Original Paper

Analysis of the Impact of Marijuana Legalization on Smoking among Adolescents before the Age of 13

Wanzheng Liu^{1*}

¹ Georgia Institute of Technology, School of Economics Ivan Allen College of Liberal Arts, Atlanta, GA, 30332, United States

Received: May 11, 2023 Accepted: June 26, 2023 Online Published: July 04, 2023

Abstract

Adolescent smoking, with its detrimental effects on working memory and increased likelihood of heavy smoking when initiated at a younger age, this paper examines whether marijuana decriminalization policies affect adolescents' likelihood of smoking before age 13. This paper mainly uses the stack Difference In Difference method to judge the relationship between the two and further proves the time-invariant through the stack event study method. Moreover, the CS model (double robust) was used to observe the different effects of different periods. This study attempts to discover the causes of early adolescent smoking and, to some extent, verify the possibility that cigarettes and marijuana are complementary commodities. This study found that marijuana decriminalization policies increased adolescents' likelihood of smoking before age 13 by about 0.173%. At the same time, the time study shows that the policy may have a lag effect.

Keywords

adolescent, early smoking, marijuana decriminalization, stack Difference In Difference

1. Introduction

Adolescent smoking is a significant concern for adolescent health. Research has demonstrated that adolescent smokers exhibit impaired working memory performance, with the decline worsening the earlier they begin smoking. Additionally, adolescent smokers experience further impairment of working and verbal memory during quitting. However, quitting is undeniably a better option than becoming a long-term smoker. Successfully delaying the onset of smoking may increase the likelihood of quitting, thus helping to reduce smoking-related mortality and morbidity. The rate at which adolescents begin smoking rapidly increases after age ten and peaks at ages 13 to 14. Students who start smoking at age 12

^{*} Wanzheng Liu, E-mail: 812956067@qq.com

or younger are more likely to become heavy, regular smokers than those who begin at an older age. While it may be unrealistic to eliminate smoking among young people, the focus should be on preventing early initiation. From an economic perspective, it is worth considering the relationship between cigarettes and marijuana as complementary or substitutable goods, especially in light of research suggesting that higher cigarette prices effectively decrease youth smoking while not leading to an increase in marijuana use. This prompts speculation regarding the potential impact of marijuana policy changes on reversing adolescent smoking behavior.

Marijuana legalization policies can be categorized into three types: medical marijuana, decriminalized marijuana, and recreational marijuana. Although more than 70% of states have legalized medical marijuana, access to medical marijuana remains highly restricted for teenagers. Similarly, legalizing recreational marijuana and providing easy access to commercial marijuana sales could lead to extreme outcomes. In contrast, decriminalization is a relatively moderate policy proposal that would not increase access to marijuana or permit advertising for its use, thus avoiding the influence of unobservable omitted factors on the outcome. This paper focuses on marijuana decriminalization. The author will explore the relationship between marijuana decriminalization and the likelihood of adolescents smoking before age 13. In this study, stack Difference in Difference will be used as the main method for analysis, and stack event study will be used to further verify the influence of time-invariant. And the double robust method is used to observe the differences between different time points under different policy release times. Based on the findings, recommendations for adolescent health and policy development will be provided to create a more comprehensive and practical approach to address this crucial issue.

2. Methodology

2.1 Data Acquisition

The Youth Risk Behavior Surveillance System (YRBSS) is a large-scale surveillance program developed and implemented by the Centers for Disease Control and Prevention (CDC). The project aims to gather information on critical health risk behaviors among U.S. middle and high school students, encompassing areas such as physical activity, poor diet, obesity and weight control, tobacco use, alcohol and other drug use, sexual behavior, and unintentional injuries and violence. Initiated in 1991, YRBSS has conducted surveys every two years, employing stratified cluster sampling to draw representative samples from secondary school students across the nation. The extensive data and extended time span offer flexibility for data construction and utilization in various forms. This study utilizes YRBSS survey data from middle school students in Alabama, California, Colorado, Delaware, Florida, Hawaii, Illinois, Kentucky, Maine, Maryland, Mississippi, Nevada, New Mexico, North Carolina, North Dakota, Pennsylvania, Rhode Island, South Carolina, Tennessee, Texas, Virginia, West Virginia, Wisconsin, and Wyoming, spanning from 1999 to 2019. The data have been processed and analyzed, adhering to rigorous academic standards, to provide insights into the health risk behaviors of middle school students and inform future research and policy development.

Table 1. Summary Statistic

				Vari	ables	•	•		•
		A	Stratum						
Group	Stack	Mean	Max	Min	Sd	Mean	Max	Min	Sd
0	1	14.76	18	12	1.03	15.22	69	1	13.13
1	1	14.67	18	12	0.99	10.83	64	1	9.91
0	2	14.7	18	12	1.03	14.82	69	1	12.25
1	2	14.68	18	12	1.02	6.77	12	1	3.29
0	3	14.64	18	12	1.02	15.2	69	1	11.9
1	3	14.9	18	12	1.04	18.99	46	1	13.05
0	4	14.68	18	12	1.02	15.63	69	1	12.67
1	4	14.42	18	12	0.96	60.04	127	1	35.06
		Se	ex				PS	SU	
Group	Group Stack Mean Max Min Sd						Max	Min	Sd
0	1	0.49	1	0	0.5	2.24	36	1	2.5
1	1	0.49	1	0	0.5	2.56	15	1	2.12
0	2	0.49	1	0	0.5	2.53	44	1	3.5
1	2	0.5	1	0	0.5	1.7	9	1	1
0	3	0.49	1	0	0.5	2.93	44	1	3.99
1	3	0.5	1	0	0.5	2.5	9	1	1.49
0	4	0.49	1	0	0.5	2.68	44	1	3.8
1	4	0.49	1	0	0.5	4.89	31	1	4.86

Note. Group 0 is the clean control group, and Group 1 is the treatment group. Stack is the number of sub-experiments classified by the year of policy released.

2.2 Empirical Strategy

This paper employs the Stack Difference in Difference method to investigate the relationship between marijuana decriminalization and teenagers smoking before 13 years old. Marijuana decriminalization policies have been enacted at different times; several steps have been taken to ensure a sufficient time horizon and minimize the impact of other policies. First, we define a time window K_a and K_b, with K_a = $K_b = 4$. This means that for each policy issuance, the data includes at least four years of pre-treatment data and four years of post-treatment data. Second, all policy adoption years that comply with the event window $\Omega_A = \{A_s | T_0 + K_a \le A_s \le T_t - K_b\}$, where T_0 is the earliest calendar period in the data, and T_t is the latest calendar year in the data, are considered. Only marijuana decriminalization policies meeting this condition are used. Let d=1...D index the collection of sub-experiments in Ω_A . Each sub-experiment is regarded as a stack h, with hd representing the policy adoption date of the d'th sub-experiment. In each sub-experiment, all "treated units" share the same adoption date, and only units with $A_s > h_d + K_b$ are included as controls in sub-experiment d. In each stack, the same clean control group is employed. Finally, all observations in sub-experiment d, $h_d - K_a \le t \le h_d + K_b$ must come from periods that fall inside the sub-experiment event window. After organizing the data, the research begins by presenting reduced-form estimates of the impact of marijuana decriminalization on whether adolescents will smoke before age 13. In particular, the following regression equation is utilized:

$$Y_{isth} = \beta_1 T_{ih} * YAE_{isth} + \beta_2 X_{isth} + \alpha_{sh} + \lambda_{th} + e_{isth}$$

Where i represent the unit index, s represents the state index, t represents the year index, and h represents the stack index. Y_{isth} is a binary variable indicating whether unit I at time t in state s and stack h smokes. Tih is the treatment dummy variable, denoting whether unit i in stack h is treated. YAE is the number of years affected by the policy when unit i at year t in state s, and stack h is age 13, represented by YAE \in [13 - (Wh - ti) - agei] \geq 0. X is a set of other covariates, including age, sex, PSU, and stratum. α sh is the state-fixed effect in stack h, and α th is the year-fixed effect in stack h. The analysis focuses on α 1. α 2 represents the correlation between marijuana decriminalization policy and whether adolescents will smoke before age 13. The Stack Difference in Difference specification averages all time-varying effects into a single averaged effect, free from new biases. However, it does not "reveal" time-varying effects. To obtain a clearer picture of time changes, the STACK event study is used, with the regression equation taking the following form:

$$Y_{isth} = \sum_{n=-3}^{3} \beta_n YSE_{isth} + \sum_{m=-3}^{3} \beta_m (T_{ih} * YSE_{isth}) + \beta_2 X_{isth} + \alpha_{sh} + \lambda_{th} + e_{isth}$$

YSE is the number of year has been affected by policy when the unit is 13, represent as simple $YSE_{isth} = [13-(Wh-ti)-agei]$.

3. Results and Analysis

Table 2. Regression Results

-	Depen	ndent variable:	
	Smoke	Smoke	
Years since effect post	-0.00641***	0.00606***	
•	(0.00046)	(0.00056)	
Marijdecrim: years since effect post	0.00141*	0.00173**	
	(0.00076)	(0.00076)	
Age		0.01152***	
		(0.00029)	
Sex		0.00408***	
		(0.00046)	
PSU		0.00006	
		(0.00007)	
Stratum		0.00006***	
		(0.00002)	
Year stack fixed effect	YES	YES	
State stack fixed effect	YES	YES	
Observations 609.83	 ??		

Observations 609,822 R2 0.00033 Adjusted R2 0.00019

F Statistic 100.15160**** (df = 2; 609736)Note: *p<0.1; **p<0.05; ***p<0.01 In the first column of Table 2, the coefficient of years since the effect post for the treatment group is positive and significant at the 10% level. When no control covariates are included, the marijuana decriminalization policy increases the likelihood of adolescents smoking before age 13 by approximately 0.1%. In the second column of Table 2, after controlling for fixed effects and covariates, the coefficient for the treatment group of years since effect post remains positive and significant at the 5% level. This suggests that the marijuana decriminalization policy notably impacts adolescent smoking behavior. Simultaneously, age and gender are positively correlated with smoking before age 13, both significant at the 1% level. This is consistent with previous research findings, which indicate that males are more likely to smoke than females and the likelihood of smoking increases with age or grade level. To further investigate the time-invariant effect on the experiment, the results of the STACK event study provide valuable insights into the dynamic relationship between the marijuana decriminalization policy and the likelihood of adolescents smoking before the age of 13.

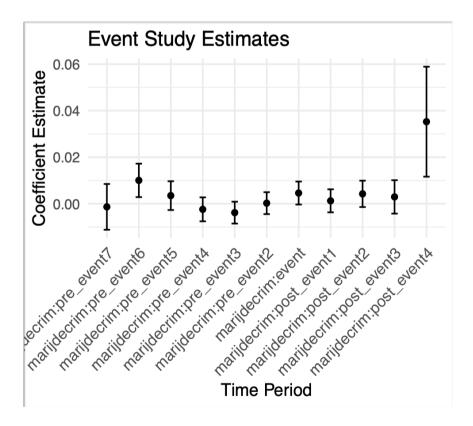


Figure 1. Stack Event Study Results

The study reveals that the policy's impact is not immediate but becomes evident in the fourth year after its implementation. This delayed effect may be attributed to various factors, such as the time required for the policy change to permeate society, shifts in public perception, and the gradual dissemination of information about the policy. It could also be related to the time it takes for adolescents to become aware of the changes in marijuana regulations and adapt their behaviors accordingly due to the

decriminalization of marijuana policy. Moreover, the study's findings emphasize the importance of considering the temporal aspects of policy implementation when evaluating the effectiveness of such interventions. By providing insights into the time required for the policy's impact to manifest, policymakers and researchers gain a deeper understanding of the complex dynamics between marijuana decriminalization and adolescent smoking behavior. This understanding enables them to fine-tune future policies to effectively address these nuances and their potential consequences. The stack event study highlights the significance of accounting for time-invariant effects in policy evaluation, demonstrating that the marijuana decriminalization policy's influence on adolescent smoking behavior becomes apparent four years after its enactment. This finding underscores the necessity of incorporating time dynamics into policy analysis and development, ensuring more effective and targeted interventions to curb adolescent smoking. Furthermore, the study sheds light on different factors' varying degrees of influence on adolescent smoking behavior. For instance, the marijuana decriminalization policy may shape social norms and perceptions surrounding marijuana use, thereby indirectly affecting adolescents' smoking decisions. This also confirms that criminalizing marijuana is a moderate policy, as the stack event study confirms (figure 1), particularly since the effect on whether teens smoke at age 13 does not appear until the fourth year.

Although stack employs the "average" logic, the CS method provides a more detailed examination of the impact changes at different time points, enabling the study of multiple time points simultaneously.

Table 3. CS Model Result

Group-Time Average Treatment Effects:

di oup-	Lille	Average II	eddilett Lifed								
Group	Time	ATT(g,t)	Std. Error [9	95% Simult. C	onf. Band]	2012					
2010	1995	-0.4914	0.1887	-2.3368	1.3540	2013		NA	NA	NA	
2010	1996	-0.2283	0.1862	-2.0491	1.5925		2002	NA	NA	NA	
2010	1997	0.0213	0.0180	-0.1549	0.1975		2003	-0.4323	0.1409	-1.8106	
2010	1998	0.0276	0.0123	-0.0926	0.1478		2004	-0.0037	0.0365	-0.3607	
2010	1999	-0.0294	0.0084	-0.1118	0.0531		2005	-0.0032	0.0136	-0.1358	
2010	2000	-0.0004	0.0074	-0.0724	0.0716		2006	-0.0018	0.0103	-0.1029	
	2001		0.0075	-0.0630	0.0830	2013		0.0058	0.0088	-0.0800	
	2002		0.0084	-0.0787	0.0856		2008	-0.0160	0.0083	-0.0967	
	2003		0.0085	-0.0891	0.0762	2013		-0.0005	0.0073	-0.0715	
	2003		0.0076	-0.0640	0.0841		2010	-0.0033	0.0063	-0.0646	
	2004		0.0076	-0.0579	0.0756	2013		-0.0041	0.0058	-0.0610	
							2012	0.0127	0.0076	-0.0619	
	2006		0.0057	-0.0621	0.0502	2013		0.0486	0.0170	-0.1176	
	2007		0.0053	-0.0549	0.0497		2014	0.1721	0.0637	-0.4511	
	2008		0.0058	-0.0527	0.0613	2013	2015	NA	NA	NA	
	2009		0.0059	-0.0495	0.0657	2013	2016	NA	NA	NA	
	2010		0.0052	-0.0502	0.0519		2017	NA	NA	NA	
2010	2011	-0.0038	0.0050	-0.0528	0.0452	2013	2018	NA	NA	NA	
2010	2012	-0.0055	0.0052	-0.0566	0.0456	2013	2019	NA	NA	NA	
2010	2013	-0.0028	0.0058	-0.0600	0.0544	2013	2020	NA	NA	NA	
2010	2014	-0.0005	0.0064	-0.0626	0.0616	2014	1995	NA	NA	NA	
2010	2015	-0.0082	0.0055	-0.0623	0.0460	2014	1996	NA	NA	NA	
2010	2016	-0.0055	0.0049	-0.0538	0.0427	2014	1997	NA	NA	NA	
2010	2017	-0.0028	0.0046	-0.0474	0.0418		1998	NA	NA	NA	
	2018		0.0047	-0.0546	0.0365	2014	1999	NA	NA	NA	
	2019		0.0059	-0.0743	0.0402		2000	NA	NA	NA	
	2020		0.1167	-1.0597	1.2230	2014		NA	NA	NA	
	1995		NA NA	NA NA	NA NA		2002	NA	NA	NA	
	1996		NA NA	NA NA	NA NA	2014	2003	NA	NA	NA	
	1997		NA NA	NA NA	NA NA		2004	NA	NA	NA	
	1998		NA NA	NA NA	NA NA		2005	NA	NA	NA	
	1999		NA NA		NA NA		2006	NA	NA	NA	
				NA NA			2007	NA	NA	NA	
2013	2000	NA	NA	NA	NA	2014	2008	NA	NA	NA	

2014 2009 2014 2010 2014 2011 2014 2012 2014 2013 2014 2014									
2014 2010 2014 2011 2014 2012 2014 2013	0 3005	0.0025	0.0000	0.2416	2015 2018	0.0140	0.0064	-0.0490	0.0770
2014 2011 2014 2012 2014 2013	-0.3695 -0.0217	0.0625 0.0154	-0.9806 -0.1724	0.2416 0.1290	2015 2019	0.0266	0.0126	-0.0966	0.1498
2014 2012 2014 2013	-0.0217	0.0053	-0.0587	0.0458	2015 2020	-0.0144	0.2025	-1.9943	1.9656
2014 2013	-0.0003	0.0033	-0.0383	0.0368	2016 1995	NA	NA	NA NA	NA NA
	-0.0013	0.0039	-0.0393	0.0367	2016 1996	NA	NA	NA	NA
	0.0004	0.0043	-0.0420	0.0429	2016 1997	NA	NA	NA	NA
2014 2015	0.0010	0.0041	-0.0387	0.0406	2016 1998	NA	NA	NA	NA
2014 2016	0.0122	0.0039	-0.0263	0.0507	2016 1999	NA	NA	NA	NA
2014 2017	0.0050	0.0036	-0.0306	0.0407	2016 2000	NA	NA	NA	NA
2014 2018	-0.0047	0.0038	-0.0415	0.0321	2016 2001	NA	NA	NA	NA
2014 2019	-0.0129	0.0049	-0.0608	0.0350	2016 2002	NA	NA	NA	NA
2014 2020	-0.0031	0.0768	-0.7537	0.7474	2016 2003	NA	NA	NA	NA
2015 1995	NA	NA	NA	NA	2016 2004	NA	NA	NA	NA
2015 1996	NA	NA	NA	NA	2016 2005	-0.4643	0.0541	-0.9935	0.0650
2015 1997	NA	NA	NA	NA	2016 2006	0.0188	0.0350	-0.3231	0.3607
2015 1998	NA	NA	NA	NA	2016 2007	0.0013	0.0150	-0.1453	0.1480
2015 1999	NA	NA	NA	NA	2016 2008	-0.0221	0.0116	-0.1359	0.0917
2015 2000	NA	NA	NA	NA	2016 2009	0.0210	0.0102	-0.0784	0.1204
2015 2001	NA	NA	NA	NA	2016 2010	0.0065	0.0112	-0.1034	0.1165
2015 2002	NA	NA	NA	NA	2016 2011	-0.0049	0.0111	-0.1138	0.1040
2015 2003	-0.0655	0.0798	-0.8454	0.7145	2016 2012	-0.0103	0.0111	-0.1186	0.0979
2015 2004	-0.0364	0.0206	-0.2380	0.1653	2016 2013	-0.0080	0.0106	-0.1119	0.0959
2015 2005	0.0263	0.0095	-0.0669	0.1196	2016 2014	-0.0144	0.0075	-0.0877	0.0589
2015 2006	-0.0183	0.0083	-0.0995	0.0630	2016 2015	0.0049	0.0035	-0.0297	0.0395
2015 2007	0.0150	0.0074	-0.0576	0.0876	2016 2016	0.0379	0.0097	-0.0572	0.1330
2015 2008	-0.0246	0.0072	-0.0949	0.0456	2016 2017	0.0358	0.0082	-0.0443	0.1160
2015 2009	0.0121	0.0067	-0.0538	0.0781	2016 2018	0.0343	0.0073	-0.0367	0.1053
2015 2010	0.0006	0.0067	-0.0649	0.0661	2016 2019	0.0209	0.0119	-0.0958	0.1377
2015 2011	-0.0024	0.0063	-0.0636	0.0587	2016 2020	-0.1792	0.0735	-0.8978	0.5394
2015 2012	0.0007	0.0052	-0.0504	0.0518	2019 1995	NA	NA	NA	NA
2015 2013	-0.0066	0.0052	-0.0576	0.0443	2019 1996	NA	NA	NA	NA
2015 2014	-0.0050	0.0048	-0.0517	0.0417	2019 1997	NA	NA	NA	NA
2015 2015	0.0076	0.0049	-0.0407	0.0560	2019 1998	NA	NA	NA	NA
2015 2016	0.0145	0.0054	-0.0384	0.0674	2019 1999	NA	NA	NA	NA
2015 2017	0.0144	0.0051	-0.0351	0.0639	2019 2000	NA	NA	NA	NA
2010 2001		A1A	NA.	NA					
2019 2001 2019 2002	NA NA	NA NA	NA NA	NA NA					
	NA NA	NA NA							
2019 2003	NA	NA	NA	NA					
2019 2004	NA 0. 2270	NA 0. 1315	NA 1 C143	NA 0.0505					
2019 2005	-0.3279	0.1315	-1.6143	0.9585					
2019 2006	-0.0684	0.0309	-0.3703	0.2335					
2019 2007	-0.0046	0.0095	-0.0973	0.0880					
2019 2008	-0.0163	0.0065	-0.0798	0.0473					
2019 2009	0.0064	0.0061	-0.0535	0.0663					
2019 2010	-0.0030	0.0058	-0.0597	0.0537					
2019 2011	0.0076	0.0063	-0.0544	0.0696					
2019 2012	-0.0130	0.0054	-0.0658	0.0398					
2019 2013	-0.0011	0.0051	-0.0511	0.0488					
2019 2014	0.0181	0.0065	-0.0456	0.0818					
2019 2015	0.0019	0.0068	-0.0644	0.0682					
2019 2016	-0.0051	0.0059	-0.0624	0.0522					
2019 2017	0.0133	0.0049	-0.0346	0.0612	2020 2010	0.0041	0 0050	-0 0533 0 00	15
2019 2018	-0.0134	0.0046	-0.0581	0.0314	2020 2010		0.0059	-0.0533 0.06	
2019 2019	-0.0071	0.0059	-0.0643	0.0502	2020 2011	0.0050	0.0050	-0.0443 0.05	
2019 2020	-0.1187	0.0935	-1.0335	0.7961		-0.0006	0.0046	-0.0452 0.04	
2020 1995	NA	NA	NA	NA	2020 2013	0.0008	0.0050	-0.0477 0.04	94
	NA	NA	NA	NA	2020 2014	0.0057	0.0056	-0.0492 0.06	07
2020 1996	NA	NA	NA	NA	2020 2015	0.0025	0.0056	-0.0527 0.05	
2020 1996 2020 1997	NA	NA	NA	NA	2020 2016	0.0023	0.0054	-0.0509 0.05	
2020 1997	NA	NA NA	NA	NA NA	2020 2017	0.0023	0.0047	-0.0424 0.04	
2020 1997 2020 1998		NA	NA NA	NA NA					
2020 1997 2020 1998 2020 1999	NΔ	13/3		NA NA		-0.0096	0.0049	-0.0570 0.03	
2020 1997 2020 1998 2020 1999 2020 2000	NA NA	NΛ		IVA		-0.0053	0.0064	-0.0677 0.05	70
2020 1997 2020 1998 2020 1999 2020 2000 2020 2001	NA	NA NA	NA NA	NIA					
2020 1997 2020 1998 2020 1999 2020 2000 2020 2001 2020 2002	NA NA	NA	NA	NA NA	2020 2020	-0.0863	0.0893	-0.9593 0.78	
2020 1997 2020 1998 2020 1999 2020 2000 2020 2001 2020 2002 2020 2003	NA NA NA	NA NA	NA NA	NA	2020 2020	-0.0863	0.0893	-0.9593 0.78	
2020 1997 2020 1998 2020 1999 2020 2000 2020 2001 2020 2002 2020 2003 2020 2004	NA NA NA 0.1148	NA NA 0.0407	NA NA -0.2834	NA 0.5130					
2020 1997 2020 1998 2020 1999 2020 2000 2020 2001 2020 2002 2020 2003 2020 2004 2020 2005	NA NA NA 0.1148 -0.0862	NA NA 0.0407 0.0408	NA NA -0.2834 -0.4854	NA 0.5130 0.3130				-0.9593 0.78 bes not cover 0	
2020 1997 2020 1998 2020 1999 2020 2000 2020 2001 2020 2002 2020 2003 2020 2004 2020 2005 2020 2006	NA NA 0.1148 -0.0862 0.0062	NA NA 0.0407 0.0408 0.0090	NA NA -0.2834 -0.4854 -0.0814	NA 0.5130 0.3130 0.0938	 Signif. codes	s: `*' conf	idence band do	oes not cover 0	
2020 1997 2020 1998 2020 1999 2020 2000 2020 2001 2020 2002 2020 2003 2020 2004 2020 2005	NA NA NA 0.1148 -0.0862	NA NA 0.0407 0.0408	NA NA -0.2834 -0.4854	NA 0.5130 0.3130	Signif. codes	s: `*' conf	idence band do		67

The results of the double robust analysis can be found in Table 3. Table 3 presents the findings from the CS method, revealing variations in the effects of marijuana decriminalization policies on adolescent smoking behavior at different time points. As can be seen from the results in Table 3, the marijuana decriminalization policy does not significantly affect youth smoking before the age of 13 at the 5% level at the time point. However, at the same time, it should be noted that due to the particularity of the data

(the collection time of different states is different, so the release time of the policy year determines the year included in the data; meanwhile, the YRBSS database is collected every two years, so that the data does not maintain a continuous and complete year), the experimental results may be affected to some extent. Therefore, in this study, the conclusion of stack Difference In Difference may be more accurate because the requirement of secondary data construction is especially emphasized. But by examining the specific impact of the policy across multiple time points, researchers and policymakers can gain valuable insights into the timeline of policy effects and the potential lag in responses among the target population. Understanding these time-varying effects can help inform the development and implementation of more targeted and effective public health strategies. For instance, it may be necessary to increase public awareness campaigns about the risks of adolescent smoking immediately following the enactment of a decriminalization policy or to reinforce ongoing prevention efforts over time. Additionally, monitoring and evaluating the policy's effectiveness regularly may help identify unintended consequences or improvement areas.

4. Conclusion

In conclusion, this study has explored the relationship between marijuana decriminalization and the likelihood of adolescents smoking before age 13. The findings suggest that marijuana decriminalization positively and significantly affects the probability of early smoking initiation among adolescents. Additionally, age and gender are crucial in shaping adolescents' smoking behaviors. Given these findings, policymakers and stakeholders need to consider a multifaceted approach to address the issue of early smoking initiation among adolescents. They are developing targeted interventions to address peer pressure and promote a smoke-free culture among young people, discouraging early smoking initiation. Reviewing and potentially revising marijuana decriminalization policies to ensure that they do not inadvertently increase the likelihood of early smoking initiation among adolescents. It is implementing educational programs that effectively inform adolescents about the negative consequences of smoking, tailored to their developmental stage and cognitive abilities, and utilizing interactive and engaging methods to maximize impact. By adopting a comprehensive approach that considers the factors influencing adolescent smoking behaviors, policymakers and public health professionals can work together to reduce early smoking initiation rates and improve adolescents' overall health and well-being. This study has certain limitations. Controlling potential influencing factors, although the two-way fixed effect helps people avoid some problems, many factors still need to be entirely controlled. The impact of removing marijuana decriminalization policies on the likelihood of adolescents smoking before the age of 13 remains uncertain due to the binary nature of these policies. Additionally, while the study employed an average after stacking approach to increase the sample size, further refinement is necessary. This is evident from the results in Table 3, where the CS model did not yield more detailed outcomes. In the future studies, more diverse and complete data could help people get a better cause-and-effect relationship for issues affecting early teen smoking.

Reference

- Breslau, N., & Peterson, E. L. (1996). Smoking cessation in young adults: Age at initiation of cigarette smoking and other suspected influences. *American journal of public health*, 86(2), 214-220. https://doi.org/10.2105/AJPH.86.2.214
- Callaway, B., & Sant'Anna, P. H. (2021). Difference-in-differences with multiple time periods. *Journal of Econometrics*, 225(2), 200-230. https://doi.org/10.1016/j.jeconom.2020.12.001
- Chaloupka, I. V., F. J., Pacula, R. L., Farrelly, M. C., Johnston, L. D., & O'Malley, P. M. (1999). *Do higher cigarette prices encourage youth to use marijuana*? https://doi.org/10.3386/w6939
- Escobedo, L. G., Marcus, S. E., Holtzman, D., & Giovino, G. A. (1993). Sports participation, age at smoking initiation, and the risk of smoking among US high school students. *Jama*, 269(11), 1391-1395. https://doi.org/10.1001/jama.1993.03500110059035
- Jacobsen, L. K., Krystal, J. H., Mencl, W. E., Westerveld, M., Frost, S. J., & Pugh, K. R. (2005). Effects of smoking and smoking abstinence on cognition in adolescent tobacco smokers. *Biological psychiatry*, 57(1), 56-66. https://doi.org/10.1016/j.biopsych.2004.10.022
- State-by-state medical marijuana laws procon.org. Medical Marijuana. (2022, November 9). Retrieved May 3, 2023, from https://medicalmarijuana.procon.org/legal-medical-marijuana-states-and-dc/
- The case for marijuana decriminalization. Baker Institute. (n.d.). Retrieved May 3, 2023, from https://www.bakerinstitute.org/research/case-marijuana-decriminalization