function whose independent variable is n. The curve formed by 

this function envelops all fluctuations of the actual relative error with some exceptions depending on 

the chosen alpha level. 

Assuming the equal sign in the relation (A.6) and solving for n, we obtain Cochran’s formula for safe 

sample size (1963): 

 

2 2

2

t σ
n

ε
         (A.7) 

There are several methods for estimating the population variance,
2σ , in (A.7). In most examples in the 

literature, it is done separately for continuous and dichotomous variables. For continuous variables, 

Bartlett et al. (2001) have used a 7-point scale that is divided into six standard deviations that include 

approximately 98% of the population. The scale should be tuned appropriately according to the 

characteristics of the target population. Generally, there are not many cases in which such tuning is 

regularly practiced; the original parameters are usually built into the statistical system and are not 



www.scholink.org/ojs/index.php/asir             Applied Science and Innovative Research                  Vol. 3, No. 4, 2019 

240 
Published by SCHOLINK INC. 

transparent to statisticians for review and revision if needed. 

Determining 
2σ in (A.7) in a uniform and robust manner is a central aim of this study. A practical 

approach is to identify model populations whose variances permit a uniform parametrization that is 

applicable to entire categories of populations. To better describe this process, we first analyze the 

dynamics of reordering population elements and the impact of these shifts on the population variance. 

In doing so, it is always assumed that the boundaries, 1x  = 0 and Nx  = 1, of the standardized 

population, remain fixed. 

b. Proposition 1 

Consider a standardized population with mean μ  and variance 2σ . When an element, x μ , is 

moved away from μ  by a positive segment,  (i.e., toward 0), the variance of the population 

increases. 

Proof: 

If μ  is the old population mean then the new mean will be equal to . 

The new variance, 
2
newσ , will be given by 

N 1
2 2 2
new i

i 1

1
σ (x μ ) (x μ )

N N N





  
       

  
  

We make use of the following two properties: 

N 1
2 2 2

i

i 1

(x μ) (x μ) σ





     and 

N 1

i

i 1

(x μ) (x μ)





     

The expression for the new variance then becomes: 

                       
2 2 2N 1
new N

1
σ σ 2 (x μ)

N

      
 

   (A.8) 

Since 2 0   and x μ 0   it follows that the second term of (A.8) is positive. This, in turn, 

indicates that the new variance will be higher than the old variance 
2σ . The increase in variance is 

maximized when   = x (i.e., as the element x is moved to 0). In a similar fashion, it can be proved 

that the variance increases when x μ  > 0 and as x is moved away from the mean and toward 1. 

The new population that is created by moving an element away from the mean is conventionally 

described as more “concave” (or less “convex”) than the original population since the density around 

the mean has decreased. 

If the process of moving elements toward the boundaries is repeated for all N-2 elements (recall that 

the initial assumption was that the two boundaries, 1x 0  and Nx 1 , remain fixed), the boundaries 

will progressively accommodate more elements and the variance will continue to increase. The final 

population will be dichotomous with a variance that is much higher than that of the original population. 



μ
N



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c. Proposition 2 

A dichotomous population with mean 0.5 has variance equal to 0.25. This variance is a global 

maximum for all standardized populations. 

Proof: 

We will first prove that, of all dichotomous populations with size, N, that with a mean 0.5 has the 

highest variance and that this variance is 0.25. Using conventional notation of p and q for the 

proportions of elements that are 1 and 0, respectively, the variance will be equal to pq or p(1–p). This 

variance is maximized when p = q = 0.5 and will be equal to 0.25. We have thus demonstrated that in 

the case of dichotomous populations, the maximum variance is 0.25 and that this occurs when the mean 

is 0.5. 

In strictly theoretical terms we notice that the proportion of 0.5 cannot be achieved by dichotomous 

populations whose size N is an odd number. In such a case the maximum variance will be based on the 

two proportions (N-1)/2N and (N+1)/2N that are symmetrical to the theoretical N/2. This maximum 

variance is equal to 1/4 – 1/4N2 and is slightly lower than 1/4. However, because of its fast convergence 

to 1/4 when N increases we can safely accept the limit of 1/4 as the global maximum. 

We will now prove by deduction that this value is also a global maximum for all standardized 

populations. If there is another non-dichotomous standardized population with a variance that is higher 

than 0.25 then, according to Proposition 1, its elements can be progressively moved to the two 

boundaries, 0 and 1, to ultimately form a dichotomous population. The variance,
2σ , will be further 

increased in this process. This means that a dichotomous population has finally been formed with a 

variance higher than 0.25, which is contradictory to the first part of the current proposition. 

We thus conclude that there is no standardized population with variance higher than 0.25, which makes 

this value a global maximum for standardized populations. 

d. Proposition 3 

When an element, x, of a standardized population is to the left of the mean,μ , and it moves toward μ  

by a segment of μ x   , the variance decreases. 

Proof: 

This proposition will also be proved by deduction. We first note that by shifting x as described above 

the mean will increase by 
N


 and the new element, x  , will remain to the left of both the old and 

new means. 

Assuming that the new variance is not lower than the initial one, returning the element to its original 

place (i.e., moving it to the left and away from the new mean) causes the variance to return to its initial 

(i.e., lower) value. This is a contradiction to Proposition 1, which suggests that the variance should be 

increased. 

Similarly, it can be proved that when an element is to the right of the mean and is moved to the left by a 
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positive segment, (x μ)   , the variance decreases. In both cases, the new population is more 

“convex” than the original one because the density around the mean has increased. 

e. Proposition 4 

The global minimum for the variances of standardized populations of size N is . 

Proof: 

We start with the observation that the expression for the variance of a standardized population of size N 

can be written using two terms: first including the two boundaries 0 and 1 and second comprising all 

other N-2 elements. 

N 2
2 2 2 2

i

i 1

1 1
σ [(0 μ) (1 μ) ] (x μ)

N N





        (A.9) 

We will now prove that the first term alone (the one that involves the population mean and the 

boundaries 0 and 1) is greater than or equal to 1/2N. 

We evaluate the following relationship: 

2 21 1
[μ (1 μ) ]

N 2N
     .       (A.10) 

This relationship leads to 22(μ 0.5) 0  , which is always true. Thus, it can be concluded that the 

variance given in (A.9) is always greater than or equal to the global minimum: 

2
min

1
σ

2N
         (A.11) 

In standardized populations, this minimum occurs when the first element is 0, the last is 1, and all the 

other N-2 elements are equal to 0.5. 

A point of potential interest here concerns the existence of a minimum variance for dichotomous 

populations specifically. In fact such a minimum variance exists and corresponds to a dichotomous 

population in which the proportion is equal to either 1/N or to (N-1)/N. It is easy to verify that in such a 

case the variance takes the minimum value of (N-1)/N2 and that this minimum value is higher than the 

global minimum of 1/2N. 

f. Proposition 5 

This proposition more rigorously defines the flat population that serves as a threshold to divide 

standardized populations into convex and concave as described in Section 2.3. 

We consider a standardized population with the following elements: 

  i
i 1

x
N 1





, i = 1, …, N.      (A.12) 

This population is perfectly “flat” in the sense that there are neither high-density nor low-density 

regions between the boundaries, 0 and 1. Its elements are located at N-1 regular intervals that equally 

1

2N
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divide the interval, [0 1], into segments with lengths of 1

N 1
. The population mean is 0.5 and the 

variance is 

 
2
f

N 1
σ

12(N 1)





      (A.13) 

The limit of (A.13) as the population becomes very large is 1/12 = 0.083. 

Proof: 

The population mean is 

N

i 1

1 1 (N 1)N
μ (i 1) 0.5

N(N 1) N(N 1) 2



   

 
  

In the above formula, the algebraic property for the sum of the first N-1 numbers was used on the 

summation term: . 

The variance, 
2
fσ , is given by 

N N N
2 2 2
f i 2

i 1 i 1 i 1

1 1 1 1
σ (x 0.5) (i 1) (i 1)

N N(N 1) 4N(N 1)  

      


   . 

In the above expression for the flat variance, we first apply the formula for the sum of squares of the 

first N-1 numbers: 

N
2

i 1

(N 1)N(2N 1)
(i 1)

6


 
   

Using the formula again for the summation of the first N-1 numbers the variance formula is finally 

reduced to 

2
f

2N 1 1 N 1
σ

6(N 1) 4 12(N 1)

 
  

 
 

which yields the equation (A.13). The limit of (A.13) as the population becomes very large is 1/12. 

g. Proposition 6 

In dichotomous populations with size N 9 , there always exist proportions of 0 and 1 elements such 

that the population variance <= 2
fσ , as defined in (A.13). For large values of N, about 18% of 

dichotomous populations are convex. 

Proof: 

Let M be the number of elements that are equal to 1. Thus, the population proportion will be p = M/N 

where both M and N are integers. The variance of a dichotomous population is given by 2σ p(1 p)  . 

N

i 1

(N 1)N
(i 1)

2



 
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This variance is set to the flat variance 2
fσ . The following quadratic equation is formed: 

2 2
fp p σ 0          (A.14) 

Using simple calculations, it can be easily verified that: 

(1) When N = 2, we have the trivial case of a population with only two elements that are 0 and 1. 

This population is simultaneously convex and concave since its variance is 0.25 while the flat variance,

2
fσ

, is also 0.25. 

(2) For N > 2, there are always two theoretical proportions, 1p  and 2p  (i.e., the roots of the 

equation) such that the left term of (A.12) is negative when the proportion, p = M /N, is less than 
1p  

or greater than . 

(3) Since M must be an integer, there are no possible element configurations when N = 3, 4, …, 8; in 

other words all dichotomous populations with  are concave. 

(4) When N 9  there are always dichotomous populations that are convex. For small values of N, 

the percentage of convex populations oscillates between 10% and 22% of the total number of possible 

element configurations. For larger values of N, this percentage stabilizes around a value that is slightly 

greater than 18%. 

 

 

2p

3 N 8 


