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Abstract 

In order to better observe the trend of the stock market, this paper selects the daily closing price data of 

CSI 300 index from April 12, 2016 to September 30, 2021, and makes an empirical analysis on the 

logarithmic return of CSI 300 index. It is found that: (1) the return series of the CSI 300 index shows 

the statistical characteristics of peak, thick tail, bias, asymmetry and persistence. The ARMA (2,3) 

model can effectively fit the yield series and predict the future trend to a certain extent. (2) The 

residuals of ARMA model show obvious cluster effect and ARCH effect (conditional heteroscedasticity). 

GARCH (1,1) model can better fit the conditional heteroscedasticity, so as to eliminate the ARCH 

effect. (3) By constructing GARCH (1,1) model, it is found that the sum of ARCH term coefficient and 

GARCH term coefficient is very close to 1, indicating that GARCH process is wide and stable, the 

impact on conditional variance is lasting, and the market risk is large, that is, the impact plays an 

important role in all future forecasts. 
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1. Introduction 

Volatility aggregation often occurs in financial time series such as stock and futures return series. 

Volatility aggregation can well describe the volatility of financial data in this time period and the next 

time period. Risk management and control through the volatility aggregation modeling of stock and 

futures has become a research hotspot in the financial field (Campbell, Huisman, & Koedijk, 2001; Hu 

& Ge, 2021; Zhang & Zeng, 2021, Luo & Zou, 2020). 

In recent years, many scholars have modeled and analyzed the CSI 300 index. Xu Jing (Xu, 2020) took 

the CSI 300 index as an example to study the stock volatility based on GARCH model. Firstly, the 

1 
 



www.scholink.org/ojs/index.php/ijafs        International Journal of Accounting and Finance Studies           Vol. 4, No. 2, 2021 

ARMA model is fitted to the daily log return series of the CSI 300 index, and then the GARCH model 

is fitted to the conditional heteroscedasticity. It is found that the CSI 300 index stock market has a 

significant leverage effect. Under the information impact of the same intensity, the impact of negative 

news on the abnormal fluctuation of the stock market is greater than that of positive news. Li Haohua, 

Zhang Xiaoqiang and Chen Ying (Li, Zhang, & Chen, 2018) studied the impact of stock index futures 

on stock trading behavior and further studied the impact of stock index futures on stock market 

volatility by analyzing the amount of information between Shanghai and Shenzhen 300 index, spot 

index and constituent stocks of Shanghai and Shenzhen 300 index. Based on the CSI 300 index, Cao 

Sen and Zhang Yulong (Cao & Zhang, 2012) established the GARCH family model, analyzed the 

volatility of the return of the CSI 300 index, and reached the relevant conclusions on the impact of the 

CSI 300 index on the spot market. Zheng Ping (Zheng, 2014) selected the CSI 300 index as the 

representative of China's stock market risk, and made an empirical analysis under t distribution and 

CED distribution by using GARCH, TGARCH and EGARCH models. By observing the logarithmic 

rate of return and VaR valuation of CSI 300 index, it can be found that the VaR values simulated and 

calculated by the five GARCH models through the back-test test have a large fit, and the mean value 

can accurately predict the risk of China’s stock market represented by CSI 300 index. Wu Liuhong, 

Zhang Xuedong and Wang Leilei (Wu, Zhang, & Wang, 2012) Based on the empirical analysis of CSI 

300 stock index futures. Based on the TGARCH and EGARCH model test, this paper makes an 

empirical analysis on the two sub sample data respectively, and comes to the conclusion that the 

introduction of stock index futures increases the asymmetric effect of the spot market. Ma Guoteng and 

Zhao Yanyun (Ma & Zhao, 2010) used the tarch model of asymmetric effect to analyze the variation 

characteristics of the yield fluctuation of Shanghai and Shenzhen 300 index. The results show that the 

factors affecting the strong variation of the yield of Shanghai and Shenzhen 300 index are the lag of 

orders 4 and 15; There is a strong conditional heteroscedasticity in the yield of CSI 300 index, and 

tarch model can better eliminate the conditional heteroscedasticity. Compared with the good news, the 

bad news has a greater impact on the CSI 300 index, and there is an obvious leverage effect on the 

whole. 

The above literature provides feasible ideas for studying the trend of CSI 300 index and stock market. 

This paper selects the relevant data of CSI 300 index from April 12, 2016 to September 30, 2021 for 

empirical analysis to analyze and describe the fluctuation and future trend of stock market. 

 

2. ARMA Model 

The model with the following structure is called autoregressive moving average model, abbreviated as 

ARMA(p，q) (Wang, 2015); 
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If φ0=0，the model is called centralized ARMA(p，q) model. By default, the centralized ARMA(p，q) 

model can be abbreviated as 

1 1 1 1t t p t p t t q t qx x xφ φ ε q ε q ε− − − −= + + + − − −L L (2) 
The delay operator is introduced, and the ARMA (P, q) model is abbreviated as: 

( ) ( )t tB x Bq εΦ =                            (3) 

Where 1( ) 1 p
pB B Bφ φ φ= − − −L  is an autoregressive coefficient polynomial of order p,

1( ) 1 q
qB B Bq q q= − − −L  is a moving average coefficient polynomial of order q. 

When q = 0, ARMA(p，q)ARMA (P, q) model degenerates into AR(p) model; When p = 0, ARMA (p，

q) model degenerates into MA (q) model. Therefore, AR (p) model and MA (q) model are actually 

special cases of ARMA (p，q) model, which are collectively referred to as ARMA model. The statistical 

properties of ARMA (p，q) model are the organic combination of AR (p) model and MA (q) model. 

2.1 Stationary Test 

(1) When selecting the data of time series, the stationarity test should be carried out. The test methods 

usually include: time series diagram, autocorrelation diagram, ADF test, PP test and kpss test. The first 

two are to judge whether it is stable from the intuitive feeling, while ADF test, PP test and kpss test (i.e. 

unit root test) are more accurate judgments from the perspective of statistical theory, That is, the T 

statistics under a given significance level are greater than the T statistics of ADF test and PP test, that is, 

when the p value is less than 0.05, the sequence is stable, otherwise it is non-stationary. Kpss on the 

contrary, its original assumption is that the sequence is a stationary sequence, and the T statistics at a 

given significance level are greater than kpss test statistics, that is, when the p value is greater than 0.05, 

the sequence is stationary. 

(2) When the sequence is non-stationary, that is, it has a certain trend or cycle, it should be processed 

by difference to eliminate its non-stationary. 

1First order difference t t tx x x −∇ = −：                               (4) 
2

1Second order difference t t tx x x −∇ = ∇ −∇：                           (5) 
1 1

1order difference P P P
t t tP x x x− −

−− ∇ = ∇ −∇：                         (6) 

2.2 Pure Randomness Test 

Pure randomness test is also called white noise test. Its purpose is to test whether the sequence is a pure 

random sequence. When a sequence is a white noise sequence, strictly speaking, there is no correlation 

between its sequence values, but due to the influence of space and other factors, the sample 

autocorrelation coefficient is not significant, which is 0, which is statistically expressed as: 
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The test statistics of pure random sequences include Q statistics and LB statistics. In practical 

application, Q statistics has a good test effect in the case of large samples (where n is large), but it is 

not accurate in the case of small samples. LB statistics is a modification of Q statistics. They are often 

collectively referred to as Q statistics, which are recorded as QBP Statistics (Q statistics of box and 

price) and QLB Statistics (Q statistics of box and Ljung). When the Q statistic is greater than the 

quantile or the p value of the statistic is less than α When, the confidence level can be 1- α Reject the 

original hypothesis and consider the sequence as a non white noise sequence; Otherwise, the original 

hypothesis cannot be rejected and the sequence is considered as a pure random sequence. 

2.3 Model Identification 

After calculating the values of sample autocorrelation coefficient and partial autocorrelation coefficient, 

it is necessary to select an appropriate ARMA model to fit the observed value sequence according to 

their properties. In fact, this process is to estimate the autocorrelation order and moving average order 

according to the properties of sample autocorrelation coefficient µρ  and partial autocorrelation 

coefficient $q . Therefore, the process of model identification is also called model order determination 

process. 

The basic principles of ARMA model order determination are shown in the table below: 

 

Table 1. Summary of Model Order Determination  

µ
kρ  $

kkφ  
Model order determination 

Trailing p-order truncation AR(p)model 

q-order truncation Trailing MA(q)model 

Trailing Trailing ARMA(p，q)model 

 

However, in practice, this order determination principle has certain difficulties in operation. Due to the 

randomness of the sample, the correlation coefficient of the sample will not show the perfect situation 

of theoretical truncation. The autocorrelation coefficient or partial autocorrelation coefficient of the 

sample that should be truncated will still show small value oscillation. At the same time, because 

stationary time series usually have short-term correlation, with the delay order k→∞, and will decay to 

near zero for small value fluctuation. Therefore, the order determination of the model largely depends 

on the subjective experience of analysts. However, the approximate distribution of sample 

autocorrelation coefficient and partial autocorrelation coefficient can help inexperienced analysts make 

reasonable judgment as much as possible. 
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2.4 Parameter Estimation 

After selecting the fitting model, the next step is to determine the caliber of the model by using the 

observations of the sequence, that is, to estimate the value of the unknown parameters in the mode

( )
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， ( )2~ 0,t WN εε s ， 1( ) 1 q
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p+q+2 parameters to be estimated： 2
1 1, , , , , , ,p q εφ φ q q µ sL L . 

Parameter μ Is the sequence mean. Generally, the moment estimation method is used to estimate the 

overall mean with the sample mean to obtain its estimated value: 
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For the centralization of the original sequence, there are 

t ty x x= −                                 (8) 
The original p+q+2 parameters to be estimated are reduced to 为 p+q+1： 2

1 1, , , , , ,p q εφ φ q q sL L , there 

are three estimation methods for these p+q+1 unknown parameters: moment estimation, maximum 

likelihood estimation and least square estimation. 

2.5 Model Significance Test 

After the caliber of the fitting model is determined, the fitting model must be tested. 

Model test is mainly divided into model significance test and parameter significance test. 

The significance test of the model is mainly to test the effectiveness of the model. Whether a model is 

significantly effective mainly depends on whether the information it extracts is sufficient. A good 

fitting model should be able to extract almost all the sample related information in the observed value 

series. In other words, the fitting residual term will no longer contain any relevant information. That is, 

the residual sequence should be a white noise sequence. Such a model is called a significantly effective 

model. 

On the contrary, if the residual sequence is a non white noise sequence, it means that the relevant 

information in the residual sequence has not been extracted, which indicates that the fitting model is 

not effective enough, and it is usually necessary to select other models for re fitting. 

Therefore, the significance test of the model is the white noise test of the residual sequence. The 

original and alternative assumptions are: 
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If the original hypothesis is rejected, it means that there is still relevant information in the residual 

sequence, and the fitting model is not significant. If the original hypothesis cannot be rejected, the 

fitting model is considered to be significantly effective. 

5 
Published by SCHOLINK INC. 



www.scholink.org/ojs/index.php/ijafs        International Journal of Accounting and Finance Studies           Vol. 4, No. 2, 2021 

The significance test of parameters is to test whether each unknown parameter is significant non-zero. 

The purpose of this test is to simplify the model. 

If a parameter is not significant, it means that the influence of the independent variable corresponding 

to the parameter on the dependent variable is not obvious, and the independent variable can be 

eliminated from the fitting model. The final model will be represented by a series of independent 

variables with significantly non-zero parameters. 

 

3. GARCH Model 

3.1 Cluster Effect 

In the macroeconomic and financial fields, we can often see time series with the following 

characteristics: after eliminating the influence of deterministic non-stationary factors, the fluctuation of 

residual series is stable in most periods, but it will continue to be large in some periods and small in 

some periods, showing a cluster effect (Wu & Liu, 2014). 

People usually use variance to describe the fluctuation of the sequence. Cluster effect means that the 

variance of the sequence is basically homogeneous in the whole observation period of the sequence, but 

the variance is significantly different from the expected variance in a certain period or several periods. 

At this time, we need to introduce conditional heteroscedasticity model. 

3.2 ARCH Test 

To fit the ARCH model, ARCH test is needed first. ARCH test is a special heteroscedasticity test. It not 

only requires the sequence to have heteroscedasticity, but also requires that this heteroscedasticity is 

caused by some autocorrelation, which can be fitted by the autoregressive model of residual sequence. 

The two commonly used statistical methods of ARCH test are portmanteau c test and LM Test. 

1). Portmanteau Q Test 

In 1983, mold and l proposed portmanteau Q statistical method to test the autocorrelation of the square 

sequence of residuals. Now it is the statistical method of ARCH test. The construction idea of this test 

method is that if the variance of the residual sequence is non-homogeneous and has cluster effect, the 

square sequence of residuals usually has autocorrelation. Therefore, the variance non-homogeneous test 

can be transformed into the autocorrelation test of the square sequence of residuals. 

The assumption of portmanteau Q test as 

H0: Residual square sequence pure random          H1: Residual square sequence autocorrelation 

(Homogeneity of variance)                       (Variance heterogeneity) 

Portmanteau Q Test statistic is actually LB statistic of{ }2
tε  

2

1

( ) ( 2)
q

i

i

Q q n n
n i
ρ

=

= +
−∑                        (10) 

When the P value of Q(q) test statistic is less than the significance level α The original hypothesis is 

rejected and the variance of the sequence is considered to be non-homogeneous and autocorrelation. 

2). Lagrange Multiplier Test (LM Test) 
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In 1982, Engle proposed an important ARCH test method: Lagrange multiplier test, abbreviated as LM 

Test. 

The construction idea of Lagrange multiplier test is: if the variance of residual sequence is 

non-homogeneous and has cluster effect, then the square residual sequence usually has autocorrelation, 

then we can try to use autoregressive model (ARCH (q) model) or GARCH model to fit the residual 

sequence. 

The hypothesis of Lagrange multiplier test is: 

H0: Residual square sequence pure random; 

H1: The square sequence of residuals has autocorrelation 

LM test statistic is: 
( ) /( )

/ ( 2 1)
SST SSE qLM q

SSE T q
−

=
− −

                      (11) 

Among, 2

1

T

t
t q
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= +

= ∑ ，the degree of freedom is T-q-1； 2

1

T

t
t q

SSE e
= +

= ∑ ，the degree of freedom is T-2q-1. 

When the P value of LM (q) test statistic is less than the significance level α The original hypothesis is 

rejected, the variance of the sequence is considered to be non-homogeneous, and the autocorrelation in 

the square sequence of residuals can be fitted by q-order autoregressive model. 

3.3 GARCH Model 

The essence of ARCH model is to use the q-order moving average of residual square sequence to fit the 

current heteroscedasticity function value. Because the moving average model has the q-order truncation 

of autocorrelation coefficient, ARCH model is actually only applicable to the short-term autocorrelation 

process of heteroscedasticity function (Wang, 2015).  

However, in practice, the heteroscedasticity function of some residual series has long-term 

autocorrelation. At this time, if the ARCH model is used to fit the heteroscedasticity function, it will 

produce a high moving average order, increase the difficulty of parameter estimation and finally affect 

the fitting accuracy of the ARCH model. In order to correct this problem, bollerslov proposed the 

generalized autoregressive conditional heteroscedasticity in 1985 (generalized autoregressive 

conditional heteroskedastic) model, its structure is as follows: 
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Where ( )1 2, , ,t t t tx f t x x ε− −= +L  is the deterministic information fitting model of {xt}, ( )
i.i.d

2~ 0,te N s . 

This model is abbreviated as GARCH(p,q). 
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ARCH model is actually formed by considering the p-order autocorrelation of heteroscedasticity 

function on the basis of ARCH model; It can effectively fit the heteroscedasticity function with 

long-term memory. Obviously, ARCH model is a special case of GARCH model. ARCH (q) model is 

actually GARCH (p, q) model with p=0. 

 

4. Empirical Analysis 

4.1 Data Selection and Source 

The empirical analysis part selects the daily closing price data of CSI 300 index, and the sample range 

is from April 12, 2016 to September 30, 2021. Excluding the influence of asynchronous transactions, 

holidays and other factors, 1335 trading day data are obtained. The data is from the official website of 

NetEase Finance and Economics. The analysis in this paper is carried out in Rstudio software. 

Because this paper mainly studies the yield fluctuation of CSI 300 index, before starting the analysis, 

the data needs to be transformed into logarithmic yield series, and the transformation formula is as 

follows: 1ln lnt tr P P−= − . 

4.2 Descriptive Analysis 

In order to understand the fluctuation characteristics of the yield series of CSI 300 index, descriptive 

statistics are made on the yield series and the sequence distribution diagram is drawn as follows. 

Table 2 shows the descriptive statistical analysis results of daily logarithmic return of CSI 300 index. It 

can be seen that the average value of this group of data is very small, indicating that the average return 

of CSI 300 index is close to 0. Skewness=-1.0680810<0, kurtosis=6.454693>3, indicating that the yield 

of CSI 300 index is not a standard normal distribution, and this group of data has the distribution 

characteristics of left deviation and peak. This feature can also be seen in Figure 1. Figure 1 shows the 

characteristics of peak and thick tail, which shows that the stock price of Shanghai and Shenzhen 300 is 

easy to fluctuate. 

 

Table 2. Results of Descriptive Statistical Analysis of Rate of Return 

Mean  Minimum  Maximum Median Variance  Kurtosis Skewness 

0.00009 -0.09154 0.06499 0.00066 0.00024 6.454693 -1.06808 
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Figure 1. Histogram of Yield Series 

 

Table 2 shows the descriptive statistical analysis results of daily logarithmic return of CSI 300 index. It 

can be seen that the average value of this group of data is very small, indicating that the average return 

of CSI 300 index is close to 0. Skewness=-1.0680810<0, kurtosis=6.454693>3, indicating that the yield 

of CSI 300 index is not a standard normal distribution, and this group of data has the distribution 

characteristics of left deviation and peak. This feature can also be seen in Figure 1. Figure 1 shows the 

characteristics of peak and thick tail, which shows that the stock price of Shanghai and Shenzhen 300 is 

easy to fluctuate. 

4.3 Stationary Test 

The time series diagram of the yield of CSI 300 index made is as follows: 

 

 
Figure 2. Time Series Diagram of Yield of CSI 300 Index 
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It can be seen from Figure 2 that the sequence mainly fluctuates around a certain value, without 

obvious trend or cycle, and can be basically regarded as a stationary sequence. In order to further verify 

the stability of the sequence, ADF test, PP test and kpss test are also carried out to verify whether the 

sequence is stable. The results are as follows: 

 

Table 3. Stability Test Results 

 Test tatistics 5% critical value / P value conclusion（α=0.05） 

ADF test -27.193 -1.95/— stable 

PP test -31.244 -2.864/— stable 

KPSS test — —/0.1 stable 

 

The results of the three tests in Table 3 show that the sequence is stable. Combined with the time series 

diagram, it can be considered that the logarithmic return series is a stationary series. (Note: the original 

hypothesis of ADF and PP test is that the sequence is unstable, and the original hypothesis of kpss test 

is that the sequence is stable.) 

4.4 Pure Randomness Test 

In order to determine whether the data still has extractable information, a pure randomness test is 

carried out below, and the results are shown in the table below: 

 

Table 4. Pure Randomness Test Results 

Delay order LB Test Statistics P value 

6 20.842 0.002 

12 41.162 0.000 

 

It can be seen from the Table 4 that under the condition of significance level of 0.05, the original 

hypothesis is rejected and it is considered that the yield series of CSI 300 index still has relevant 

information that can be extracted and cannot be regarded as white noise series. 

4.5 Model Identification 

After a stationary non white noise sequence is obtained, we start to model the sequence. Next, select 

the appropriate model by observing the autocorrelation diagram and partial autocorrelation diagram of 

the sequence. 

10 
Published by SCHOLINK INC. 



www.scholink.org/ojs/index.php/ijafs        International Journal of Accounting and Finance Studies           Vol. 4, No. 2, 2021 

 

Figure 3. Autocorrelation Coefficient Diagram (Left) and Partial Autocorrelation Coefficient 

Diagram (Right) 

 

As can be seen from Figure 2, there is no obvious truncation trend in autocorrelation and partial 

autocorrelation, so we can try to fit the sequence with ARMA (p，q) model. Because the trend is not 

obvious, auto. ARIMA () is used to automatically identify the model order and obtain the fitted ARIMA 

(2,0,3), i.e. ARMA (2,3) model. In order to ensure that the selected model is optimal, several models 

are compared below. 

 

Table 5. Optimal Selection of Model 

Model Parameter Estimate P value Significance AIC 
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AR(1) -0.8738 0.0000 Significant 

-7334.26 
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AR(1) 0.2752 0.280 Not significant 
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MA(1) 0.176 0.2893 Not significant 

ARMA(2,2) 

AR(1) 0.1075 0.0005 Significant 

-7359.98 
AR(2) -0.9595 0 Significant 

MA(1 -0.1244 0.0058 Significant 

MA(1) 0.9123 0.0000 Significant 

ARMA(2,3) 

AR(1) 0.1414 0.0000 Significant 

-7363.22 

AR(2) -0.9592 0 Significant 

MA(1) -0.1102 0.0015 Significant 

MA(2) 0.9147 0.0000 Significant 

MA(3) 0.0694 0.0080 Significant 

 

It can be seen from Table 5 that only all parameters of ARMA (1,1), ARMA (2,2) and ARMA (2,3) 

models have passed the significance test. Then, according to the AIC criterion, their AIC value and BIC 

value are compared, and it is found that the AIC value of ARMA (2,3) model is the smallest. To sum up, 

ARMA (2,3) model is selected as the relatively optimal model. The model is as follows: 

1 2 1 2 30.1414 0.9592 0.1102 0.9147 0.0694t t t t t t tx x x ε ε ε ε− − − − −= − + − + + +               (13) 

4.6 Model Significance Test 

It can be seen from Table 5 that the parameters of the model have passed the t-test, so the parameters of 

the model are significant. The white noise test (pure randomness test) of residual sequence is carried 

out below, and the test results are as follows: 

 

Table 6. White Noise Test of Residual Sequence  

Delay order LB Test Statistics P value 

6 3.6387 0.7254 

12 10.494 0.5727 

18 21.887 0.237 

 

It can be seen from Table 6 that under the significance level of 0.05, the P values of LB statistics of 

delay order 6, 12 and 18 are significantly greater than 0.05. It can be considered that the residual 

sequence of the fitting model belongs to white noise sequence, that is, the model is significantly 

effective. 
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4.7 Cluster Effect Test 

In order to determine whether there is cluster effect in the model residuals, the time series diagram and 

distribution diagram of the model residuals in equation (13) are given below. 

 

Figure 4. Residual Sequence Diagram (Left) and Distribution Diagram (Right) 

 

It can be seen from the residual sequence diagram in Figure 4 that the variance of the sequence is 

basically homogeneous in the whole sequence observation period, but there are some periods with large 

fluctuations, showing a cluster effect. In the distribution diagram, it can be seen that the residual 

sequence presents the characteristic of “peak and thick tail”, which, like the cluster effect, can be used 

as the indication principle of GARCH model. 

4.8 ARCH Effect Test 

To fit ARCH or GARCH model, ARCH effect test must be carried out first. The LM Test (Lagrange 

multiplier test) is used to verify whether there is ARCH effect in the residual sequence. The results are 

as follows: 

 

Table 7. ARCH Effect Test Results 

Lag order LM statistics P value Portmanteau Q statistics  P value 

1 63.736 < 0.0000 63.916 < 0.0000 

2 114.3 < 0.0000 139.74 < 0.0000 

3 158.53 < 0.0000 229.84 < 0.0000 

4 168.18 < 0.0000 281.99 < 0.0000 

Time

z

0 200 400 600 800 1000 1200

-0
.0

5
0.

00
0.

05

-0.05 0.00 0.05

0
10

20
30

40

density.default(x = z)

N = 1334   Bandwidth = 0.002085

D
en

si
ty

13 
Published by SCHOLINK INC. 



www.scholink.org/ojs/index.php/ijafs        International Journal of Accounting and Finance Studies           Vol. 4, No. 2, 2021 

5 177.93 < 0.0000 338.77 < 0.0000 

6 177.86 < 0.0000 359.47 < 0.0000 

 

It can be seen from Table 7 that portmanteau Q test and LM test show that the significant variance of 

the sequence is non-homogeneous, and there is ARCH effect. The square sequence of residuals has 

significant autocorrelation. Let’s start fitting the residual sequence. 

4.9 Fitting GARCH Model 

The previous paper verified that there is ARCH effect in the residual sequence of the model, and 

because the heteroscedasticity function of the residual sequence of the return rate often has long-term 

autocorrelation, if the ARCH model is used to fit the heteroscedasticity function, it will produce a high 

moving average order, increase the difficulty of parameter estimation and finally affect the fitting 

accuracy of the ARCH model, so we choose to fit the GARCH model here. 

GARCH model generally does not need to be too high. Most people regard GARCH (1,1) model as a 

“standard” model, so GARCH (1,1) model is also selected here to fit the residual sequence. The fitting 

parameter results are as follows: 

 

Table 8. GARCH (1,1) Model Fitting Results 

Parameter Estimate T statistics P value 

α0 0.000 3.061 0.0022 

α1 0.0806 14.481 0.0000 

β1 0.9192 187.372 0.0000 

 

It can be seen from Table 8 that at the significance level of 0.05, the results are significant, and the 

model parameters have passed the t-test. Next, ARCH effect test is performed on the residual residual 

of the model, and the results are as follows: 

 

Table 9. Arch Effect Test Results 

Lag order LM statistics P value Portmanteau Q statistics  P value 

1 4.6977 0.0302 4.711 0.02997 

2 4.8656 0.08779 4.8056 0.09046 

3 8.7141 0.03334 8.5044 0.03666 

4 9.0553 0.05973 8.6502 0.07046 

5 9.2796 0.09842 8.8101 0.1169 

6 10.087 0.121 9.3741 0.1536 
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It can be seen from Table 9 that at the significance level of 0.01, portmanteau Q test and LM test show 

that there is no ARCH effect in this sequence. 

In conclusion, it can be considered that the fitting effect of GARCH (1,1) model for residual sequence 

is relatively good. The expression of some GARCH (1,1) models is as follows: 

2
1 10.0806 0.9345

t t t

t t t

h v

h h

ε

ω ε − −

 =


= + +
                  (14) 

The 95% confidence interval of fluctuation is given below, as shown in the figure: 

 

 
Figure 5. Confidence Interval of Residual Sequence 

 

The fluctuation of the two solid lines in the figure is the 95% confidence interval obtained from the 

conditional variance fitted by GARCH (1,1) model. 

Combining the horizontal model and the fluctuation model, the complete fitting model is as follows: 
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(15) 

From the GARCH partial model in equation (15), α1+β1=0.9979<1, very close to 1, indicating that 

GARCH process is wide and stable, the impact on conditional variance is long-lasting, and the market 

risk is great, that is, the impact plays an important role in all future forecasts. 

 

5. Conclusion 

Based on the daily closing price trading data of CSI 300 index, this paper constructs the logarithmic 

return series and carries out modeling analysis. The conclusions are as follows: 

(1) The yield series of CSI 300 index shows the statistical characteristics of peak, thick tail and bias, as 

well as asymmetry and persistence. By constructing ARMA (2,3) model, the yield series can be fitted 

effectively and accurately, and the future trend can be predicted to a certain extent. 
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(2) The residuals of ARMA model show obvious cluster effect and ARCH effect (i.e. conditional 

heteroscedasticity). GARCH (1,1) model can better fit the conditional heteroscedasticity, so as to 

eliminate the ARCH effect. 

(3) By constructing GARCH (1,1) model, it is found that the sum of ARCH term coefficient and 

GARCH term coefficient is less than 1 but very close to 1, indicating that GARCH process is wide and 

stable, the impact on conditional variance is lasting, and the market risk is large, that is, the impact 

plays an important role in all future forecasts. 
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