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Abstract 

To solve the problem that model may not be convergent owing to datasets with small sample sizes 

results from the secrecy of labs, a fire detection method for lab fire detection based on CNN 

(Convolutional Neural Network) and transfer leaning is proposed. Experiments of transfer learning 

were conducted with configuration of super parameters and a small lab fire dataset, whose pre-trained 

models are GoogLeNet, ResNet and MobileNet trained with ImageNet dataset. We analyze and assess 

the loss function curve and the performances of the above models. Result shows that MoblieNet model 

is chosen to be the optimum model for fire detection, providing a reference to lab fire detection with 

small sample size datasets. Different from artificial fire surveillance, the proposed method based on 

CNN and transfer learning realize real-time, autonomy and efficient fire detection. 
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1. Introduction 

Laboratory fires are characterized by an initial small range that gradually expands before suddenly 

spreading, often resulting in incalculable losses once detected. The presence of flammable and 

explosive chemicals in laboratories can further accelerate the fire’s spread, posing a significant safety 

threat to laboratory personnel and expensive experimental equipment (Wilbraham, 1979; Gray, 2003; 

Dupuy & Maréchal, 2011). While many laboratories currently use camera-equipped monitoring 

methods to detect potential danger, human intervention is still necessary. This cannot guarantee the 

prompt identification and response to laboratory fires. 

Artificial intelligence and deep learning technology has made remarkable progress in recent years, 

leading to the rapid development and widespread use of image classification and recognition 

technology. Facial recognition and augmented virtual reality are now deployed on mainstream portable 
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devices, while license plate recognition and assisted driving are applied in the commercial field and 

promote the construction of smart cities (Raji & Fried, 2021; Du, Ibrahim, Shehata, & Badawy, 2012; 

Silva, Khan, & Han, 2018). In comparison to traditional image recognition technologies, deep 

learning-based image classification and recognition technology effectively achieve fire detection and 

emergency response by continuously training and learning from sample data, dynamically optimizing 

models and collaborating with laboratory alarm systems. Among various deep learning algorithms, 

convolutional neural network (CNN) excels in reducing model complexity, making it widely used in 

image classification and recognition technology (Alzubaidi et al., 2021; Kaur et al., 2022; Chauhan, 

Ghanshala, & Joshi, 2018). However, massive amounts of data are required for deep learning leading to 

issues related to personal privacy or business secrets. To address this problem, transfer learning is often 

employed (Weiss, Khoshgoftaar, & Wang, 2016; Torrey & Shavlik, 2010; Zhuang et al., 2020). In this 

paper, we use transfer learning and CNN to achieve real-time and reliable fire detection in laboratories. 

 

2. Correlation Theory 

2.1 CNN Architecture 

Before the emergence of CNN, deep learning faced obstacles such as long training time or low 

accuracy in image processing. It became necessary to reduce the dimensionality of data while 

preserving image features leading to the development of CNN. As a subclass of deep learning, CNN is 

widely used in image classification and recognition. Traditional neural networks used fully connected 

layers in their hidden layer with neurons linked between layers. CNN also has input, hidden, and output 

layers, while the hidden layer incorporates convolutional and pooling layers to preserve image features 

while reducing data dimensions. Compared to traditional neural networks, CNN can process images 

directly. The structure of a CNN is shown in Figure 1. 
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Figure 1. CNN Architecture 

 

The input layer of CNN can process grayscale or RGB color images. Convolutional layers emulate the 

human visual cortex and can extract complex image features more effectively. Humans observe an 

image through pupils with initiating preliminary processing such as edge detection in the cerebral 
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cortex. Then, the observed image is identified. Figure 2 shows an example of the working principle of 

convolutional layers. 
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Figure 2. Principle of Convolution Layers 

 

The convolutional layer utilizes convolution kernels that slide sequentially over image pixels to 

perform spatial filtering on the image. A convolution kernel represents a spatial filter of size 

w h cF F F   with weights denoted by 
w h cF F F W , where 

wF  and 
hF  are non-negative, odd 

numbers frequently set equal to each other. For a specific channel 
cF , the central element of the spatial 

filter represents the current pixel weight of the original image and other elements represent the weight 

of adjacent pixels. The output is the sum of values from different image features that pass through the 

spatial filter from various channels. In the pixel coordinate system, the intensity of the image pixel 

point pixelu,v
 is represented by  ,f u v . If both 

wF  and 
hF  are odd numbers, the output intensity 

 conv ,g u v , which operated by a square spatial filter of size 
w h cF F F  , is shown in Equation (1), 

where b  is the offset. 

     
 

 

 

 w h

c w h

1 /2 1 /2

conv w h

1 /2 1 /2

, [ ] [ 1 / 2 1 / 2]

F F

F i F j F

g u v f u+i,v+ j i F , j F b

 

   

        M  (1) 

If u+i  or v+ j  exceeds the boundary of the image, various filling methods can replace the 

ineffective pixel intensities. Additionally, the step size used by the spatial filter determines the pixel 

spacing for each sliding of the convolution kernel. The number of output channels with an image or 

feature map passing through a convolutional layer equals to the number of convolution kernels in that 
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layer. Assuming that a convolutional layer is composed of convolution kernels of size F F , a step 

size S , and a fill of P , the output size N N  is given in Equation (2). 

 2 / 1N W F P S                                     (2) 

The pooling layer significantly decreases the dimensionality of image data and prevents overfitting. 

Unlike standard sampling typically applied to one-dimensional sequences, the pooling layer samples 

high-dimensional image inputs or feature maps. The most commonly methods include maximum 

pooling and average pooling. For maximum pooling, if the pooling region is N N  and  ,f u v  

represents the input with one channel, the maximum pooling result on  ,u v  is given in Equation (3) 

assuming N  is odd. 

       poll , max{ , }, 1 / 2 , 1 / 2g u v f u i v j N i j N                     (3) 

The output layer consists of a fully connected layer, an activation function, and others. If M  

categories need to be recognized and classified, the number of fully connected layer neurons directly is 

M  with each neuron being connected to a neuron in the previous layer. The input-output relationship 

of neurons is expressed as Y = WX+B , where the weight W  and bias B  create a linear 

component. Besides, the activation function provides the nonlinear transformation. The common 

activation functions include the Sigmoid and ReLU functions. The output layer often employs the 

Softmax function, allowing for more intuitive judgment of image categories. By combining 

convolutional and pooling layers with different dimensions and numbers, various CNN architectures 

have been developed to apply to different scenes with varying objectives. 

2.2 CNN Model 

2.2.1 GoogLeNet 

In 2014, Google collaborated with several universities to propose GoogLeNet, a CNN architecture that 

won the first position in ImageNet’s image classification challenge (Szegedy et al., 2015). In 

comparison to the previous year’s champion ZFNet network and 2014’s VGG network, GoogLeNet 

achieved significantly higher accuracy and notably lower error probability. 

GoogLeNet is a 22-level CNN that implements multiple 1x1 convolution kernels and global average 

pooling. The 1x1 convolution kernels decreases the network’s complexity while deepening its depth. 

Figure 3 illustrates the principle of reducing the computation in 1x1 convolution kernels. Moreover, 

GoogLeNet employs global average pooling to convert 7x7 feature maps to 1x1 size. This technique 

reduces the number of parameters to 0 in the layer and enhances the accuracy. Additionally, GoogLeNet 

proposed the Inception Module that uses 1x1, 3x3, and 5x5 convolutional layers alongside 3x3 

maximum pooling layers. After stacking, the module can adapt to image features of different scales. 
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Figure 3. Principle of Reducing the Computation in 1x1 Convolution Kernels 

 

GoogLeNet trained on the ImageNet dataset can classify and recognize over 1000 objects, including 

animals, numbers, stationery. Further trained on the Place365 dataset, GoogLeNet can classify and 

recognize 365 locations, such as fields, trails, banquet halls, and many others. 

2.2.2 ResNet 

Since the inception of the first CNN, AlexNet, at the ImageNet contest in 2012, the error rate has 

decreased progressively every year by increasing the number of network layers in deep learning. 

However, research has revealed that the performance of the network might diminish with endless layer 

incrementation leading to an increased error rate. This phenomenon is known as gradient vanishing or 

exploding. While adding layers increases the network’s parameter number and enables deeper feature 

identification, neural networks use gradient descent for model performance optimization via 

backpropagation partial differential multiplication. Therefore, as the layer number increases, the 

gradient will exponentially increase resulting in a gradient explosion when the product is greater than 1. 

Conversely, the gradient can disappear. 

Researchers from Microsoft in 2015 proposed the residual network (ResNet) (He et al., 2016). ResNet 

implements skip connection technology linking directly to the active layer, which effectively addresses 

the issue of vanishing or exploding gradients. When vanishing or exploding gradients in a middle layer, 

the weights of that layer are set to zero ensuring consistent input and output while preventing a 

degradation in performance of the entire network. Unlike traditional convolutional networks, where it 

is difficult for a large number of layers within a dashed line to remain unchanged, ResNet makes it 

easier to keep the output value unchanged. To illustrate this difference, Figure 4 shows the comparison. 

 



www.scholink.org/ojs/index.php/fet            Frontiers in Education Technology                Vol. 6, No. 2, 2023 

147 
Published by SCHOLINK INC. 

convolution 

layer

activation

function

convolution 

layer

convolution 

layer

activation

function

convolution 

layer

activation

function

activation

function

 f x

   g f x x x

X X

X
 f x

 

Figure 4. Comparison of Conventional CNN and ResNet 

 

2.2.3 MobileNet 

With the continuous development of CNN, the performance improvement has been achieved by 

increasing the number of layers. However, researchers have realized that although complex neural 

networks can improve performance but increase model complexity. As a result, the multiplication and 

addition operations of massive model parameters requires strong computing power in reality. To 

address this challenge, some researchers have shifted their research focus to small-scale CNN models 

which can maintain good model performance while avoiding the need for strong computing power. 

Google’s MobileNet is a compact and efficient CNN model that uses depth-wise separable convolution 

to construct lightweight neural networks (Howard et al., 2017; Sandler et al., 2018). In traditional 

convolutions, the kernel is applied uniformly across all the input image channels. However, depth-wise 

separable convolution performs convolution separately on each channel as shown in Figure 5. To avoid 

compromising the effectiveness of the model, pointwise convolution is introduced. Pointwise 

convolution is a 1x1 convolution kernel for dimensionality enhancement. Unlike traditional 

convolution, depth-wise separable convolution achieves faster model convergence with fewer 

parameters. 
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Figure 5. Principle of Depth-wise Separable Convolution 

 

2.3 Transfer Learning 

In practical applications of neural networks, it is common to encounter problems that lack relevant, 

large datasets for sufficient training neural network models. Moreover, the training process requires 

large amounts of computational resources and time. To address these issues, researchers have 

introduced transfer learning. Transfer learning uses pre-trained neural networks to train models for new 

tasks like human use experiences to solve new tasks in life. Figure 6 shows the comparison between 

traditional machine learning and transfer learning. The source domain refers to the sample and label set 

of the original network, while the target domain is ones in the new network. The process of transfer 

learning typically consists of three steps:  

1). Selecting a pre-trained model correlated with the target domain features. For instance, if a neural 

network model can classify and recognize sunglasses, retraining on corresponding datasets can help the 

model acquire knowledge about backpacks to classify and recognize them.  

2). Fine-tuning the pre-trained model by adjusting the model layer structure for specific applications. In 

some cases, certain layers are frozen to keep the parameters unchanged during training. For example, 

the fully connected layer of the original model composed of 1000 neurons can be replaced with a fully 

connected layer composed of 10 neurons to recognize 10 new objects.  

3). Train and validate the new model by monitoring the training process, adjusting hyperparameters and 

evaluating model performance after convergence. 

In fact, training an initial CNN model is rare. Instead, transfer learning is commonly used in different 

but relevant fields to solve new problems. It also extracts sample features in a relatively short time on 

small training datasets while enabling efficient classification and recognition. 
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Figure 6. Comparison of Conventional Machine Learning and Transfer Learning 

 

3. Experimental Preparation 

3.1 Experimental Environment 

This paper uses laboratory fire and non-fire images as samples to conduct transfer learning on three 

specific CNNs: GoogLeNet, ResNet18, and MobileNet-V2, which are pre-trained models. The goal is 

to identify whether there is a fire in the laboratory and to evaluate the performance of the three models. 

The experimental steps are shown in Figure 7. 

 

Dataset preparation Data pre-processing

Affine

transformation
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Model selction Training Validation

 

Figure 7. Procedure of Experiments 

 

The hardware processor used in our paper is the AMD R5-3600. The software configuration operating 

system is Windows 10 64-bit, and the software is Matlab 2021b. The learning models in this research 

are based on the Deep Learning Toolbox, the Deep Learning Toolbox for GoogLeNet Network (Version 

21.2.1), ResNet-18 Network (Version 21.2.0) and MobileNet-V2 Network (Version 21.2.0) frameworks. 

All these models were trained preliminarily on ImageNet. The dataset in our paper consists of 1510 

actual laboratory fire and non-fire images sourced with noise from the internet. Wherein, 755 images 

are related to fires, while the others non-fires. 
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3.2 Data Preprocessing 

In real-world scenarios, image acquisition devices often capture images with random noise due to 

non-ideal environmental factors such as lighting and temperature. This noise can impact image pixels 

while affecting image quality and even making it difficult to distinguish the image. Therefore, 

denoising the images is a crucial first step. Additionally, since the input layer size in CNN models often 

differs from the original image size, it is necessary to perform an affine transformation to adjust its size, 

which is necessary before proceeding with subsequent model training. 

3.3 Gaussian Filtering Denoising 

Gaussian filter denoising refers to using Gaussian kernels for image spatial filtering, which applies a 

weighted average to the noise of surrounding pixels and reduces the impact. Equation (4) shows the 

probability density function  ,G x y  of a two-dimensional Gaussian distribution with a mean of 

zero, where 
2  represents the variance. 

 
 2 2 2/2 2, / 2




 


x y
G x y e                              (4) 

The weight  ,W i j  of Gaussian filtering is similar to the expression of  ,G x y  but needs to be 

normalized. The Gaussian kernel weight  ,W i j  of size    2 1 * 2 1 n n  is shown in Equation 

(5). 
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2 2
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2 2
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



i n j n

i n j nn n

i i

e
W i j

e

                        (5) 

It can be observed that the weight value is solely determined by the standard deviation  . Since the 

weight decreases as one moves farther from the center, a    2 1 * 2 1n n   size filter is typically 

used where     denotes the round function and usually 2n     . In contrast to mean filtering 

which assigns equal weight to each pixel, Gaussian filtering results in a smoother and softer filtered 

image, which better preserves edge features. 

The Peak Signal-to-Noise Ratio (PSNR) is a widely utilized method to assess image quality. In this 

paper, a 5x5 Gaussian filter with 1   was employed. Figure 8 shows raw and processed images 

along with their respective PSNR values. From both subjective and objective perspectives of 

evaluations, the image quality experienced significant enhancements following Gaussian denoising. 
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Figure 8. Comparison of Images w/ and w/o Noise 

 

3.3.1 Bilinear Interpolation 

During Affine transformations, such as zooming in or out, the coordinates of pixels in the transformed 

image are typically non-integer, as they are obtained by backward mapping the pixel coordinates from 

the original image. For instance, to scale down a 5x5 image with a pixel coordinate 

 , ,0 4,0 4f u v u v     to 3x3. The corresponding pixel coordinate of [1,1]  in the original 

image results in a non-integer coordinate. Rounding fractional values, also known as nearest-neighbor 

interpolation, is the most common method to tackle the aforementioned challenges. However, it may 

substantially alter the original image by distorting vital information. 

Bilinear interpolation is a type of image affine transformation that utilizes adjacent four pixel points on 

the two-dimensional image to determine the value of transformed pixels. Bilinear interpolation 

attempts to preserve image characteristics as much as possible. Assuming the corresponding 

non-integer coordinates in the original image is  ,u v , the value after bilinear interpolation is shown 

in Equation (6). 

 ˆ , (1- )((1- ) [ , ] [ 1, ]) ((1- ) [ , 1] [ 1, 1])       f i j b a f i j af i j b a f i j af i j        (6) 

Where  ,i j ,  1,i j ,  , 1i j , and  1, 1 i j  are four adjacent pixel points of  ,u v , 

a u i   and b v j  . As the input layer sizes of GoogLeNet, ResNet, and MobileNet are 

224x224x3 images, this paper utilizes bilinear interpolation to transform all laboratory fire and non-fire 

images to adapt to the above dimensions. 
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3.4 Model Training 

To enable transfer learning for laboratory fire detection, fine-tuning GoogLeNet, ResNet, and 

MobileNet was executed. The modification is replacing the full connection layer and Softmax function 

located at the neural network’s end, with a new full connection layer which consists of two neurons and 

the corresponding Softmax function. The rest of the neural network structure remained the same. 

The dataset was divided into training and validation sets, where the images in the training set were used 

for model training, and those in the validation set were utilized for evaluating model performance 

during and after training. In this paper, the training set was randomly chosen and comprise of 80% of 

the labeled (fire or non-fire) images from the dataset, while the remaining 20% formed the validation 

set. 

The cross entropy loss function was used for all models. Continuous training was applied to adjust the 

model parameter values until the function value approached zero. For binary classification, the 

equation of the cross entropy loss function is expressed in Equation (7), where N  denotes the number 

of samples, 
iy  is the sample label (0 denotes no fire, while 1 denotes fire), 

ip  represents the 

predicted probability value, and  log   is a logarithmic function. 

      
1

1
*log 1 *log 1



    
N

i i i i

i

L y p y p
N

                    (7) 

Next, the hyperparameters involved in model training were set. The learning rate for the model was set 

to 0.0001. While keeping the number of training rounds (Epochs) constant, the maximum Epochs was 

set to 10. The model optimizer was used to locate optimal parameter solutions. In this paper, the 

mini-batch stochastic gradient descent with momentum (MSGD) method was applied with a 

momentum proportion of 0.9 and a small batch size of 128. The training set was shuffled before each 

batch division round. To prevent overfitting, the L2-norm regularization technique was utilized by 

adding a norm penalty term. 

3.5 Evaluating Indicator 

The rate and performance of model convergence are essential factors to consider. The rate of 

convergence may be evaluated by examining changes in the training and validation losses. During the 

training process, observing the changes in these two losses can facilitate early detection of underfitting 

or overfitting problems. Adjusting the hyperparameters of the model and beginning a new training 

process can help improve experimental efficiency. 

Model performance is indicated by metrics such as accuracy, precision, recall, and the F1 score. To 

analyze these metrics, it is common to establish a confusion matrix, which employs rows to represent 

the actual sample classifications and columns to show the predicted classifications. The matrix’s values 

represent the number of samples that conform to both the row and column traits. For binary 

classification, the confusion matrix can be presented using the four elements: TP , TN , FN  and 

FP , as shown in Table 1. 
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Table 1. Confusion Matrix 

 1 Predicted 0 Predicted 

1 Actual TP  FN  

0 Actual FP  TN  

 

Accuracy is the ratio of the number of correct predictions to the total number of samples and equals 

   TP+TN / TP+FP+FN +TN . The precision rate denotes  TP / TP+FP . Additionally, the 

recall rate is defined as  TP / TP+FN , which represents the proportion of correctly predicted 

positive samples in the total number of actual positive samples. Generally, a higher value for these 

indicators indicates better model performance. Moreover, the evaluation metric introduced to assess the 

overall model performance is the F1 score, which combines both accuracy and recall indicators, and is 

determined by    2* *Precision Recall Precision Re+ / call . 

 

4. Experimental Results and Analysis 

Based on the above-mentioned experimental environment, dataset, data preprocessing and model 

training settings, this paper conducted transfer learning to detect laboratory fires using GoogLeNet, 

ResNet, and MobileNet models. The models were iteratively optimized to achieve convergence. 

The loss curves of training and verification based on the three models are presented in Figure 9 and 10. 

Both the training and validation loss gradually decline with the continuous increase in model iteration 

and ultimately reach stability, which indicates that the final convergence results met expectations 

without overfitting or underfitting. Furthermore, the training and validation loss curves in GoogLeNet 

and ResNet have a faster decline rate compared to MobileNet. After approximately 20 iterations, the 

training and validation losses of GoogLeNet approach zero and those of ResNet and MobileNet only 

converge to zero after approximately 30 iterations. Additionally, the curve changes of MobileNet are 

more stable than those of GoogLeNet and ResNet without significant fluctuations. Based on these 

observations, it can be inferred that the GoogLeNet model is suitable as the primary model for 

laboratory fire detection. MobileNet may be used as the suboptimal model due to its slower 

convergence rate. 
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Figure 9. Training Loss 

 

 

Figure 10. Validation Loss 

 

In addition to monitoring changes in training and validation losses, the confusion matrix was 

constructed for the three models to provide evaluations of performance. The 2x2 confusion matrixes is 

shown in Figure 11, 12, and 13, respectively. The right part in matrixes indicates the proportion of each 

element after row normalization, which reflects the probabilities of correct and incorrect predictions 

based on the actual samples. Likewise, the lower part in matrixes displayed represents the proportion of 

each element after column normalization, which shows the probability of actual correctness and error 

in the predicted samples. 
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Figure 11. Confusion Matrix of GoogLeNet 

 

 

Figure 12. Confusion Matrix of ResNet 

 

 

Figure 13. Confusion Matrix of MobileNet 
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This paper evaluated the accuracy rate, recall rate, and F1 score of three models. Table 2 presents the 

results showing that MobileNet outperformed GoogLeNet and ResNet with the highest scores in 

accuracy, precision, recall, and F1. Although there is a slight difference for the three models, the 

variation is insignificant especially between GoogLeNet and MobileNet. Based on these results, 

MobileNet can serve as the ideal model and GoogLeNet can be considered a secondary choice for 

laboratory fire detection in transfer learning. 

 

Table 2. Performances of Learning Models 

 accuracy rate precision rate recall rate F1 Score 

GoogLeNet 0.9901 0.9934 0.9868 0.9901 

ResNet 0.9768 0.9868 0.9675 0.9770 

MobileNet 0.9967 1.0000 0.9934 0.9967 

 

To assess the rate of convergence and overall performance of the final models generated for small 

sample datasets, this paper compared MobileNet and GoogLeNet. While MobileNet exhibited a slightly 

lower rate of convergence than GoogLeNet, the difference in iteration algebra was within acceptable 

limits. Furthermore, the loss function of MobileNet was comparatively more stable and the 

performance results were optimal. Based on these observations, MobileNet among the three models is 

the preferred option for laboratory fire detection, as it is capable of obtaining optimal model 

performance with a fast rate of convergence. 

 

5. Conclusion 

This paper proposes a laboratory fire detection scheme that combines CNN and transfer learning to 

address the challenge of training models with limited laboratory fire images, which may lead to 

extended iteration times or even model failure. To assess the efficacy of the scheme, three pre-trained 

CNN models: GoogLeNet, ResNet, and MobileNet, were trained after conducting Gaussian denoising 

and bilinear interpolation on laboratory fire dataset. The results of the experiments demonstrated that 

all three models converged quickly and achieved high recognition rates, validating the effectiveness of 

the proposed approach. After analyzing and comparing the rate of convergence and model performance 

of the different CNN models, it was observed that the MobileNet achieved superior results for 

laboratory fire detection. Therefore, it can be concluded that the MobileNet-based transfer learning 

model is better suited for laboratory fire detection with small sample datasets under CNN while 

providing valuable insights for improving laboratory safety through the use of neural networks. 
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