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Abstract 

In this paper we estimate the correlation between four different stock return prices. To accomplish this, 

we use the copula models to study the dependency structure between the variables. The original 

variables of interest are mapped into more manageable variables by considering joint and marginal 

distributions of these variables. Then a correlational structure between these variables are obtained. 

We fit several well-known copula models to the portfolio of the stock return price dataset using 

consistent information complexity (CICOMP) criterion along with other AIC-type criteria to choose the 

best copula functional model. CICOMP predominated the AIC-type criterion, both in the case when the 

fitted models are correctly specified. We expect to get more realistic results using other copula 

distributions contrary to the Gaussian copula used by Li (2000) that fails to capture the dependence 

between extreme events.  

Keywords 
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1. Introduction 

Market and Credit risk have been traditionally the most severe risk that many financial institutions are 

exposed to and for which the most regulatory capital is required. Market risk is caused by several 

periods of distress where stock markets can experience. Credit portfolio risk is manifested by the 

default of the structured securities and that was obvious during and after the 2008 housing crisis. The 

dependence structure is also important since the implications of dependence are applied in the models 

for pricing those derivatives and calculating the quantitative risk measures like the Value at Risk (VaR). 

Investigating and forecasting stock prices require too much attention on the statistical weight like 

studying the interactions and dependencies between those multivariate variables. 

Hence the main question is centered about the possibility to capture the dependence between the return 

stock prices without any assumptions made on their marginal distributions or the joint distribution. But 

instead, by finding the best fit joint distribution for the multivariate random variables using information 

complexity criterion ICOMP. There are many options to solve this problem, such as Akaike’s 

Information Criterion (AIC), Schwartz Bayesian Criterion (SBC), Rissanen’s Minimum Discription 

Length (MDL), for some examples. Based on the results, for the first time, in this paper we introduce 

Bozdogan’s (2010, 2016) Consistent Information Complexity (CICOMP) criterion to fit the best 

bivariate vine copulas for capturing the correlation between the stock return prices. 
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As is well known, the co-variance matrix only captures the linear dependence in the data for special 

distributions such as normal (or Gaussian) distribution. Hoeffding (1940, 1941) studied non-parametric 

measures of association such as Spearman’s rho in multivariate distribution.  

So copula is the appropriate modeling technique needed to estimate the joint distribution hence the 

dependence between stock return prices. The word copula was mentioned for the first time in Sklar’s 

(1959) work in his famous Sklar’s theorem. 

A copula decouples the risk associated with the portfolio dependence structure from the individual risks 

of each obligor. There are many copula functions to fit that measures the portfolio dependence such as 

the normal copula, which assumes that the latent variables follow a multivariate normal distribution. 

Normal copula (Figure 1) has been incorporated by Li (2000), where he used the one factor Gaussian 

model and this what actually lead to the crisis in 2008 and to the credit derivative obligations to 

meltdown.  

The copula model has featured attractive models for measuring different aspects of dependence in 

finance. For example the dependence between the probability of default of the securities CDOs using 

copula (Frey et al., 2001). Embrechts et al. (2002) introduced the financial applications of Copula 

models in risk management (Embrechts et al., 2002), Frey and McNeil (2003). Pricing of derivatives 

has been studied by Cherubini et al. (2004), Rosenberg and Schuermann (2006). Estimating the 

dependence between stock markets (Jondeau & Rockinger, 2006); between exchange rates (Patton, 

2006a; Bartram et al., 2007; Necula, 2010). And finally Contagion dependence among financial 

markets (Durante & Jarowski, 2010; Boero et al., 2011). 

In estimating the dependence structure between four stock indices PX, SP500, BUX and DAX, Necula 

(2010) has found that the t-copula and the Gumbel-Clayton mixture copulas are the best fit copula 

functions to capture the correlation of two financial return series. 

Several attempts had been made to develop parsimonious model, for example Bozdogan’s (1987) work 

resolves issues related to the second term of AIC such as the consistency similar to SBC. Bozdogan’s 

(1987) extended AIC further and obtained another dimension consistent criterion ICOMP . 

Vine Copulas have been recently proposed as one of the most powerful alternative tool to the 

multivariate copulas (Joe, 1996). 

GLM-based models emphasizes too how the dependence in each pair of conditioned variables relies on 

the conditioning variables. Others proposed functions LASSO, Tibshirani (1996) and SCAD by Fan 

and Li (2001), Bedford and Cooke (2001, 2002). Spiegelhalter et al. (2002) used Deviance Information 

Criterion (DIC) and other criteria to select the best copula fit model. 

Czado and Min (2011) studied vine copulas in a Bayesian framework. Ingrid Hobæk Haff (2013) 

studied the asymptotic characteristics of the sequential estimators for vine copulas. 

Vine copulas captures the asymmetry as well as the tail dependency of the underlying portfolio through 

decomposing the multivariate copula densities into bivariate ones (Schepsmeier et al., 2013). Many 

papers have used also the Akaike Information Criterion (AIC) and BIC for model selection (Gronnberg, 

Steffen, & Hjort, 2014). 

Therefore, for ICOMP, in addition to the lack of fit, the lack of parsimony and the profusion of 

complexity are data-adaptively adjusted by the entropic complexity of the estimated IFIM across the 

competing alternative models as the parameter spaces of these models are constrained in the model 

fitting process data-adaptively. 
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In this paper we attempt to fit and select the best unbiased vine copula using the Bozdogan’s (2010, 

2016) consistent Information Complexity (CICOMP) criterion. We then estimate the correlation matrix 

of the given return stock prices using the Kendall’s Tau based on the fitted chosen copula model. 

The rest of the paper is organized as follows, section 2 reviews the literature review of the concept of 

copula and ICOMP selection criteria, section 3 analyses the data used, section 4 refers to the 

methodology, section 5 discusses the empirical results, section 6 concludes. 

 

2. Method 

A copula, following Mcneil et al. (2005b, pp. 184-228) can be defined in d dimensions as follows:  

A d-dimensional copula : 0,1 → 0,1  is a cumulative function with uniform marginal 

distributions. 

The notation , , . . . ,  is subsequently reserved for the multivariate distribution 

functions, which represent copulas. Following McNeil et al. (2005b, p. 185) three properties 

characterize a copula such that every function satisfying them is a copula (Sklar, 1959): 

1) , , . . . ,  is increasing in each component .  

2) By setting 1 for all  the marginal component  is attained and since it must be 

uniformly distributed, 1, . . .1, , 1. . .1 .  

3) For  the probability ∈ , , . . . , ∈ ,  has to be nonnegative.  

4) , , . . . , , . . . . . , .  

Consider a d-dimensional distribution function with marginal distributions , . . . , . Then there exists 

a copula : 0,1 → 0,1 , such that :  

 , . . , , . . . , , . . . , ∞, ∞          (1) 

Examining the implications of equation 1  for the copula itself and making use of the property 

 one obtains:  

 , . . . . ,                            (2) 

The relation described in equation 1  typically represents the starting point for simulations that are 

based on a given copula and given marginal while equation 2  is more a theoretical instrument to get 

the copula from a multivariate distribution function.   

2.1 Elliptical Copulas 

Elliptical copulas are easily obtained. The Gaussian copulas are elliptical.   

• Gaussian copula 

The Gaussian copula is defined by:  

 , Φ Φ ,Φ                           (3) 

Where Φ . , . ;  is the joint distribution function of two standard normal distributed random 

variables with a correlation coefficient 1, 1 ,  is the 0,1  cumulative distribution 

function (cdf) and Φ  (the quantile function) is its functional inverse. 

The density of the bivariate Gaussian copula is given by  

 , , exp               (4) 

Where Φ and Φ  
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Figure 1. Contour and 2D Plots of Gaussian Copula with Correlation =0.5 

 

• Multivariate Gaussian copula 

The multivariate Gaussian copula function is applied to a joint distribution with correlation matrix , it 

is defined by:  

 , . . . . , Φ Φ , . . . . , Φ ,                    (5) 

Where Φ  is the distribution function of the joint random variables. The variables are normal and 

standardized with a correlation matrix R. 

• Student’s t copula 

The student’s t copula is of the form:  

 , . . . . , , , . . . ,                     (6) 

Where ,  is the multivariate student t-distribution function with  is the degree of freedom. Mean 

vector is 0 and correlation matrix . The student’s t factor model can be interpreted as a student’s t 

copula. The student’s t copula has tail dependence in both tails.  

2.2 Kendall’s Tau and Spearman’s Rho 

Instead of concentrating on the data itself, it is a popular approach in non-parametric statistics to focus 

on the ranks of data. This concept has given rise to Kendall’s tau and Spearman’s rho, which are the 

two important estimators of correlation. By focusing on ranks one obtains a scale-invariant correlation 

estimate which is advantageous when working with copulas. Rank correlations will offer a potential 

way to fit copulas to data. 

Although the rank correlations are better suited to the analysis of a joint distribution of a financial data 

than linear correlations but there is a relation between the linear correlation coefficient , Kendall’s tau 

 and Spearman’s rho : 

Kendall’s tau for the Gaussian copula is given by:  

 arcsin ,                                   (7) 

and Spearman’s rho is given by the following equation:  

 arcsin                                    (8) 

Gaussian copula does not capture the dependence in the tails of the distribution. 

The Kendall’s tau for the student’s t copula is:  

 arcsin 	                                    (9) 
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2.3 Archimedean Copulas 

A 2  copula is Archimedean if it is expressed as follows:  

 , ,0 , 1                  (10) 

Where : 0,1 0,1 → 0,∞  is the inverse generator with 0 inf : 0   

 is a copula if and only if  is convex. 

For a bivariate random variable there is one to one correspondence between the copula and Kendall’s 

tau , which is given by  

 1 4 	 ,                               (11) 

Where  is a continuous, strictly decreasing function from 0,1  to 0,∞  such that 1. This is 

called the generating function.  

There are several other Archimedean copulas for measuring the dependence. Here we present only 

three of them as follows.  

• Clayton copula 

For 0, the Clayton copula is given by  

 , 1 , ∈ 0,∞                  (12) 

The Clayton copula provides the dependence in the lower parts of the tails for 0 of a joint 

distribution. 

 

 

Figure 2. Contour and 2D Plots of Clayton Copula with Parameter θ=0.9 

 

For Clayton copula, Kendall’s tau is given by  

                                      (13) 

• Gumbel  

The Gumbel copula (1960) is used to model asymmetric dependence in the data. The bivariate Gumbel 

copula is given by  

 , exp log log ,                  (14) 
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Where  is the copula parameter restricted on the interval 1,∞ . 

 

 

Figure 3. Contour and 2D Plots of Gumbel Copula with Parameter θ=2 

 

Kendall’s tau for a bivariate Gumbel copula is  

 1                                   (15) 

• Frank copula  

The Frank copula (1979) is given by  

 , log 1 ,                    (16) 

Where  is the copula parameter that may take any value. 

 

 
Figure 4. Contour and 2D Plots of Frank Copula with Parameter θ=8 

 

Kendall’s tau for a bivariate Frank copula is given by  

 1 1 ,                              (17) 

Where  is the Debya function, given by  
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 	                              (18) 

2.4 Choosing the Optimal Bivariate Copula Model 

In this paper we use the R-package Vine Copula by Schepsmeier et al. (2013) to analyze our data. The 

main functions for exploratory data analysis, selection and estimation of bivariate copulas are as 

follows. 

R-vine Structure Select where R-vine trees are selected using maximum spanning trees w.r.t. some 

edge weights. The most commonly used edge weigth is the absolute value of the empirical Kendall’s 

tau, say ̃ . Then, the following optimization problem is solved for each tree:  

 ∑ 	∈ ̃                          (19) 

where a spanning tree is a tree on all nodes. The setting of the first tree selection step is always a 

complete graph. For subsequent trees, the setting depends on the R-vine construction principles, in 

particular on the proximity condition. Some commonly used edge weights are implemented: “tau” 

absolute value of empirical Kendall’s tau, “rho” absolute value of empirical Spearman’s rho, “AIC” 

Akaike information (multiplied by -1), “BIC” Bayesian information criterion (multiplied by -1) and 

“CAIC” corrected Akaike information criterion (multiplied by -1). 

If the data contain NAs, the edge weights in “tau” and “rho” are multiplied by the square root of the 

proportion of complete observations. This penalizes pairs where less observations are used. 

The criteria “AIC”, “BIC”, and “CAIC” require estimation and model selection for all possible pairs. 

This is computationally expensive and much slower than “tau” or “rho”. The user can also specify a 

custom function to calculate the edge weights. The function has to be of type function ( , , weights) 

and must return a numeric value. The weigths argument must exist, but does not has to be used. 

For example, “tau” (without using weights) can be implemented as follows: 

Function ( , , weights)=absolute (correlation ( , , method=“kendall”, use=“complete.obs”)). 

The root nodes of C-vine trees are determined similarly by identifying the node with strongest 

dependencies to all other nodes. That is we take the node with maximum column sum in the empirical 

Kendall’s tau matrix. Note that a possible way to determine the order of the nodes in the D-vine is to 

identify a shortest Hamiltonian path in terms of weights 1 | ̃ |. This can be established for example 

using the package TSP in R program. 

For model selection, we can use Akaike’s (1973) Information Criterion (AIC), Schwarz (1978) 

Bayesian Criterion (SBC) known also as BIC, and Bozdogan’s (1987) consistent AIC (CAIC) to 

choose the best fitting copula. All the available copulas are fitted using the Maximum Likelihood (ML) 

method. 

If  and  ( =u, =v) are negatively dependent, Clayton, Gumbel, Joe, BB1, BB6, BB7 and BB8 

and their survival copulas are not considered. The family with the minimum of the criterion is chosen 

as the best fitting model. 

2.5 Model Selection Criteria, Information Complexity  

For a given n observations, AIC for a bivariate copula family density c ( , ) with parameter (s)  

is defined as:  

 2∑ 	ln , | 2 ,                       (20) 

Where k=1 for one parameter copulas and k=2 for the two parameter t-, BB1, BB6, BB7, and BB8 

copulas. Similarly the SBC (or BIC) is given by 

 2∑ 	ln , | ln ,                   (21) 
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Bozdogan’s (1987) CAIC is given by  

 2∑ 	ln , ln 1 ,                 (22) 

We note that the penalty for two parameter families is much heavy when we use SBC and CAIC as 

compared to AIC. 

Based on these results, for the first time, in this paper we introduce Bozdogan’s (2010, 2016) consistent 

information complexity (CICOMP) criterion given by 

 2∑ 	ln , | ln 1 2  

 2 ,                            (23) 

Where  

                          (24) 

is the robust estimated covariance matrix of the parameters, and where  

 ∑ 	 ̅                        (25) 

is the quadratic complexity of the estimated covariance matrix.  

We note that .  is a scale-invariant measure of complexity and . 0 with . 0 

when all eigenvalues ̅ , the arithmetic mean of the eigenvalues of . Also, .  

measures the relative variation in eigenvalues. In short, we have  

2∑ 	ln , | ln 1 2 ∑ 	 ̅ .      (26) 

A model with minimum CICOMP is chosen to be the best fitting model among all possible alternative 

models.  

 

3. Result 

3.1 A Real Numerical Example and Computational Results 

For our numerical example, we consider a real data set using only the first d=4 variables and the first 

n=250 observations of a data set that contains transformed standardized residuals of daily log returns of 

the original d=15 major German stocks represented in the index DAX observed from January 2005 to 

August 2009 for our illustration purposes in this paper due to space considerations. We fitted the best 

copula for the first four stocks, called Allianz SE (ALV.DE), BASF SE (BAS.DE), Bayer AG 

(BAYN.DE), Bayerische Motoren Werke AG (BMW.DE). 

The time series and the scatter plot of the stock returns data is shown in Figure 5. 
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Figure 5. Time Series and Scatter Plot of Stock Returns Data 

 

We note that the stock returns data set is not normally (i.e., Gaussian) distributed. Therefore, using 

copulas and copula modeling is appropriate to relax the classical distributional assumption to take into 

account the dependency and the tail behavior of the stock returns data set. 

Since we considered the first d=4 variables of d=15 dimensional stock return data set, that is, we 

considered ALV.DE, BAS.DE, BAYN.DE, and BMW.DE, we have a combinations of 6 pair of copula 

vector of returns. For d=15 stock returns, we would have in total 105 combinations to consider, which 

we will not pursue here for space considerations. As it can be seen, for large dimensional data, we 

would have combinatorial explosion to construct bivariate copula models. Because of this, for this 

example we only chose the first d=4 stock returns. In a separate paper, for high dimensional data, we 

will generalize these results using the clever Genetic Algorithm (GA) to choose the best fitting copula 

model with information complexity (ICOMP) criterion. 

3.2 Scores of Model Selection Criteria 

Our results from the analysis of stock returns data set are presented in Tables 1 to 6 below for different 

copula distributions for each 6 pairs of copula vectors along with their values of the model selection 

criteria. 

Looking at the results presented in Table 1, we see that Frank copula is the best fitting copula for 

vectors  and  (i.e., ALV.DE and BAS.DE) with correlation, 0.41. The contour and 2D 

plots of the Frank copula model is shown in Figure 4. As it can be seen from the plot of the Frank 

copula has heavy tails. 

Further, looking at Table 2, we see that the rotated survival Clayton copula is the best fitting copula 

model for vectors  and  (i.e., ALV.DE and BAYN.DE) with correlation, 0.15. The contour 

and 2D plots of the Clayton copula is shown in Figure 2. Continuing with our pairwise analysis, from 

Table 3, we see that Frank copula is the best fitting copula model for vectors  and  with 

correlation, 0.41. From Table 4 results, we see that the rotated survival Gumbel copula is the best 

fitting copula model for vectors  and  with tau correlation, 0.38. Table 5 results show that 

the rotated survival Gumbel copula is also the best fitting copula model for vectors  and  with 

tau correlation, 0.15. Finally, from Table 6 results, we see that Gumbel copula is the best fitting 
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copula model for vectors  and  with tau correlation, 0.05. The contour and 2D plots of the 

Gumbel copula is shown in Figure 3. This copula has more probability concentrated in the tails than 

does Frank copula. It is also asymmetric, with more weight in the right tail. 

 

Table 1. Scores of Model Selection Criteria for the Stock Returns { , } 

Copula 

Distributions  

AIC  BIC  CAIC  CICOMP  

Gaussian Copula  -2.845998   1.36861   68.44165   68.44165  

t-copula  -2.808817   5.620399   211.766480   211.766480  

Clayton Copula 

Rotated “Survival 

Gumbel” Copula 

Frank Copula  

Rotated “Survival 

BB8” copula 

 0.2379965 

-1.08705  

     

-6.438022 

-4.281868 

 

 4.452605 

3.127558 

 

-2.223414 

4.147348   

 71.52565  

70.20060 

 

64.84963 

210.29343 

 71.52565  

70.20060 

 

64.84963 

210.29343 

 

Table 2. Scores of Model Selection Criteria for the Stock Returns { , } 

Copula 

Distributions  

AIC  BIC  CAIC  CICOMP  

Gaussian Copula  -22.536358   -18.32175   48.75129   48.75129  

t-copula  -17.797262   -9.368046   196.778035   196.778035  

Rotated “Survival 

Clayton Copula 

Gumbel” Copula 

Frank Copula  

Rotated “Survival 

BB8” copula 

-27.6194068  

     

-21.30115   

-26.541491 

-25.985152 

 

  -23.404799 

 

-17.086545 

-22.326883 

-17.555936    

 43.66824 

 

49.98650 

44.74616 

188.59014 

  43.66824  

 

49.98650 

44.74616 

188.59014 

 

Table 3. Scores of Model Selection Criteria for the Stock Returns { , } 

Copula 

Distributions  

AIC  BIC  CAIC  CICOMP  

Gaussian Copula  -33.44094   -29.22633   37.84671   37.84671  

t-copula  -28.30094   -19.87172   186.274357   186.274357  

Clayton Copula 

Rotated “Survival 

Gumbel” Copula 

Frank Copula  

Rotated “Survival 

BB8” copula 

-24.67039  

-24.96566 

 

-39.84042 

-30.14284 

 -20.45578  

-20.75106 

 

-35.62581 

-21.71362 

 46.61726  

46.32199 

 

31.44723 

184.43246 

 46.61726  

46.32199 

 

31.44723 

184.43246 
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Table 4. Scores of Model Selection Criteria for the Stock Returns { , } 

Copula 

Distributions  

AIC  BIC  CAIC  CICOMP  

Gaussian Copula  -186.049300   -181.83469   -114.76165   -114.76165  

t-copula  -212.126015   -203.696799   2.449282   2.449282  

Clayton Copula 

Rotated “Survival 

Gumbel” Copula 

Frank Copula  

Rotated “Survival 

BB8” copula 

-171.862643  

-200.67034 

 

-182.243437  

-182.403041 

 -167.64804 

-196.455733 

 

-176.08974 

-173.973825 

 -100.575 

-129.38269 

 

-110.95579 

32.17226 

 -100.575 

-129.38269 

 

-110.95579 

32.17226 

 

Table 5. Scores of Model Selection Criteria for the Stock Returns { , } 

Copula 

Distributions  

AIC  BIC  CAIC  CICOMP  

Gaussian Copula  -177.81815   -173.60355   -106.53051   -106.53051  

t-copula  -205.42676   -196.99754   9.148537   9.148537  

Rotated “Survival 

Clayton” Copula 

Rotated “Survival 

Gumbel” Copula 

Frank Copula  

Rotated “Survival 

BB8” copula 

 -198.28020  

 

-211.74919 

 

-180.30434 

 -199.87818 

 -194.06559  

 

-207.53458 

 

-176.08974 

-191.44896 

 -126.99255  

 

-140.46154 

 

-109.0167 

14.69712 

 -126.99255  

 

-140.46154 

 

-109.0167 

14.69712 

 

Table 6. Scores of Model Selection Criteria for the Stock Returns { , } 

Copula 

Distributions  

AIC  BIC  CAIC  CICOMP  

Gaussian Copula  -158.9632   -154.7486   -87.67559   -87.67559  

t-copula  -163.1173   -154.6881   51.45795   51.45795  

Rotated “Survival 

Clayton Copula 

Gumbel” Copula 

Frank Copula  

Rotated “Survival 

BB8” copula 

    -184.6783  

 

   -187.7309 

   -154.846 

   -184.469 

 -180.4637  

 

    -183.5163 

 -150.6314 

 -176.0398 

-113.39065  

 

   -116.4433 

    -83.55832 

  30.10626 

-113.39065  

 

   -116.4433 

 -83.55832 

  30.10626 

 

Table 7. Correlation Matrix 

 ALV.DE BAS.DE BAYN.DE BMW.DE 

ALV.DE 1 0.41 0.15 0.38 

BAS.DE 0.41 1 0.41 0.15 

BAYN.DE 0.15 0.41 1 0.05 
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Table 8. Summary of the Results of CICOMP for the Best Fitting Pairs of Stocks 

Copula 

distributions  

Pairs CICOMP  

Frank copula  { , }   64.84963      0.41 

“Survival 

Clayton” copula  

{ , }   43.66824      0.15 

Frank copula  

“Survival 

Gumbel” copula 

Gumbel copula 

    { , }  

{ , } 

 

{ , } 

 31.44723  

-140.46154 

 

-116.4433 

    0.41 

    0.15 

 

    0.05 

 

Table 7 presents the tau correlation matrix among the four stock returns, whereas Table 8 summarizes 

our final results. Looking at Table 8, if we have to choose one best pair of stock returns from German 

stock prices, based on the minimum CICOMP criterion we would choose the survival Gumbel copula 

model with pairs of stocks { , } as our best fitting copula model, followed by Gumbel copula model. 

In other words, we choose the pairs of stocks {BAS.DE, BMW.DE} and {BAYN.DE, BMW.DE} 

stock returns. This makes sense in that it shows the strength of the popularity of the BMW.DE stock 

return. 

 

4. Discussion 

Examining and mitigating market risk is really a challenge in financial institutions. But as we 

mentioned before, the most important parameter to measure the market risk is the correlation between 

the return prices of the underlying stocks. We took the portfolio of the return prices of the stocks and 

fitted the copula distributions to identify the best copula model. The results show that each bivariate 

copula of every two return stock prices vectors are best fitted by different copula models using the 

information criteria measures especially the CAIC and CICOMP, where CICOMP predominated the 

AIC-type criterion, both in the case when the fitted models are correctly specified.We found then the 

Kendall’s tau correlation between the return prices. 

This paper can be extended later into several areas that are interesting especially in the credit risk 

modeling. For example, it can be realized that the value at risk is estimated properly when using the 

copula technique and Kendall’s tau correlation more than when using the simple Pearson correlation 

method and it can detect how the Kendall’s tau correlation matrix contributes in pricing credit 

derivatives. 
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