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Abstract 

In this paper, we compare and contrast the environmental, macroeconomic and distributive effects of 

CO2 taxation with the effects of taxing a variety of air pollutants at their external costs. We do so using 

a multi-sector and multi-household dynamic computable general equilibrium model of the Portuguese 

economy. We find that a carbon tax of 114 euros per ton of CO2 is necessary to achieve the IPCC 2030 

targets. It does so, however, at a high macroeconomic and distributional cost. In turn, the 

macroeconomic and distributional effects of taxing different pollutants at their external costs in line 

both qualitatively and quantitatively with the effects of the CO2 taxation. In absolute terms, however, 

better environmental results in terms of GHG and air pollutants emissions are achieved through the 

level of CO2 taxation necessary to achieve the IPCC targets than through direct taxation of such 

emissions at their external costs. Ultimately, the benefits of complementing the CO2 taxation with the 

taxation of other air pollutants at their external costs does not seem significant from either efficiency, 

fairness, or environmental perspectives to justify the practical complexity of considering it. 
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1. Introduction 

The purpose of this paper is to identify the environmental, macroeconomic and distributional effects of 

carbon taxation and of the taxation of a multiplicity of air pollution at their external costs. The practical 

objective is to determine whether the use of a myriad of policy instruments to correct air pollution 

externalities is necessary in the presence of the carbon taxation necessary to achieve Intergovernmental 

Panel on Climate Change (IPCC, hereafter) targets and when we account for co-pollution from fossil 
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fuel combustion. 

Recently, the IPCC (2018) special report concluded that limiting global warming to 1.5°C would 

require “rapid and far-reaching” transitions in land, energy, industry, buildings, transport, and cities. 

Global net anthropogenic emissions of CO2 would need to fall by about 45% from 2010 levels by 2030, 

reaching ‘net zero’ around 2050, with neutrality of the remaining greenhouse gases to be achieved soon 

thereafter. Special attention has to be paid to the consumption of fossil fuels as the primary contributor 

to greenhouse gas emissions and the leading anthropogenic cause of climate change. 

In Portugal, the Roadmap for Carbon Neutrality (RNC2050, hereafter) was presented to the public in 

late 2018 and was approved by the government in middle 2019 (see MATE, 2019). In the RNC2050, 

these different environmental and decarbonization targets were duly incorporated and specific 

pathways presented to achieve such targets. There is now a lively policy debate on the specific public 

policy mechanisms to be adopted to implement such pathways. A centerpiece of such mechanisms is 

carbon pricing in particular carbon taxation. 

While decarbonization is the central issue in environmental policy in Portugal, it is not the only one. 

Indeed, great concern exists with air quality, for example. Despite substantial improvements over the 

last few of decades, there remain persistent problems with air pollution affecting human health and the 

ecosystems. To revert the situation important reduction in emissions of sulphur dioxide, nitrogen oxides, 

volatile organic matter, particulate matter, carbon monoxide and ammonia have to be achieved in the 

next couple of decades (See, for example, the national strategy for achieving air quality in Portugal, 

APA, 2018). 

This is a critical issue. Fossil fuel combustion leads directly to global carbon dioxide emissions. In 

addition, it also leads to the emission of local air pollutants, either directly in the form of sulphur 

dioxide and nitrogen oxides, or indirectly through road transportation, such as particulate matter, 

volatile organic matter and carbon monoxide. These local air pollutants are exactly the cause of the 

damage to human settlements and the natural environment (see IPCC, 2014). These local air pollutants 

are exactly the focus of the domestic policies on the matter. 

The tax system in Portugal provides a broad range of incentives that influence choices made by 

consumers and producers in the energy system. The current tax system is designed based, in part, on the 

energy content of fuels and the need to raise funds for the public budget and not on the emissions 

content of the fuels. This fully justifies the need for energy taxation reform bringing the energy taxation 

more in line with the emissions content of the different pollutants and/or their external costs. 

Accordingly, reform to the current tax on energy products based on the environmental costs associated 

with the consumption of fossil fuels can help to internalize the external environmental costs associated 

with fossil fuel use and create a more focused fiscal policy instrument with the ability to address 

inefficiencies in energy markets while raising revenue for the public sector. 

A key political economy question is the concern with the existence of multiple environmental 

objectives and the potential need for a large number of policy instruments. This is an issue conceptually 
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because as argued above the emissions of many of these pollutants are connected and in practical terms 

because the political environment is not particularly conducive to the introduction on multiple taxes 

and/or fees. This raises the question of identifying the effects of an overarching policy to reach the 

IPCC goals through proper pricing of carbon emissions on the emissions of the co-pollutants and the 

other greenhouse gases. Specifically, the question is to determine how much taxing carbon emissions at 

a level necessary to achieve IPCC goals affects the other emissions and how it compares with taxing 

such emissions at their own external costs.  

In this paper, we compare the environmental, macroeconomic and distributive effects of a CO2 tax with 

the effects of taxing a variety of air pollutants at their external costs. To do so, we use the most recent 

version of the DGEP, the dynamic general equilibrium model of the Portuguese economy. Previous 

versions of this model have been used to address energy and climate policy issues (see Pereira & 

Pereira, 2014a, 2014b, 2017a, 2017b, 2017c, 2018; and Pereira et al., 2016). This model has a detailed 

description of the tax system and a fine differentiation of consumer and producer goods, particularly 

those with a focus on energy products. We consider twenty-two sectors spanning the all spectrum of 

economic activity. Household heterogeneity in income and consumption patterns is captured by 

differentiating among five household groups based on income levels. 

From a methodological perspective, this paper builds upon a vast computable general equilibrium 

literature. General equilibrium models have been extensively used in energy studies. For general 

surveys see Bhattacharyya (1996) and Bergman (2005) and for a discussion of the merits and concerns 

with this approach see Sbordone et al. (2010) and Blanchard (2016). Our model follows in the tradition 

of the early models developed by Borges and Goulder (1984) and Ballard, Fullerton, Shoven and 

Whalley (2009) while in its specifics is more directly linked to the recent contributions of Goulder and 

Hafstead (2013), Bhattarai et al. (2016), Tran and Wende (2017), and Annicchiarico et al. (2017). 

In turn, from a conceptual perspective, this paper builds upon a well-established literature on 

co-pollutants and the co-benefits of environmental policies. Parry (2015) and Coady et al. (2018), 

provide overall reviews of the conceptual issues for the design of fiscal policies to address the external 

costs of energy use. Fullerton and Karney (2018) and Ambec and Coria (2018) Stranlund and Son 

(2019) provide conceptual discussions of the co-benefits of policies to address GHG emissions and 

local air pollutant emissions under different situations. Finally, Fichtner et al (2003), Jiang et al. (2103), 

Lott et al. (2017), Li et al. (2019) for applied discussions with more of a technological focus.  

This paper is organized as follows. In Section 2, we briefly present the general aspects of the dynamic 

general equilibrium model of the Portuguese economy and discuss data and implementation issues. In 

Section 3, we briefly present the modelling of the different greenhouse gases and different pollutants. 

In Section 4, we present and discuss the simulation results. Finally, In Section 5, we offer a summary of 

the results, policy recommendations and some thoughts about future research. 
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2. The Dynamic Computable General Equilibrium Model of the Portuguese Economy 

What follows is a very brief description of the new multi-sector, multi-household version of the 

dynamic general equilibrium model of the Portuguese economy we use in this paper. More details on 

the basic structure of the model are provided in Pereira and Pereira (2018) and Pereira et al. (2016) 

while more details on the most recent versions of the model are provided in Pereira and Pereira (2017d). 

Details directly pertinent to the current implementation of the model are presented in the next section. 

2.1 General Features of the Dynamic General Equilibrium Model  

The dynamic general equilibrium model incorporates fully dynamic optimization behavior, detailed 

household accounts, detailed industry accounts, a comprehensive modeling of the public sector 

activities, and an elaborate description of the energy sectors.  

Households maximize their intertemporal utilities subject to an equation of motion for financial wealth, 

thereby generating optimal consumption, labor supply, and savings. While the general structure of 

household behavior is the same for all household groups, preferences, income, wealth and taxes are 

household-specific, as are consumption demands, savings, and labor supply.  

Firms maximize the net present value of their cash flow, subject to the equation of motion for their 

capital stock to yield optimal output, labor demand, and investment demand behaviors. We consider 

different sectors covering the whole spectrum of economic activity in the country. These include energy 

producing sectors, such as electricity and petroleum refining, other European Trading System sectors, 

such as transportation, textiles, wood pulp and paper, chemicals and pharmaceuticals, rubber, plastic 

and ceramics, and primary metals, as well as sectors not in the European Trading System such as 

agriculture, basic manufacturing and construction. While the general structure of production behavior is 

the same for all sectors, technologies, capital endowments, and taxes are sector-specific, as are output 

supply, labor demand, energy demand, and investment demand.  

General market equilibrium is defined by market clearing in product markets products, labor markets, 

financial markets, and the market for investment goods. In turn, the evolution of the economy is 

described by the optimal and endogenous change in the stock variables – household-specific financial 

wealth variables and sector-specific private capital stock variables, as well as their respective shadow 

prices/co-state variables. In addition, the evolution of the stocks of public debt and of the foreign debt 

act as resource constraints in the overall economy. The endogenous and optimal changes in these stock 

variables provide the endogenous and optimal link between subsequent periods. The intertemporal path 

for the economy consists of the behavioral equations, the equations of motion of the stock and shadow 

price variables, and the market equilibrium conditions.  

2.2 Numerical Implementation, Calibration 

The dynamic general equilibrium model of the Portuguese economy can be conceptualized as a large 

system of nonlinear first order difference equations, where critical flow variables are optimally 

determined through optimal control rules. Indeed, the evolution of the economy is described by the 

optimal and endogenous change in the stock variables –household-specific financial wealth variables 
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and sector-specific private capital stock variables, as well as their respective shadow prices/co-state 

variables. In addition, the evolution of the stocks of public debt and of the foreign debt act as resource 

constraints in the overall economy. 

This system of nonlinear first order difference equations is solved numerically using the GAMS 

(General Algebraic Modeling System) software and the MINOS (Modular In-Core Nonlinear 

Optimization Solver) solver. MINOS uses a reduced gradient algorithm generalized by means of a 

projected Lagrangian approach to solve mathematical programs with nonlinear constraints, which 

employs linear approximations for the nonlinear constraints and adds a Lagrangian and penalty term to 

the objective to compensate for approximation error. This series of sub-problems is then solved using a 

quasi-Newton algorithm to select a search direction and step length. 

The calibration of the dynamic general equilibrium model of the Portuguese economy is designed to 

replicate, as its most fundamental base case, a stylized steady state path for the Portuguese economy. 

We define the steady-state growth path as an intertemporal equilibrium trajectory in which all the flow 

and stock variables grow at the same rate while market and shadow prices are constant. Specifically, 

the steady state path is defined by the trends and information contained in the data set. In the absence of 

any policy changes, or any other exogenous changes, the model implementation will just replicate into 

the future such stylized economic trends.  

We calibrate the dynamic general equilibrium model with data for the period 2005-2015 and stock 

values for 2015. In fact, rather than focusing on a single year of data, we use a ten-year interval. This 

roughly captures an entire business cycle thereby avoiding contaminating the calibrated model with 

business cycle effects. Although more recent data was available for most economic indicators, data on a 

variety of energy indicators has only been validated for Portugal through 2015 at the time calibration. 

To guarantee the existence of a steady state for the dynamic general equilibrium model there are three 

types of calibration restrictions. First, calibration determines the value of critical production parameters, 

such as adjustment costs and depreciation rates, given the initial capital stocks. These stocks, in turn, 

are determined by assuming that the observed levels of investment of the respective type are such that 

the ratios of capital to GDP do not change in the steady state. Second, the need for constant public debt 

and foreign debt to GDP ratios implies that the steady-state budget deficit and the current account 

deficit are a fraction of the respective stocks of debt equal to the steady-state growth rate. Finally, the 

exogenous variables, such as public transfers or international transfers, have to grow at the steady-state 

growth rate. 

2.3 Reference Scenario 

The reference scenario serves as a basis for evaluating the impact of policies that follow. The reference 

scenario embodies several assumptions regarding climate policy and technological progress, which are 

superimposed on the steady state trajectory used in the calibration of the model. The main climate 

policy considerations present in our reference scenario are first, that a tax of 6.85 Euro/tCO2 persists at 

this level through 2050 and second that the major coal fired power plants in Portugal cease operations 
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at the end of their useful life and no additional coal capacity is installed. Power has two major coal 

fired power plants, one in Sines and one in Pego. The plant in Sines is scheduled to close in 2035 and 

the plant in Pego in 2040. Third, we assume that fossil fuel prices follow forecasts developed by the 

International Energy Agency (2018).  

Given this reference scenario, counterfactual simulations allow us to identify marginal effects of any 

policy or exogenous change, as deviations from this reference scenario.  

 

3. On the Modelling of Greenhouse Gases and Air Pollutants 

3.1 Greenhouse Gases 

We incorporate in the model GHG emissions considered within the common reporting framework of 

the IPCC framework (see, for example, IPCC, 2019) and which represent the whole universe of GHG 

pollutants in Portugal: Carbon Dioxide (CO2); Methane (CH4); Nitrous Oxide (N2O); 

Hydrofluorocarbons (HFC); Perfluorocarbons (PFC); and Sulfur Hexafluoride (SF6). See Figure 1. 

 

Emissions by Gas Emissions by Activity 

  

Figure 1. Greenhouse Gas Emissions in 2016: 67.621 Mt CO2e 

 

Of the GHG considered, carbon dioxide, and in a small part methane, are directly related to the 

combustion of fossil fuels. In turn, the bulk of emissions from methane and remaining GHG derive 

mostly from agriculture and a variety of industrial processes. 

3.2 Air Pollutants 

In turn, we incorporate in the model the air pollutants considered within the National Emission Ceiling 

Directive of the EEA (2016, 2019): Nitrogen Oxides (NOx); Sulfur Dioxide (SO2), Particulate Matter 

(PM) 10 micrometers diameter and 2.5 micrometers diameter; Volatile Organic Compounds (VOC); 

Carbon Monoxide (CO); and Ammonia (NH3). See Figure 2. 
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Figure 2. Air Pollutants in 2015 

 

These air pollutants are induced by the combustion of fossil fuels, either directly as is the case of 

nitrogen oxide and sulfur dioxide or indirectly by road transportation activities such as particulate 

matter, volatile organic matter and carbon monoxide. These are the relevant co-pollutants when we 

consider policies designed to reduce carbon dioxide emissions. 

3.3 On the Modelling of the Different Emissions 

We model emissions of the different GHG and air pollutants in two different ways. For emissions that 

are generated by fossil fuel combustion, i.e., the co-pollutants with carbon dioxide, we model emissions 

as direct function of the amount of the fossil fuel used in the corresponding activities. For emissions 

that are induced by agriculture of industrial processes we modelled them as a fixed function of the 

output of each of the different production sector or activities. 

From a conceptual perspective, for fossil fuel based emissions, carbon dioxide and its co-pollutants, we 

capture the following three effects of the different policies: effects due to fossil fuel switching; effects 

due to changes in the level of economic activity; and effects due to changes in the composition of 

economic activity. 

For process-based emissions, we capture only the two following effects of policies: effects due to 

changes in the level of economic activity; and effects due to changes in the composition of economic 

activity. Accordingly, in this work, the effects of the different policies on process-based emissions are 

underestimated by the amount of process switching the policies may generate. 

It should be noted that, given the focus and level of aggregation of the analysis, we implicitly assume 
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that the different co-pollutants are complements with carbon dioxide. Although there is a debate in the 

literature on whether one should observe complementary of substitution among co-pollutants our 

approach is consistent with the arguments and evidence in Fullerton and Karney (2018) to the effect 

that under the most plausible parameter specifications emissions of CO2 and co-pollutants are 

complements. 

3.4 Benefits Table Database (BeTa) for Air Pollutants 

Of the air pollutants considered above we consider taxation of sulphur dioxide, oxides of nitrogen, 

particulate matter, volatile organic compounds and carbon monoxide – all in some way related to 

combustion or closely related activities - at their external costs.  

The assessment of the externalities from emissions SO2, NOx, PM, and VOC are based on the 

calculation of the estimated damages from air pollution follow the ExternE methodology, ExternE 

(2019). In turn, the data for the external costs of carbon monoxide (CO) is from the Israel Ministry of 

Environmental Protection (2018). 

 

Table 1. External Costs from Air Pollution 

Unit: Euros per ton 

 SO2  NOx  PM2.5  VOC  

Austria  7,200 6,800  14,000  1,400  

Belgium  7,900  4,700  22,000  3,000  

Denmark  3,300  3,300  5,400  7,200  

Finland  970  1,500  1,400  490  

France  7,400  8,200  15,000  2,000  

Germany  6,100  4,100  16,000  2,800  

Greece  4,100  6,000  7,800  930  

Ireland  2,600  2,800  4,100  1,300  

Italy  5,000  7,100  12,000  2,800  

Netherlands  7,000  4,000  18,000  2,400  

Portugal  3,000  4,100  5,800  1,500  

Spain  3,700  4,700  7,900  880  

Sweden  1,700  2,600  1,700  680  

UK  4,500  2,600  9,700  1,900  

EU-15  5,200  4,200  14,000  2,100  

 

The external effects included in these figures are as follows: acute effects of PM and SO2 on mortality 

and morbidity; chronic effects of PM on mortality and morbidity; effects of SO2 and acidity on 

materials used in buildings and other structures; and effects on arable crop yield.  
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As one can observe in Table 1, the external costs of the different pollutants for Portugal are in general 

substantially below the EU-15 average. This is due to differences in purchasing power vis-à-vis the 

other countries and to the fact that some of measured externalities depend critically on standards of 

living, population density, etc. 

 

4. Simulation Results 

We start by analyzing the environmental, macroeconomic, and distributional effects of a CO2 tax of the 

magnitude necessary to reach IPCC 2018 goal of a 45% reduction in CO2 emissions by 2030 relative to 

the 2010 levels. Then, we consider the corresponding effects of taxing the different air pollutants at 

their external costs. We present the simulation results in Tables 2-7. 

4.1 On the Effects of CO2 Taxation 

The magnitude of the carbon tax necessary to reach IPCC 2018 CO2 reduction goals is 114 euros per 

ton of CO2. This tax generates tax revenues that are approximately 1.85% of the GDP.  

4.1.1 Effects on Energy Markets and Emissions 

The introduction of this CO2 tax leads to an increase in energy prices of 13.91% and to a decrease of 

energy demand by 12.40%. The price of domestic electricity generation itself increases by 12.59%, 

which leads to a 10.17% decrease in domestic electricity production and a 12.81% increase in 

electricity imports. Overall electricity demand declines by 9.80%. Accordingly, the share of electricity 

in final energy demand increases by 2.97%.  

The introduction of the CO2 tax leads to a reduction in CO2 emissions of 36.02% which represents 

53.8% of the 2010 levels. The CO2 tax induces significant reductions in other GHG emissions, in 

particular CH4 and in N2O emissions, which decline by 25.29% and 30.73%. It induces smaller 

reductions for emissions of HFC, PFC, and SF6. 

 

Table 2. Energy Taxes  

% of GDP 

 
Reference CF1 CF2 

Environmental Taxes 2.28 3.90 2.89 

Road Contribution 0.22 0.21 0.22 

Tax on Oil Products - ISP 1.90 1.84 1.82 

CO2 Tax 0.16 1.85 0.16 

Taxes on Other pollutants 0.00 0.00 0.67 
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Table 3. Long Run (2030) Effects on the Energy Markets 

Percent Change from Baseline 

 
CF1 CF2 

Carbon Tax 114  0  

Energy Price 13.91  4.83  

Electricity Price 12.59  4.66  

Electricity Production -10.17  -4.07  

Thermal Generation -25.61  -10.33  

Renewable Energy Systems -2.18  -0.98  

Net Electricity Imports 12.81  5.09  

Energy Demand -12.40  -4.72  

Electricity Demand -9.80  -3.92  

% Electricity in Final Energy Demand 2.97  0.84  

 

Table 4. Long Run (2030) Effects on Greenhouse Gas and Air Pollutant Emissions 

Percent Change from Baseline 

 
CF1 CF2 

GHG Emissions   

CO2 emissions relative to 2010 53.8%  73.2%  

Carbon Dioxide – CO2 -36.02  -21.38  

Methane – CH4 -25.29  -7.00  

Nitrous Oxide – N2O -30.73  -15.50  

Hydrofluorocarbons – HFC -5.66  -2.00  

Perfluorocarbons – PFC -4.96  -1.76  

Sulfur Hexafluoride – SF6 -10.17  -4.07  

Air Pollutants   

Nitrogen Oxides – NOx -37.22  -25.45  

Sulfur Dioxide – SO2 -43.13  -31.57  

Volatile Org. Compounds – VOC -23.67  -5.16  

Carbon Monoxide – CO -51.08  -34.15  

Particulate Matter – PM  -71.71  -55.69  

Ammonia – NH3 -11.93  -1.52  
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Table 5. Long Run (2030) Effects on Macroeconomic Performance 

Percent Change from Baseline 

 
CF1 CF2 

GDP -5.21  -1.86  

Private Consumption -1.21  -0.45  

Investment -1.33  -0.44  

Employment -2.71  -0.94  

Foreign Debt -12.66  -4.62  

Public Debt 3.70  0.94  

CPI 2.32  0.82  

 

Table 6. Long Run (2030) Effects on Output by Industry 

Percent Change from Baseline 

 
CF1 CF2 

Total -5.21 -1.86 

Petroleum Refining -11.16 -4.40 

Electricity -10.17 -4.07 

Biomass 2.04 0.70 

Agriculture -4.39 -1.59 

Mining -9.07 -3.48 

Manufacture of food products, beverages and tobacco products -3.05 -1.13 

Textiles -8.13 -2.27 

Wood, pulp and paper -7.81 -2.40 

Chemicals and pharmaceuticals -8.12 -2.58 

Rubber, plastics and ceramics -13.49 -3.39 

Basic metals and fabricated metal products -10.35 -3.37 

Equipment manufacturing -16.91 -6.09 

Water, sewage and waste management -2.02 -0.79 

Construction -1.80 -0.61 

Wholesale and retail trade -5.86 -2.09 

Transportation -9.50 -3.68 

Accommodation and food services -2.37 -0.87 

Information technology -1.95 -0.70 

Finance and insurance -2.61 -0.93 

Real estate -0.82 -0.30 

Professional services -3.48 -1.24 

Public administration -0.94 -0.37 

Education -0.58 -0.22 

Health -1.32 -0.49 

Other -2.68 -0.98 
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Table 7. Long Run (2030) Welfare Effects 

Percent Change from Baseline 

 CF1 CF2 

All Households -1.34  -0.49  

First Quintile (lowest income) -1.85  -0.68  

Second Quintile -1.64  -0.59  

Third Quintile -1.45  -0.53  

Fourth Quintile -1.33  -0.48  

Fifth Quintile (highest income) -1.02  -0.38  

 

The CO2 tax leads also to significant reductions of emissions of air pollutants. This is true particularly 

for emissions of NOx, SO2, CO, and PM, which decline by 37.22%, 43.13%, 51.08%, and 71.71%, 

respectively and less so for emissions of VOC and NH3.  

4.1.2 Macroeconomic and Distributional Effects 

The macroeconomic effects of the CO2 tax are naturally adverse. GDP declines by 5.21% linked 

directly on the supply side to the reduction in investment by 1.33% and of employment by 2.71% and 

on the demand side by a reduction in private consumption of 1.21%. The CPI increases by 2.32%. In 

turn, foreign debt increases by 3.70% with increased reliance of relatively cheaper foreign goods. 

Finally, there is by construction a reduction of 12.66% in the public debt. 

The industries that are the most adversely affected in terms of their output are petroleum refining and 

electricity generation as expected as well as rubber, basic metals, equipment, and transportation as well 

as textiles, wood and chemicals. These are all internationally traded goods. 

Overall, there is an aggregate welfare loss of 1.34%. Across the different income groups, this loss is felt 

in a regressive manner. Indeed, the lowest income group suffers a loss of 1.85% while the highest 

income group loses just 1.02%. Accordingly, the factor of regressivity is 1.8.  

4.2 On the Effects of Taxing other Pollutants at their External Costs 

In counterfactual simulation CF2, we consider the results of taxing air pollutants at their external costs 

as detailed in Table 1. The corresponding tax revenues are 0.67% of the GDP and therefore about 36% 

of the CO2 tax revenues considered in CF1.  

4.2.1 Effects on Energy Markets and Emissions 

The effects on the energy market essentially mirror the effects induced by the CO2 tax. Quantitatively, 

they are in line with the relative magnitude of the two policies. Qualitatively, there are no significant 

changes in the observed patterns of results. 

In turn, CO2 emissions decrease by 21.38%, which means that they reach 73.2% of the 2010 levels. 

This compares to 36.02% reduction and 53.8% of 2010 levels under the CO2 tax. Therefore, the 

reduction in CO2 emissions are now about 60% of what was simulated under CF1. Accordingly, there 
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is a substantial cross effect on CO2 emissions coming from the reduction in economic activity but also 

from the fact that that the pollutants being taxed are directly or indirectly related to the combustion of 

fossil fuels.  

The cross effects on emissions of other GHG are in line with the relative magnitude of the two policies 

except for N2O, in which case the reduction is now 15.50% or about 50% of what observed under the 

CO2 tax. 

In turn, reductions in air pollutants are enhanced greatly under the direct taxation of their external costs. 

The largest reductions occur with emissions NOx, SO2, CO, and PM, which decline by 25.45%, 31.57%, 

34.14%, and 55.69%, respectively and less so for emissions of VOC and NH3. 

Overall, with an overall tax levy just over one third of the CF1 case, under direct taxation of their 

external costs emissions of air pollutants decrease by about two-thirds of what is observed under CF1. 

Naturally, the individual tax levy on each of the different air pollutants is much smaller. This indicates 

that direct taxation of these air pollutants is substantially more effective in terms of the tax costs 

involved than indirect reductions through CO2 taxation. 

Interestingly enough, however, the reductions in emissions of air pollutants we observe under direct 

taxation of their external costs are, across the board, lower than what is achieved though taxation of 

CO2. This means that in absolute terms we achieve better environmental results in terms of the air 

pollutants through the CO2 taxation necessary to reach IPCC targets. The same is true for all of the 

GHG emissions. Just taxing carbon emissions at a level necessary to reach IPCC targets leads to greater 

reductions of air pollution emissions than what would be accomplished through their taxation at the 

level of their external costs. 

4.2.2 Economic and Distributional Effects 

The macroeconomic effects under CF2 are, broadly speaking, about one-third of the effects observed 

under CF1. Therefore, they are in line with the relative magnitude of the two policies. Qualitatively, 

there are no changes. 

The sectors affected under CF2 are essentially the same as under CF1 although there are some small 

differences in the relative importance of the outputs reductions across sectors compared to CF1. 

Petroleum refining, electricity generations, and transportation are clearly affected more than 

proportionally to the relative magnitude of the two policies, while textiles, wood, chemicals, and rubber 

are clearly affected less than proportionally. 

Overall, the welfare losses are 0.49%, which is in line with the relative magnitude of the two policies. 

The same pattern of regressivity is observed under both policies. 

 

5. Conclusion and Policy Implications 

In this paper, we compare the environmental, macroeconomic and distributive effects of a CO2 tax with 

the effects of taxing a variety of air pollutants at their external costs. We do so using the recent version 

of the DGEP, the dynamic general equilibrium model of the Portuguese economy. Our objective is to 
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identify the relevance of the environmental spillovers of CO2 taxation. 

We can summarize our simulation results as follows. A carbon tax of 114 euros per ton imposed on top 

of the current energy taxation is enough to achieve the IPCC 2030 targets as well as significant 

reductions in other GHG emissions as well as emissions of air pollutants. It does so, however, at a high 

macroeconomic and distributional cost. The macroeconomic and distributional effects of taxing 

different pollutants at their external costs are closely aligned with the effects of carbon taxation. They 

show the same qualitative patterns and the different in magnitude is in line with the relative magnitude 

of the two policies. Yet, under the taxation of different air pollutants at their external costs, CO2, N2O, 

NOx, SO2, CO, and PM emissions decline much more than proportionally vis-à-vis the relative 

magnitude of the two policies. Still, such policy is not enough to generate the desired reductions in CO2 

emissions. More importantly, however, in absolute terms better environmental results in terms of GHG 

emissions and the air pollutants are achieved through CO2 taxation than through direct taxation of such 

emissions at their external costs.  

The results pertaining the introduction of other GHG gases and the different air pollutants raise the 

question of the environmental relevance of independent taxation of the different air pollutants in 

addition to CO2 taxation. That is, it questions the relevance of using multiple tax instruments to 

achieve reductions in different emissions that are linked through technological and economic 

conditions. Ultimately, the benefits of complementing the taxation of carbon dioxide with the taxation 

of other air pollutants at their external costs does not seem significant from either efficiency, fairness or 

environmental perspectives to justify the complexity of considering them. Indeed, a greater reduction in 

the emissions of all GHG and of all air pollutants is achieved simply by using a CO2 tax to achieve the 

IPCC CO2 emissions targets. 

These results and recommendations are fully consistent with recent evidence in the literature. For 

example, Muller (2012) and Crago and Stranlund (2015) show that co-benefits of GHG policies can be 

significant in magnitude and argue that it is not socially beneficial that climate policies should be 

tailored to reflect these local air pollution co-benefits. In turn, Brunel and Johnson (2019) local 

pollution policies are unlikely to be of the magnitude necessary to address greenhouse gas targets. We 

add the macroeconomic and distributional dimension to the issue to suggest that the policy focus 

should be on developing an adequate carbon tax and counting on its spillovers to achieve the desired 

reductions in the emissions of air pollutants. 

This research opens the door to a few critical follow-ups from a practical environmental policy 

perspective. In this work, we assume that the revenues from carbon taxation are not recycled, i.e., they 

revert to the general government budget. There is, however, plenty of evidence that careful recycling of 

such revenues is necessary if the adverse macroeconomic and distributional effects of carbon taxation 

are to be avoided. (See, for example, Marron and Toder (2014), Jorgenson et al (2015), and Kirchner et 

al (2019)). Naturally, different recycling strategies have different macroeconomic and distributional 

effects and therefore different potential for rebound effects in terms of the use of the different fossil 
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fuels and the corresponding emissions of CO2 and co-pollutants. On the flip side Parry et al (2015) 

highlight the relevance of recycling mechanisms in the presence of co-pollutants to increase the 

co-benefits of carbon policies. 

Finally, and although this is an energy policy paper applied to the Portuguese economy and its policy 

implications directly relevant for the Portuguese case, its interest is far from parochial. The quest for 

decarbonization is universal. The existence of significant challenges in terms of air pollution 

widespread. The concerns over the macroeconomic and distributional effects of environmental policies 

and the quest for parsimony in the choice of instruments unavoidable if there is some hope of 

meaningful policies ever being adopted. 
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