Original Paper

Willingness to Pay for Mortality Risk Reduction from Water

Accidents: Application to Recreational Beaches, Miyagi

Prefecture, Japan
Tadahiro Okuyama ${ }^{1 *}$
${ }^{1}$ Faculty of Econo mics, Shimonoseki City University, Shimonoseki City, Japan
* Tadahiro Okuyama, Faculty of Economics, Shimonoseki City University, Shimonoseki City, Japan

Received: February 14, 2020
Accepted: February 21, 2020
Online Published: February 27, 2020
doi:10.22158/jetr.v1n1p 1
URL: http://dx.doi.org/10.22158/jetr.v1n 1p1

Abstract

The purpose of this paper is to measure benefits of the risk reductions on water accidents. 763 people who recreated at beaches were selected by an internet research. The reduction rates were $10 \%, 50 \%$, and 90%. The median WTPs and the mean WTPs for reduction rates with and without protest bits were calculated. As results, the median WTPs at 10% reduction rates were calculated from 6 yen to 221 yen, the mean WTPs were from 615 yen to 820 yen. At 50% reduction rates, WTPs were from 743 yen to 1287 yen, and from 1256 yen to 1695 yen. At 90% reduction rates, WTPs were from 1607 yen to 2924 yen, and were from 2411 yen to 3433 yen.

Keywords

contingent valuation, mortality risk, option price, recreational activity

1. Introduction

Water recreations, such as the swimming and the fishing, are very popular activities in the world. Since there are many beaches in most area of Japan, the water recreations at beaches are familiar to the nations. Thus, the risks of recreational activities at beaches (such as the mortality risk by the drowning) should be recognized by more people. It is a problem that people does not recognize the ris ks so much when they recreate at beaches.

National Policy Agency (2009) reported the mortality risk of water accidents (Note 1). Figure 1 shows the total numbers of water accidents and the dead from 1999 to 2008. The total number of water accidents was decreasing from 1999 to 2003, and then about 750 accidents have occurred from 2004 to 2008. The total nu mber of the dead was also decreasing from 1999 to 2003, and then about

400 people have been dead from 2004 to 2008. Totally, the data indicates the number of water accidents have decreased. However, the mortality has not decreased. Figure 2 shows the mortality, number of the dead in a year per an accident. The mortalities caused from water accidents have been constant at about 55% levels. From other data base, the mortality caused from accidents at mountains has been about 20% from 1999 to 2008 . That is, it is considered that the mortality caused form water accidents are high rate.

Figure 1. Number of Water Accidents and Death

Figure 2. Time Series of Mortality Risks of Water Accidents

Generally, it would be recognized among people that the mortality risks of recreational activities are low. However, if a person is in a water accident, the person would dead due to the high rate of mortality. Thus, the number of disaster protection countermeasures, such as lifeguards, emergency service, and coastal levee, are performed in recreation sites. Costs (investments) for the countermeasures are usually provided by the local government, however, the effects of the countermeasures are vague. Sine project evaluations are required in recent years, and then it is necessary to examine the benefit analysis on the countermeasures at recreation sites. Thus, the purpose of this paper is to perform the estimation of willingness to pay (hereafter WTP) for the mortality risk reduction.
Since the mortality risk is one of non market goods, this study employs the contingent valuation method (hereafter CVM) for the benefit estimation (Note 2). In this study, the concept of option price (hereafter, OP), which is presented by Weisbrod (1964), was employed as a welfare measure in the benefit analysis. Jones-Lee (1976) and Graham (1981) examined the theoretical analysis on the OP. Viscusi (1993) reviewed empirical studies on the OP. Recently, Hayashiyama (2001) , Persson et al. (2001), Johansson (2002), Krupnik et al. (2002) and Hultkrantz et al. (2006) are earlier studies on the estimation of the OP by the CVM. Whitehead (1993) estimates the OP of Wildlife in Coastal and Marine. Although there are many studies on benefit analyses of the OP, little studies have not focused on the benefits of mortality risk reductions on recreational activities at beaches (Note 3).

The definition of OP is as follows. Let π be the probability of death caused from a recreational
activity, respectively, $1-\pi$ be the probability of alive. Next, $\pi^{\prime}=(1-r) \pi$ be the risk reduced by DPCs. Here, r is the risk reduction rate defined as $r \in[0,1)$. Finally, let U_{D} be an individual's utility when he is dead, and U_{A} be an individual's utility when he is arrive. Freeman III (1999) formulated the OP for a risk reduction as Eq. (1).

$$
\begin{equation*}
\pi U_{D}(y)+(1-\pi) U_{A}(y)=\pi^{\prime} U_{D}^{\prime}(y-O P)+\left(1-\pi^{\prime}\right) U_{A}^{\prime}(y-O P) \tag{1}
\end{equation*}
$$

2. Sur vey Design

2.1 Survey

The research was conducted through an Internet research company, Net Mile, Inc., from January to February in 2010. The object of this research is peoples who used at least one of 25 beaches (Note 4) in Miyagi Prefecture, Japan in past a year. From the data of Miyagi Prefectural Govern ment, total number of visitors for the beaches was about 380,000 persons. From the data of National Policy Agency (2009), eight persons were dead by water accidents in 2008. Note that the reasons of e ight persons' death were not only recreational activities.

An e-mail was sent to about 10,000 respondents, and 3,401 respondents answered screening questions, 1) whether they had lived in Miyagi prefecture now, 2) whether they had visited at least one of 25 beaches in the past year. 914 respondents answered "yes", and then they were invited to complete online questionnaires. As a result, 763 respondents answered the questionnaires.

2.2 Designing Mortality Risk

In this study, it was difficult to know the actual mortality risk caused from recreational activities at beach because of the lack of official data. Thus, the mortality risk was designed as 8 persons, which are the number of deaths in 2008 described above, per 2,340,049 persons, which is the population of Miyagi prefecture. Here, the mortality risk should be adjusted to be consisted with the total number of users because the possibility involved in the risk give for only people who used beaches. Thus, the denominator was adjusted as 380,000 , which is the total number of visitors at 25 beaches in 2009 published by Miyagi Prefectural Government (2010). As a result, the mortality risk from water accidents designed as 1.3 persons per 380,000 persons.

Since the reasons of eight persons' death were not only recreational activities, thus the mortality risk, 1.3 per 380,000 , was not the exact rate of mortality. However, Miyagi Coast Guard Office (2010) reported that the two persons dead by the swimming in 2009 (This report was published during the research period). The mortality risk presented by the research were lower value than the actual one, 2 persons per 380,000 persons. Thus, at least, there was no possibility that respondents overestimated their WTPs due to the high level of mortality risk (There were possibility of the inverse cases).

2.3 Visual Aids of Mortality Risks

It is sometimes difficult for respondents to understand the magnitudes of mortality risks (reductions). In the case, earlier studies noticed the scope insensitivity problem, which respondents answer same values
of WTP under different mortality risks, have occurred. The studies (c.f. Smith \& Desvousges, 1987; Corso et al., 2001) suggested that it is desirable to show the magnitudes of mortality risks for respondents by figures in the questionnaire in order to avoid the problem.

Causes	Mortality risk
Cancer	800.7 persons (per 380,000)
Traffic accident	15.6 persons (per 380,000)
Fire (Building)	3.7 persons (per 380,000$)$
Water Accident	1.3 persons (per 380,000$)$

Figure 3. Comparison of Magnitudes of Mortality Risks in Indi viduals' Life

Figure 4. Risk Reduction Rates Described in Contingent Scenario

This study used two figures following the manner. Figure 3 shows the re lative magnitudes of mortality risks of cancer, traffic accidents, fire, and water accidents. The mortality risks (without the one of water accidents) were calculated from the statistics of Miyagi prefectural governmental office. Figure 4 shows the magnitudes of the effects of risk reductions, such as the present mortality risk, and reduced mortality risks by $10 \%, 50 \%$, and 90% (Note 5). The levels of mortality risks were showed by bars.

2.4 Contingent Scenario

Contingent scenario was shown after the explanation of Figure 4. The contents were as follo ws.
"Please imagine that you will use the beaches as same as the past a year during next 10 years. Now, the
protection countermeasures for water accidents are performed at beaches, but the mortality risk from water accident at beaches is 1.3 persons per 380,000 persons in a year. Although it is unable to eliminate the mortality risk completely, the mortality risk is, however, reduced by performing the additional protection countermeasures such as the increase of additional life savers, safety nets, and the increase of emergency med ical service, etc.

Since it needs an additional found to implement the additional protection countermeasures, then let assume the situation that the tax used for the protection countermeasures is collected. The tax is collected from residents lived in Miyagi prefecture in order to maintenance or improve the protection countermeasures. The usages of collected tax are as follows:

1) The tax is used only for the protection countermeasures at beaches

The period of the project is 10 years from now. The ta x is used for the increase of additional manpower for the protection such as life savers, monitored facilities, breakwaters, and the increase of emergency med ical service.
2) The number of collecting the tax is once. The effect of the protection counterme asures continue during next 10 years.
3) All of founds are only used for the protection countermeasures. The detail of the accounting is published".
The duration of the effect of the project was set as 10 years not to change individuals' present situations (i.e., frequency of visitation) in respondents' images. This point is confirmed by including data on respondents' perspectives for visitations. The number of payments was once, and the format was the tax. The true objects of collecting the tax were users at beaches from the view point of the benefit principle. However, all beaches are opened for citizens (Open access), thus, an admission fee for the usage of beaches was considered as unrealistic method. Therefore, the tax for citizen lived in Miyagi prefecture was assumed.

2.5 Answer Format

Table 1. Ans wer Format A on Willingness to Pay
$\left.\begin{array}{ccc}\text { Reduction } & \begin{array}{c}\text { The effect of } \\ \text { rountermasure is } \\ 90 \%\end{array} & \begin{array}{c}\text { The effect of } \\ \text { countermeasure is } \\ 50 \%\end{array}\end{array} \begin{array}{c}\text { The effect of } \\ \text { countermeasure is } \\ \text { (once) }\end{array}\right]$

Table 2. Ans wer Format B on Willingness to Pay

	The effect of countermeasure is	The effect of countermeasure is	The effect of countermeasure is
WTP	10\%	50\%	90\%
100 yen	\checkmark		
300 yen			
\vdots			
7,000yen		\checkmark	
10,000yen			\checkmark
0 yen			

Although the single and the double bounded formats are usual research methods on the CVM, however, it is difficult to construct programs of the formats due to the systems of the research company. Thus, this research used the payment card format (Note 6). Moreover, since three reduction rates were assumed in this study (Figure 4), then the two answer formats were made as matrix formats in Table 1 (Format A) and Table 2 (Format B). The reduction rates are showed in the first row and the WTPs (0 , $100,300,500,1,000,3,000,5,000,7,000$, and 10,000) are showed in the first column. All respondents answered both questionnaires by checking (\boldsymbol{V}) the elements of matrixes; the first is Format A, then Format B. The two formats were used for checking the differences of WTPs caused from the answer formats.
In questionnaire, four categories of 0 yen were shown in Table 1 and Table 2; A) 0 yen: There is no meaning of the effect of the project, B) 0 yen: There is no money, C) 0 yen: No possibility to meet the accident, D) 0 yen: Dislike the tax. If a respondent select A or B, the WTP were classified as 0 yen. If C or D, the WTP were classified as protest bids because the respondent objected to the payments vehicle or the mortality risk in the question. In this study, the two estimations were performed. The one is the estimation using data with protest bids and the other is without protest bids. Checking the differences among WTPs in each formats (internal scope test) using data with the protest bits performed in AppendixA.

2.6 Explanatory Variables

There are three categories of explanatory variables in this study, individuals' characteristics, the experiences of injure in beaches, and issues on usage of beaches. The questionnaires are shown in Appendix B.
The first is individuals' characteristics. Data of individual i 's gender ($G N D$) and age ($A G E$), which were collected by the company as respondents' information (The data have updated every year), were used. The $G N D$ was a dummy variable, 1 for male, 0 for female. The $A G E$ was the individual i 's years. Individual i 's annual household income (M) and educational level researched by the
questionnaire of this study were used. The educational level has four categories; vocational school ($E D V S$), junior college ($E D J C$), university ($E D U$), and graduate school ($E D G S$). Each variable were employed as dummy variables. Next, irregular employ ment (JBIE) and a homemaker (JBHM) were used as the individual i 's employment status. The JBIE and JBHM were employed as dummy variables.
The second category is the experiences of injures in beaches. A hypothetical assumption on the influence of the variable for WTP was that the WTP becomes high if the individual i had experienced to injure at a beach in a recreational activity. Here, there are some magnitudes of injures. Thus, the magnitudes of injury were categorized in the questionnaire as follows (The explanations were refereed by Japanese dictionary).
The minor injury: an injured person is not admitted to hospital.
The severe injury: an injured person must be admitted to hospital more than one month.
The serious medical condition: an injured person is in mortal danger.
Moreover, the experiences were categorised as individual i 's experiences (self injured experiences) and individual i 's friend or fa mily's experience (other persons' injured experiences). Finally, variables were categorized as the individual i 's minor injury (IMI), the individual i 's severe injury (ISI), the individual i 's serious medical condition (ISM), the individual i 's friend or family's minor injury (OMI), the individual i 's friend or family 's severe injury (OSI) , and the individual i 's friend or family's serious medical condition (OSM).
The third category is the individual i 's usage of beaches for recreational activity. The first is the individual i 's perspective for future usage ($F U S E$). Respondents were asked how many years you use beaches for recreational activities. The second is the individual i 's main purpose of recreations at beaches; swimming ($S W$), surfing ($S F$), fishing ($F S$), fire works or driving ($F D$). The fireworks or driving has two categories. The first (fire works or driving [1]) is the individual i had an opportunity to touch seawater ($F D 1$) when he visited a beach, the second is the individual i did not have the opportunity (fireworks or driving [2]; $;$). Basic statistics of variables are shown in Table 3.

Table 3. Basic Statistics

		Descriptions (units)	Symbol	Mean	Standard error
元	$\xrightarrow{\text { ¢ }}$	90\% reduction (yen)	WTPA90	2029.489	3072.772
		50\% reduction (yen)	WTPA50	994.758	1788.480
		10\% reduction (yen)	WTPA10	421.887	1272.135
		90\% reduction (yen)	WTPB90	1758.847	2781.370
		50\% reduction (yen)	WTPB50	891.088	1635.282
		10\% reduction (yen)	WTPB10	445.478	1390.336

		Income (10 thousand yen)	M	572.149	312.986
		Gender (male: 1, female: 0)	GND	0.594	0.492
		Age (years)	AGE	40.134	9.333
		Vocational school (1, other:0)	EDVS	0.142	0.349
		Junior college (1, other:0)	EDJC	0.073	0.261
		University (1, other:0)	EDU	0.385	0.487
		Graduate school (1, other:0)	EDGS	0.055	0.228
		Irregular employment (1, other:0)	JBIE	0.165	0.372
		Ho me maker (1, other:0)	JBHM	0.159	0.366
		Minor in jury (1, other:0)	IMI	0.138	0.345
		Severe injury (1, other:0)	ISI	0.005	0.072
		Serious medical condition(1, other:0)	ISM	0.005	0.072
		Minor in jury(1, other:0)	OMI	0.010	0.300
		Severe in jury (1, other:0)	OSI	0.011	0.102
		Serious medical condition (1, other:0)	OSM	0.021	0.143
$\begin{gathered} \underset{\sim}{\infty} \\ \substack{0 \\ 0 \\ 0} \end{gathered}$		Perspective for future use (years)	FUSE	7.603	5.716
		Purpose of swimming (1, other:0)	SW	0.561	0.497
		Purpose of surfing (1, other:0)	SF	0.032	0.175
		Purpose of fishing (1, other:0) Purpose of swimming (1, other:0)	FS	0.198	0.399
		(There were opportunities to touch seawater) Purpose of swimming (1, other:0)	$F D 1$	0.257	0.437
		(There were no opportunities to touch seawater)	FD2	0.256	0.437

3. Model

This paper used the logit model for estimations. Ôno (2000) presented the reconstruction of data for using the method as follows. Let n be total nu mber of respondents, and m be total number of presented WTP in the questionnaire, and each WTP are expressed as $W T P_{1}, \ldots, W T P_{k}, \ldots, W T P_{m}$ and $W T P_{1}<W T P_{2}<\ldots<W T P_{k}<\ldots<W T P_{m}$ respectively. If the individual i chooses $W T P_{k}$, it is interrupted that the individual willingness to pay for WTPs from $W T P_{1}$ to $W T P_{k-1}$ (because these WTP are lower than $W T P_{k}$). On the other hand, it is interrupted that the individual do not willingness to pay for WTPs from $W T P_{k+1}$ to $W T P_{m}$. Since m numbers of response data are obtained from a respondent' answer, then, totally, $N=n \times m$ numbers of response data are constructed. Similarly, data of an explanatory variable, x, were reconstructed as a vector (X) which has N nu mbers of elements such as $X=(x, x, \ldots, x)$. Figure 5 shows the response rates for WTPs, Table 4 and Table 5 shows the basic statistics after the reconstruction.

Figure 5. Response Rates of WTPs with and without Protest Bit

Table 4. Reconstructed Data with Protest Bits

Variables	mean	sd	mean	Sd	mean	sd	mean	sd
M	572.149	312.801	JBIE	0.165	0.371	OSM	0.021	0.143
$G N D$	0.594	0.491	$J B H M$	0.159	0.365	$F U S E$	7.603	5.713
$A G E$	40.134	9.327	IMI	0.138	0.345	$S W$	0.561	0.496
$E D V S$	0.142	0.349	ISI	0.005	0.072	$S F$	0.031	0.175
$E D J C$	0.073	0.261	ISM	0.005	0.072	$F S$	0.198	0.398
$E D U$	0.385	0.487	OMI	0.100	0.299	$F D 1$	0.257	0.437
$E D G S$	0.055	0.228	OSI	0.010	0.102	$F D 2$	0.256	0.436
N	7,630		7,630		7,630		7,630	

Table 5. Reconstructed Data without Protest Bits

Format	A	A	A	B	B	B
Rate	90\%	50\%	10\%	90\%	50\%	10\%
M	576.045	576.923	578.606	578.195	575.994	575.994
	(312.141)	(314.086)	(316.503)	(315.494)	(313.494)	(313.494)
GND	0.601	0.598	0.595	0.599	0.596	0.596
	(0.490)	(0.490)	(0.491)	(0.490)	(0.491)	(0.491)
AGE	40.000	40.010	40.010	40.126	40.095	40.095
	(9.370)	(9.426)	(9.448)	(9.369)	(9.428)	(9.428)
EDVS	0.127	0.130	0.130	0.134	0.130	0.130
	(0.333)	(0.336)	(0.336)	(0.341)	(0.337)	(0.337)
EDJC	0.074	0.075	0.073	0.077	0.076	0.076
	(0.262)	(0.264)	(0.260)	(0.266)	(0.266)	(0.266)
$E D U$	0.397	0.397	0.402	0.399	0.396	0.396
	(0.489)	(0.489)	(0.490)	(0.490)	(0.489)	(0.489)
EDGS	0.056	0.054	0.055	0.054	0.052	0.052
	(0.230)	(0.227)	(0.228)	(0.227)	(0.223)	(0.223)
JBIE	0.170	0.173	0.172	0.173	0.176	0.176
	(0.376)	(0.378)	(0.377)	(0.378)	(0.381)	(0.381)
JBHM	0.150	0.151	0.152	0.147	0.148	0.148
	(0.357)	(0.358)	(0.359)	(0.354)	(0.355)	(0.355)
IMI	0.150	0.149	0.149	0.142	0.146	0.146
	(0.357)	(0.356)	(0.356)	(0.349)	(0.353)	(0.353)
ISI	0.003	0.005	0.005	0.005	0.005	0.005
	(0.057)	(0.069)	(0.070)	(0.069)	(0.069)	(0.069)
ISM	0.006	0.006	0.006	0.006	0.006	0.006
	(0.080)	(0.080)	(0.080)	(0.080)	(0.079)	(0.079)
OMI	0.101	0.104	0.102	0.101	0.105	0.105
	(0.302)	(0.306)	(0.303)	(0.301)	(0.306)	(0.306)
OSI	0.010	0.010	0.010	0.010	0.010	0.010
	(0.098)	(0.098)	(0.098)	(0.097)	(0.097)	(0.097)
OSM	0.019	0.019	0.019	0.019	0.019	0.019
	(0.138)	(0.137)	(0.138)	(0.137)	(0.137)	(0.137)
FUSE	7.698	7.688	7.697	7.653	7.588	7.588
	(5.713)	(5.718)	(5.691)	(5.720)	(5.717)	(5.717)
SW	0.582	0.582	0.574	0.572	0.574	0.574

	(0.493)	(0.493)	(0.495)	(0.495)	(0.495)	(0.495)
$S F$	0.032	0.034	0.034	0.035	0.035	0.035
	(0.176)	(0.180)	(0.181)	(0.184)	(0.184)	(0.184)
$F S$	0.195	0.194	0.191	0.192	0.196	0.196
	(0.396)	(0.395)	(0.393)	(0.394)	(0.397)	(0.397)
$F D 1$	0.275	0.277	0.272	0.272	0.281	0.281
	(0.447)	(0.448)	(0.445)	(0.445)	(0.450)	(0.450)
	0.246	0.248	0.251	0.252	0.248	0.248
	(0.431)	(0.432)	(0.434)	(0.434)	(0.432)	(0.432)
N	6,220	6,240	6,170	6,260	6,290	6,290

The estimation model was followed by Hanemann and Kanninen (2001). Let \mathbf{X} be a matrix of explanatory variables, $\Delta V=\mathbf{X} \boldsymbol{\beta}^{\prime}+\gamma W T P+\varepsilon$ be a difference between utilities with and without implementing a project. Here, $\boldsymbol{\beta}$ and γ are parameters, and ε is a randomly distributed preference. Let $\operatorname{Pr}($ yes $)$ be a probability which the individual i willing to pay for a WTP. The probability was assumed the logistic distribution. $1-\operatorname{Pr}(y e s)$ be a probability which the individual i do not willing to pay. Let assume that each ε follows the distribution $(1 / 1+\exp (-\Delta V))$, then, a mean WTP defined as integrating $\operatorname{Pr}(W T P)$ from 0 to Infinite (plus) with both estimated parameters and mean values of the data, a median WTP defined as WTP under $\Delta V=0$, namely, Median $W T P=-\mathbf{X} \boldsymbol{\beta}^{\prime} / \gamma$.

4. Estimation Results

Estimations were performed using R version 2.11. The results of including protest bits are shown in Table 6, and without protest bits are shown in Table 7. Confidence intervals of parameters were calculated following Venables and Ripley (2002), and the results are shown in Appendix C. Columns of Table 6 and Table 7 are categorized by 1) format A and B, 2) reduction rates ($10 \%, 50 \%$, and 90%). The notation of PwA, PwB, PwoA, and PwoB are categories segmented by Formats and with/without protest bits. The variables, maximum likelihood (max. LL), McFadden's pseudo r-squared, and number of samples are shown in rows. The samples (N) in Table 5 were difference due to the differences of protest bits.

Table 6. Es timation Results with Protest Bits

Case	PwA			PwB		
Format	A					
Rates	90%	50%	10%	10%	50%	90%
Cont.	0.21880	0.08406	-0.22530^{a}	-0.48560^{a}	-0.08030	-0.07686
$W T P$	-0.00042^{a}	-0.00076^{a}	-0.00117^{c}	-0.00104^{a}	-0.00084^{a}	-0.00048^{a}

M	$0.00054{ }^{\text {a }}$	$0.00043{ }^{\text {a }}$	$0.00020^{\text {a }}$	$0.00017^{\text {b }}$	$0.00049{ }^{\text {a }}$	$0.00066{ }^{\text {a }}$
GND	-0.00997	$-0.20040^{\text {b }}$	-0.27800	$-0.14580{ }^{\text {b }}$	-0.10750	0.07787
AGE	$-0.00621^{\text {c }}$	-0.00252	0.00140	0.00566	0.00014	-0.00377
EDVS	-0.11240	-0.00657	0.08555	0.05552	-0.10060	$-0.18350^{\text {b }}$
EDJC	$0.42070^{\text {a }}$	$0.22590{ }^{\text {c }}$	-0.05145	0.04873	0.15840	$0.32050{ }^{\text {a }}$
EDU	$0.12310^{\text {c }}$	$0.12780^{\text {c }}$	$0.19720^{\text {a }}$	$0.12900{ }^{\text {c }}$	0.04603	0.03877
EDGS	$0.22210^{\text {c }}$	0.14560	$0.30740^{\text {b }}$	0.14480	0.02770	0.17380
JBIE	$0.22840{ }^{\text {a }}$	0.08519	0.07305	0.14320	$0.22540{ }^{\text {b }}$	$0.29270{ }^{\text {a }}$
JBHM	$-0.25180^{\text {a }}$	$-0.25390^{\text {a }}$	-0.05818	-0.07486	-0.11330	-0.06518
IMI	$0.37420{ }^{\text {a }}$	$0.28330^{\text {a }}$	$0.20270{ }^{\text {b }}$	0.02152	0.04992	$0.29060{ }^{\text {a }}$
ISI	$-1.47400^{\text {a }}$	$-1.40800^{\text {b }}$	$1.30100^{\text {b }}$	$1.85300{ }^{\text {a }}$	0.22220	-0.52710
ISM	$1.98700^{\text {a }}$	$5.02100^{\text {a }}$	$2.73000{ }^{\text {a }}$	$1.63300{ }^{\text {a }}$	$1.80700^{\text {a }}$	$0.90760{ }^{\text {c }}$
OMI	0.03003	0.02077	-0.02624	-0.13110	0.04007	-0.05226
OSI	$0.64000{ }^{\text {c }}$	0.47800	0.30570	$-0.93530^{\text {b }}$	-0.22360	-0.04862
OSM	-0.34610	-0.14160	$-0.51970^{\text {b }}$	0.12650	-0.27280	-0.34200
FUSE	$0.02021{ }^{\text {a }}$	$0.02234{ }^{\text {a }}$	0.00477	0.00524	$0.02245{ }^{\text {a }}$	$0.02398{ }^{\text {a }}$
SW	$0.24710^{\text {a }}$	$0.24890{ }^{\text {a }}$	$0.14950{ }^{\text {b }}$	$0.19840{ }^{\text {a }}$	$0.26640{ }^{\text {a }}$	$0.23660{ }^{\text {a }}$
SF	0.26640	$0.35000{ }^{\text {c }}$	0.11750	0.07819	$0.31770^{\text {c }}$	$0.33560{ }^{\text {b }}$
FS	0.01750	0.06676	0.07621	0.09719	0.09294	0.09392
FD1	$0.28270^{\text {a }}$	$0.24400{ }^{\text {a }}$	-0.01938	0.01303	$0.34030^{\text {a }}$	$0.39080{ }^{\text {a }}$
FD2	-0.00116	-0.01644	-0.00136	-0.02257	-0.01239	$0.12520^{\text {c }}$
Max.LL	-4,153.7231	$-3,538.5154$	-3,070.4619	-3,143.4511	-3,457.9408	-4,015.2871
R^{2}	0.2105	0.2906	0.2687	0.2556	0.3025	0.2326
N	7,630	7,630	7,630	7,630	7,630	7,630

Note A. Super script, a , in tables means p -value of a estimated parameter is less than 1%, the b means less than 5%, and the c means 10%, respectively.

Table 7. Es timation Results without Protest Bits

Case	PwoA			Pwo B		
Format	A		B			
Rates	90%	50%	10%	10%	50%	90%
Cont.	0.63890^{a}	0.43790^{b}	-0.03258	-0.30300	0.19720	0.25201
$W T P$	-0.00046^{a}	-0.00077^{a}	-0.00107^{a}	-0.00096^{a}	-0.00085^{a}	-0.00051^{a}
M	0.00068^{a}	0.00046^{a}	0.00013	0.00014	0.00053^{a}	0.00076^{a}
$G N D$	-0.10950	-0.28350^{a}	-0.32500^{a}	-0.18450^{b}	-0.16190^{c}	0.07843
$A G E$	-0.00467	-0.00048	0.00345	0.00683^{c}	0.00138	-0.00395

EDVS	0.10640	0.14510	$0.20060^{\text {c }}$	0.09481	0.00523	-0.06797
EDJC	$0.53210^{\text {a }}$	0.21170	-0.07736	-0.02877	0.10950	$0.33233{ }^{\text {a }}$
$E D U$	$0.14040{ }^{\text {c }}$	0.11880	$0.17910^{\text {b }}$	0.09250	0.01756	0.03149
EDGS	0.30570^{b}	$0.28760^{\text {c }}$	0.40960^{b}	0.16570	0.18770	$0.47133{ }^{\text {a }}$
JBIE	$0.17520^{\text {c }}$	-0.00623	0.01184	0.10960	0.13150	$0.22089{ }^{\text {b }}$
JBHM	$-0.31590{ }^{\text {a }}$	$-0.28160^{\text {b }}$	-0.06113	-0.01925	-0.05434	0.04180
IMI	$0.24520^{\text {a }}$	0.20280^{b}	0.12150	-0.01904	-0.03325	0.18629^{b}
ISI	15.50000	-1.04300	$2.86200^{\text {a }}$	3.31600^{a}	1.44000^{c}	0.13920
ISM	-0.46670	$4.30600^{\text {a }}$	$1.65100{ }^{\text {b }}$	0.64650	0.74060	-0.00216
OMI	0.02272	-0.01486	-0.03309	-0.14290	-0.01301	-0.11436
OSI	0.08186	0.60040	0.57540	$-0.96990^{\text {b }}$	-0.34060	-0.19555
OSM	-0.23100	0.17230	-0.33430	0.54010^{b}	0.10440	-0.01627
FUSE	$0.02627^{\text {a }}$	$0.02734^{\text {a }}$	0.00505	0.00731	0.03321^{a}	0.03643^{a}
SW	$0.13760{ }^{\text {b }}$	0.14620^{b}	0.11880	0.17850^{b}	0.21820^{a}	0.14903^{b}
SF	0.30110	0.26480	-0.03612	-0.11540	0.08869	0.10947
FS	0.12220	$0.15600^{\text {c }}$	0.13170	0.16840^{b}	0.19140^{b}	$0.23933{ }^{\text {a }}$
$F D 1$	0.13450	0.09578	-0.11050	-0.06434	$0.17410{ }^{\text {b }}$	$0.21122^{\text {a }}$
$F D 2$	$0.08182^{\text {c }}$	0.01967	0.00588	-0.03289	0.03565	$0.25260^{\text {a }}$
Max.LL	-3,187.007	-2,848.067	-2,601.330	-2,693.030	-2,803.712	-3,147.876
R^{2}	0.258	0.329	0.280	0.266	0.341	0.278
N	6,220	6,240	6,170	6,260	6,290	6,290

Note A. Super script, a, in tables means p-value of a estimated parameter is less than 1%, the b means less than 5%, and the c means 10%, respectively.

Table 8. Calculation of Median and Mean WTPs for Reduction Rates and Ans wer Formats

With Protest				
$\underset{\sim}{\mathbb{k}}$	Format	A	A	A
	Rates	10\%	50\%	90\%
	Median	47.02	807.60	1850.94
		[-1053.49, 1363.93]	[-863.10, 2708.35]	[-982.82, 5022.29]
	Mean	615.254	1377.86	2749.57
		[180.33, 1560.12]	[498.71, 2899.49]	[1121.96, 5343.13]
$\underset{\sim}{\mathbb{E}}$	Format	B	B	B
	Rates	10\%	50\%	90\%
	Median	6.30	743.28	1607.40
		[-1224.83, 1471.68]	[-784.29, 2486.94]	[-940.49, 4457.38]
	Mean	671.57	1256.11	2411.95
		[197.87, 1705.79]	[450.04, 2656.95]	[965.08, 4739.35]
Without Protest				
$\begin{aligned} & \text { K } \\ & \text { ס } \\ & \hline \end{aligned}$	Format	A	A	A
	Rates	10\%	50\%	90\%
	Median	221.36	1287.12	2924.63
		[-1099.70, 1812.06]	[-597.63, 3433.41]	[-203.28, 6691.67]
	Mean	766.22	1695.90	3433.40
		[207.57, 1975.12]	[580.93, 3544.40]	[1335.07, 6815.92]
${\underset{\theta}{E}}_{\substack{0}}$	Format	B	B	B
	Rates	10\%	50\%	90\%
	Median	187.64	1157.42	2403.76
		[-1267.89, 1928.52]	[-560.53, 3119.85]	[-356.86, 5493.77]
	Mean	820.59	1533.07	2907.12
		[223.50, 2122.21]	[520.98, 3221.75]	[1115.41, 5634.81]

The signs and p-values of estimated parameters are as follows. First, the WTPs and the individual statistics are described. The signs of WTPs are positive in all categories (PwA, PwB, PwoA, and Pwo B), and the p -values are less than 1%. The signs of incomes (M) are positive in all categories. The p-values of 10% in PwoA and PwoB are more than 10%, other values are less than 10%. The signs and p-values of $G N D$ s are different in reduction rates and categories. However, there is a tendency that most of p-values are low levels in the case of 10% and 50% reduction rates. Finally, the signs and p -values of $A G E$ s are different in reduction rates and categories, and most of the p -values are more than 10%. Next, signs and p-values of injured experiences are discussed. Totally, the numbers of p-values,
which are considered statistically significant, on self injured experiences (IMI, ISI, and ISM) are over the ones of other person's injured experiences (OMI, OSI, and OSM). Thus, it is considered that the self injured experiences influence $W T P$ s more than the other persons' injured experiences. Some of the signs were estimated negative values such as 50% and 90% in PwA . Thus, there is possibility that the self injured experiences are not influenced to WTPs. However, most of the signs in the ISI and the ISM in 10% reduction rates are positive, and p-values are considered as statistically significant. Therefore, it is considered that the injured experiences are influenced to $W T P$ s in the cases of low levels of reduction rates.

Next, signs and p-values of use status are discussed. First, the signs of FUSEs are positive in all categories, and the p-values are less than 10% without the cases of 10% reduction rates in all categories. Thus, it is considered that the FUSE influences WTP in the high levels of reduction rates. In the contingent scenario, the duration of the effect of the project was set as 10 years, and assumed the numbers of visits are same with their present situations. However, it is considered that individuals did not image such future situations when they answered.

The signs of purposes to visit beaches ($S W, S F$, etc.) were estimated both positive and negative values. However, the signs are positive when the p-values are less than 10%.

Finally, calculations of WTPs are shown in Table 8. The values in brackets are the WTPs calculated by lower and upper bounds of parameters in Appendix C. As results, median WTPs at 10% reduction rates ranges from 6.30 yen/once to 221.36 yen/once, mean WTPs ranges from 615.25 yen/once to 820.59 yen/once. Median WTPs at 50% reduction rates ranges from 743.28 yen/once to 1287.12 yen/once, mean WTPs ranges from 1256.11 yen/once to 1695.90 yen/once. Median WTPs at 90% reduction rates ranges from 1607.40 yen/once to 2924.63 yen/once, mean WTPs ranges from 2411.95 yen/once to 3433.40 yen/once.

5. Conclusions

Water recreations, such as swimming and fishing, are very popular activities in the world. Since there are many beaches in most area of Japan, water recreations at beaches are familiar to the nations. However, if a person is in a water accident, the person would dead due to the high rate of mortality risk of water accident. Although there are many studies on benefit analyses of the OP, little studies have not focused on the benefits of mortality risk reductions on recreational activities. The purpose of th is paper is to perform the estimation of willingness to pay (hereafter WTP) for the mortality risk reduction researched by the contingent valuation method.
The research was conducted through an Internet research company. 763 respondents answered the questionnaires. Although the single and the double bounded formats are usual research methods on the contingent valuation method, however, it is difficult to create programs of the formats due to the systems of the research company. Thus, this research used the payment card format. Moreover, since
three reduction rates $(10 \%, 50 \%$, and $90 \%)$ were assumed in this study, then the two answer formats (Format A and Format B) were presented. the presented WTPs were 0 yen, 100 yen, 300 yen, 500 yen, 1,000 yen, 3,000 yen, 5,000 yen, 7,000 yen, and 10,000 yen, and were shown with each reduction rate. The number of payment is at once, and the payment vehicle was tax.
Our findings are as follows. The median WTPs and the mean WTPs for each reduction rate with and without protest bits were calculated. As results, the median WTP at 10% reduction rates ranges from 6.30 yen/once to 221.36 yen/once, the mean WTP ranges from 615.25 yen/once to 820.59 yen/once. The median WTP at 50% reduction rates ranges from 743.28 yen/once to 1287.12 yen/once, the mean WTP ranges from 1256.11 yen/once to 1695.90 yen/once. The median WTP at 90% reduction rates ranges from 1607.40 yen/once to 2924.63 yen/once, and the mean WTP ranges from 2411.95 yen/once to 3433.40 yen/once.
As for the explanatory variables, estimation results indicated that 1) the self injured experiences influence WTPs more than the other persons' injured experiences, 2) the injured experiences are influenced to WTPs in the cases of low levels of reduction rates, 3) individuals' perspective for future use of beaches influences their WTPs in the high levels of reduction rates.

References

Beau maisa, O., \& Appéré, G (2010). Recreational shellfish harvesting and health risks: A pseudo-panel approach combining revealed and stated preference data with correction for on-site sampling. Ecological Economics, 69(12), 2315-2322. https://doi.org/10.1016/j.ecolecon.2010.07.012
Bin, O., Landry, C. E., Ellis, C., \& Vogelsong, H. (2005). Some consumer surplus estimates for North Carolina beaches. Marine Resource Economics, 20(2), 145-161. https://doi.org/10.1086/mre.20.2.42629466
Broberg, T., \& Brännlund, R. (2008). An alternative interpretation of multiple bounded WTP data: Certainty dependent payment card intervals. Resource and Energy Economics, 30(4), 555-567. https://doi.org/10.1016/j.reseneeco.2008.09.001
Corso, P. S., Hammitt, J. K., \& Graham, J. D. (2001). Valuing mortality-risk reduction: Using visual aids to improve the validity of contingent valuation. Journal of Risk and Uncertainty, 23(2), 165-184. https://doi.org/10.1023/A:1011184119153

Dharmaratne, G S. \& Brathwaite, A. E. (1998). Economic valuation of the coastline for touris m in Barbados. Journal of Travel Research, 37(2), 138-144. https://doi.org/10.1177/004728759803700205

Evans, M. F., Flores, N. E., \& Boyle, K. J. (2003). Multiple bounded uncertainty choice data as probabilistic intentions. Land Economics, 79(4), 549-560. https://doi.org/10.2307/3147299

Graham, D. A. (1981). Cost benefit analysis under uncertainty. American Economic Review, 71(4), 715-725.

Freeman III, A. M. (2003). The Measurement of Environmental and Resource Values: Theory and Methods. Resources for the Future, Washington, D.C.

Hayashiyama, Y., Tanabe, S., \& Hara, F. (2001). Economic evaluation of snow-removal level by contingent valuation method. Transportation Research Record, 183-190. https://doi.org/10.3141/1741-26
Hanemann, W. M., \& Kanninen, B. J. (2001). The statistical analysis of discrete-response CV data. In Bateman, I. J., \& Willis, K. G (Eds.), Valuing Environmental Preferences: Theory and Practice of the Contingent Valuation Method in the US, EU, and Developing Countries (pp. 302-441). New York: Oxford University Press. https://doi.org/10.1093/0199248915.003.0011
Hultkrantz, H., Lindberg, G, \& Andersson, C. (2006). The value of improved road safety. Journal of Risk and Uncertainty, 32(2), 151-170. https://doi.org/10.1007/s 11166-006-8291-z
Johansson, P.-O. (2002). On the definition and age-dependency of the value of a statistical life. Journal of Risk and Uncertainty, 25(3), 251-263. https://doi.org/10.1023/A:1020975905719

Jones-Lee, M. W. (1976). The value of life: An economic analysis. Chicago: University of Chicago Press.

Loomis, J., Yorizane, S., \& Larson D. M. (2000). Testing significance of multi-destination and multi-purpose trip effects in a travel cost method demand model for whale watching trips. Agricultural and Resource Economics Review, 2912, 183-191. https://doi.org/10.1017/S 1068280500005311
Miyagi Coast Guard Office. (2010). Heisei 21 nen no miyagiken-engan niokeru senpaku-kainan oyobi jinshinjiko hasseijoukyou tou nituite (in Japanese). Retrieved October 3, 2010, from http://www.kaiho.mlit.go.jp/02kanku/miyagi/koho (in Japanese)

Miyagi Prefectural Government. (2010). Heisei 21 nendo kennai shuyou kaisuiyokujou no suishitsu kensa kekka nituite (in Japanese). Retrieved October 3, 2010, from: http://www.pref.miyagi.jp/kankyo-t/mizu/press/ H21 kaisui.pdf

National Police Agency. (2009). Heisei 20 nentyu niokeru suinanjiko no gaikyou (in Japanese). Retrieved October 3, 2010, fromhttp://www.npa.go.jp/safetylife/ chiiki28/h20_suinan.pdf

Ôno, E. (2000). Kankyohyouka-no-jitumu. Tokyo, Ke iso shobo.
Persson, U., Norinder, A., Hjalte, K., \& Gralén, K. (2001). The value of a statistical life in transport: Findings from a new contingent valuation study in Sweden. Journal of Risk and Uncertainty, 23(2), 121-134. https://doi.org/10.1023/A:1011180018244
Krupnick, A., Cropper, M., Alberini, A., He intzelman, M., Simon, N., O'Brien, B. \& Goeree, R. (2002). Age, health and the willingness to pay for mortality risk reductions: A contingent valuation survey of Ontario residents. Journal of Risk and Uncertainty, 24(2), 161-186. https://doi.org/10.1023/A:1014020027011

Smith, K.V., \& Desvousges, W. H. (1987). An empirical analysis of the economic value of risk changes.

Journal of Political Economy, 95(1), 89-114. https://doi.org/10.1086/261443
Venables, W. N., \& Ripley, B. D. (2002). Modern Applied Statistics with S. (4th ed.). Springer. https://doi.org/10.1007/978-0-387-21706-2
Viscusi, W. K. (1993). The value of risks to life and health. Journal of Economic Literature, 31(4), 1912-1946.

Viscusi, W. K. \& Aldy, J. E. (2003). The value of a statistical life: A critical rev iew of market estimates throughout the world. Journal of Risk and Uncertainty, 27(1), 5-76. https://doi.org/10.1023/A:1025598106257

Weisbrod, B. A. (1964). Collective-consumption services of individual- consumption goods. Quarterly Journal of Economics, 78(3), 471- 477. https ://doi.org/10.2307/1879478
Whitehead, J. C. (1993). Total economic values for coastal and marine wildlife: Specification, valid ity, and valuation issues, Marine Resource Economics, 8(2), 119-132. https://doi.org/10.1086/mre.8.2.42629055
Whitehead, J. C., Dumas, C. F., Herstine, J., Hill, J., \& Buerger, R. (2008). Valu ing beach access and width with revealed and stated preference data, Marine Resource Economics, 23(2), 119-135. https://doi.org/10.1086/mre.23.2.42629607

Notes

Note 1. Accidents at sea. Thus, the reason of death was not only recreational activities at beaches.
Note 2. The hedonic wage method is one of methods to estimate the OP. See Viscusi \& Aldy (2003).
Note 3. For example, Dharmaratne and Brathwaite (1998), Loomis et al. (2000), Bin et al (2005), and Whitehead (2008) are earlier studies on benefit analyses on recreational activities at beaches. Beau maisa and Appéré (2010) analy zed the health risk reduction caused form shellfish harvesting. But their study did not focus on the risk cause from recreational activity itself (this study focused on the harvesting).
Note 4. Miyagi prefecture is located in North-East area in Japan and faces the Pasific Ocean. The latitude and longitude of Sendai city, which is the central city of Miyagi prefecture, are near the ones of Athens (in Greece) and San Francisco (in U.S.A.). The urban area is $7,285 \mathrm{~km} 2$ and its length of coastline is about 828 km . Orders of mortality, which is caused from water accidents, of Miyagi prefecture in 46 prefectures of Japan were 8th in 2007 and 16th in 2008. In addition, the number of beaches researched by Miyagi prefectural governmental office is 26 . However, the one of them is excluded from this research because it had been closed during the summer in 2009.
Note 5. It is need the enough distance among reduction rates because respondents cannot judge the effect of the reduction if the distance is small. Thus, this study set the distances of the reduction rates as 40%.

Note 6. Evans et al. (2003), and Broberg \& Brännlund (2008) are similar studies, which used the matrix format.

Appendix

AppendixA. Scope Tests
Internal scope tests were performed by testing the differences of mean values of WTPs (with protest bits). The Tukey's multiple comparison were employed. H0: no differences in mean values, H1: other. The results of the statistic are shown in Table 9 , p-values are in the parenthesis. Let α be a rejection region, and sets $\alpha=0.01$. The p-value of 10% of Format A and 10% of Format B is larger than α. Thus, there is no differences between the means of two WTPs. Similarly, there are statistically no differences between 50% and 90% of Format A and Format B, respectively. On the other hand, the mean values of other WTPs are different because of $\alpha>p$-values. It is concluded that the WTPs presented by respondents in same reduction rates are same values, and the WTPs in different reduction rates are different.

Table 9. Results on Scope Tests for Reduction Rates and Ans wer Formats

		Format A		Format B		
		50\%	10\%	90\%	50\%	10\%
Format A	90\%	9.5983	14.9124	2.5105	10.5599	14.6934
		(0.0000)	(0.0000)	(0.1211)	(0.0000)	(0.0000)
	50\%	-	5.3140	7.0878	0.9617	5.0957
			(0.0000)	(0.0000)	(0.9299)	(0.0000)
		-	-	12.4018	4.3524	0.2188
	10\%			(0.0000)	(0.0002)	(0.9999)
Format B	90\%	-	-	-	12.1829	4.1335
					(0.0000)	(0.0000)
		-	-	-	-	8.0494
	50\%					(0.0005)

Appendix B Questionnaires

Figures used in the estimation are in the parentheses.
Q. Did you or your friends or families have injured in beaches in past a year?
A. No experiences, B. I had experience to have the minor injury, C. I had experience to have the severe injury, D. I had experience to have serious medical condition, E. My friends or families had experience to have the minor injury, F. My friends or families had experience to have the severe injury, G My friends or families had experience to have the serious medical condition, H. Other ()

Q．How long do you use beaches in future？Please answer your perspective．
A．There is no possibility to use in future（0），B．From 1 year to 3 years（2），C．From 4 years to 6 years（5），D．From 7 years to 10 years（7），E．From 11 years to 20 years（5）（15），F．More than 21 years（21）

Q．Please answer your educational levels．
A．Junior high school，B．High school，C．vocational school，D．junior college，E．specialized vocational high school，F．Under graduate school，G Graduate school，H．Other

Q What is your job？
A．Regular employee，B．Contract employee，C．Te mporary employee，D．Part－time jobber
E．Self－owned business，F．Free lance professional，G Homemaker，H．Student，I．Other
Q．What is your main purpose to visit beaches in past a year？
A．Swimming，B．Surfing，C．Fishing，D．Fire works or Driving【1】，E．Fireworks or Driving【2】，F． Other

Q．What is your annual household income（before tax）？
A．Less than 1 million yen（500），B． 1 million yen－less than 2 million yen（1，500），C． 2 million yen－ less than 4 million yen $(3,000)$ ，D． 4 million yen - less than 6 million yen $(5,000)$ ，E． 6 million yen－ less than 8 million yen（ 7,000 ），F． 8 million yen－less than 10 million yen（ 9,000 ），G 10 million yen－ less than 12 million yen $(11,000)$ ，H． 12 million yen－less than 14 million yen（ 13,000 ），I． 14 million yen－less than 16 million yen $(15,000)$ ，J．Over 16 million yen $(16,000)$

Appendix C Confidence Intervals
Confidence intervals with protest bits

Form at	A						B					
Rates	90\％		50\％		10\％		10\％		50\％		90\％	
	lower	upper										
Cont．	－0．09	0.529	－0．25	0.419	－0．58	0.135	－0．84	－0．12	－0．41	0.258	－0．39	0.239
	212	95	145	69	598	00	358	853	965	89	319	39
WTP	－0．00	－0．00	－0．00	－0．00	－0．00	－0．00	－0．00	－0．00	－0．00	－0．00	－0．00	－0．00
	044	040	081	071	128	107	113	095	089	078	050	045
M	0.000	0.000	0.000	0.000	－0．00	0.000	－0．00	0.000	0.000	0.000	0.000	0.000
	36	72	24	63	001	40	003	38	29	69	48	85
GND	－0．15	0.134	－0．35	－0．04	－0．44	－0．11	－0．31	0.018	－0．26	0.049	－0．06	0.224
	427	21	640	467	404	209	018	65	502	78	890	67

$A G E$	-0.01	0.000	-0.00	0.004	-0.00	0.008	-0.00	0.012	-0.00	0.006	-0.01	0.002
	247	03	926	22	584	63	149	80	667	96	013	59
EDVS	-0.27	0.053	-0.18	0.172	-0.10	0.278	-0.13	0.246	-0.28	0.080	-0.35	-0.01
	863	64	609	87	799	06	611	07	215	73	265	443
EDJC	0.202	0.640	-0.00	0.460	-0.30	0.200	-0.20	0.296	-0.07	0.396	0.098	0.543
	19	68	828	81	653	34	134	14	862	34	46	78
$E D U$	-0.00	0.249	-0.00	0.264	0.050	0.343	-0.01	0.274	-0.09	0.184	-0.09	0.167
	355	71	882	40	67	98	608	18	208	14	018	72
EDGS	-0.03	0.479	-0.12	0.420	0.017	0.595	-0.14	0.431	-0.24	0.305	-0.08	0.435
	294	22	801	46	14	24	579	93	884	09	592	53
JBIE	0.062	0.395	-0.09	0.264	-0.11	0.262	-0.04	0.330	0.044	0.406	0.123	0.462
	05	24	361	26	714	50	481	69	55	79	43	63
JBHM	-0.43	-0.07	-0.44	-0.06	-0.26	0.147	-0.28	0.130	-0.30	0.081	-0.24	0.116
	052	334	729	099	466	56	058	06	837	49	668	22
	0.213	0.535	0.111	0.455	0.021	0.382	-0.16	0.201	-0.12	0.223	0.127	0.454
IMI	96	36	88	44	38	99	014	65	303	14	77	39
	-2.49	-0.46	-2.57	-0.27	0.114	2.572	0.663	3.137	-0.91	1.403	-1.55	0.521
ISI	741	142	873	247	13	38	10	89	437	05	889	55
ISM	0.940	3.130	3.552	6.606	1.468	4.147	0.553	2.814	0.667	3.042	-0.04	1.922
	18	42	25	31	16	23	09	89	09	10	912	83
OMI	-0.15	0.212	-0.17	0.216	-0.23	0.181	-0.34	0.076	-0.15	0.237	-0.23	0.132
	165	35	478	73	586	09	125	19	729	94	675	65
	-0.00	1.301	-0.20	1.185	-0.42	1.021	-1.84	-0.14	-0.92	0.471	-0.69	0.599
OSI	105	51	856	35	312	39	368	015	815	12	709	37
OSM	-0.76	0.072	-0.59	0.314	-1.04	-0.02	-0.35	0.597	-0.73	0.185	-0.76	0.083
	454	99	597	46	422	271	348	63	251	41	761	73
FUSE	0.010	0.029	0.011	0.032	-0.00	0.015	-0.00	0.016	0.011	0.033	0.014	0.033
	52	93	92	80	638	90	582	27	90	02	11	87
	0.131	0.362	0.124	0.373	0.016	0.282	0.067	0.329	0.140	0.392	0.119	0.354
SW	94	39	84	26	76	45	09	89	96	05	17	15
SF	-0.05	0.593	-0.00	0.706	-0.25	0.482	-0.28	0.437	-0.03	0.675	0.005	0.669
	690	70	102	34	351	44	766	42	541	94	94	47
FS	-0.11	0.151	-0.07	0.211	-0.07	0.229	-0.05	0.248	-0.05	0.239	-0.04	0.230
	646	69	780	51	833	91	526	86	319	35	276	94
FD1	0.158	0.406	0.111	0.377	-0.16	0.122	-0.12	0.153	0.205	0.475	0.264	0.517
	98	74	11	21	162	18	763	07	78	26	49	60

FD2	-0.12	0.126	-0.15	0.121	-0.14	0.145	-0.16	0.122	-0.15	0.126	-0.00	0.255
	856	40	386	07	868	37	849	75	124	60	483	47

Confidence intervals without protest bits

Form at	A						B					
Rates	90\%		50\%		10\%		10\%		50\%		90\%	
	lower	upper										
Cont.	0.281	0.997	0.063	0.812	-0.42	0.355	-0.68	0.083	-0.17	0.573	-0.10	0.610
	71	17	98	70	060	34	971	09	855	35	577	23
WTP	-0.00	-0.000	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
	048	43	082	072	117	097	105	088	090	079	054	048
M	0.000	0.000	0.000	0.000	-0.00	0.000	-0.00	0.000	0.000	0.000	0.000	0.000
	46	89	24	68	009	35	008	36	31	75	55	98
GND	-0.27	0.058	-0.46	-0.10	-0.50	-0.14	-0.36	-0.00	-0.33	0.015	-0.09	0.247
	844	91	094	679	565	477	296	607	979	47	044	13
AGE	-0.01	0.002	-0.00	0.007	-0.00	0.011	-0.00	0.014	-0.00	0.008	-0.011	0.003
	190	56	800	04	432	23	088	54	619	96	16	27
EDVS	-0.09	0.306	-0.06	0.354	-0.01	0.416	-0.11	0.306	-0.20	0.215	-0.26	0.131
	318	97	324	37	594	59	715	05	447	73	650	28
EDJC	0.276	0.791	-0.04	0.475	-0.35	0.197	-0.29	0.235	-0.15	0.372	0.081	0.586
	00	90	952	29	469	26	508	28	176	98	21	30
EDU	-0.00	0.286	-0.03	0.272	0.020	0.338	-0.06	0.250	-0.13	0.172	-0.11	0.178
	521	15	455	25	13	40	495	16	723	29	588	81
EDGS	0.006	0.609	-0.02	0.608	0.090	0.727	-0.15	0.481	-0.13	0.516	0.152	0.796
	81	60	862	62	71	69	281	68	633	54	41	61
JBIE	-0.01	0.369	-0.20	0.194	-0.19	0.217	-0.09	0.311	-0.06	0.333	0.029	0.413
	795	30	681	89	410	08	320	92	945	32	00	75
JBHM	-0.52	-0.105	-0.50	-0.05	-0.28	0.166	-0.24	0.206	-0.27	0.169	-0.17	0.254
	667	24	365	972	909	28	593	86	819	69	023	26
IMI	0.064	0.427	0.014	0.392	-0.07	0.314	-0.21	0.174	-0.22	0.156	0.003	0.370
	81	14	30	70	194	20	389	53	239	82	44	67
ISI	7.090	59.69	-2.46	0.439	1.201	4.689	1.728	5.042	-0.09	3.080	-1.16	1.512
	01	777	459	97	01	99	88	11	435	34	025	10
ISM	-1.55	0.686	2.728	5.996	0.446	2.995	-0.47	1.826	-0.46	2.061	-1.05	1.114
	886	60	79	53	20	11	428	73	637	85	914	27

OMI	-0.19	0.238	-0.23	0.205	-0.26	0.194	-0.37	0.082	-0.23	0.206	-0.32	0.094
	128	74	358	43	225	34	057	17	048	01	157	24
OSI	-0.69	0.895	-0.22	1.489	-0.23	1.400	-1.92	-0.12	-1.12	0.463	-0.93	0.572
	264	83	904	09	121	18	092	205	693	94	908	17
OSM	-0.73	0.283	-0.37	0.738	-0.90	0.218	0.001	1.082	-0.43	0.659	-0.52	0.510
	319	08	580	84	923	24	12	92	551	05	920	32
FUSE	0.014	0.037	0.015	0.039	-0.00	0.017	-0.00	0.019	0.021	0.045	0.024	0.047
	98	61	55	19	711	21	467	28	27	22	97	96
	0.003	0.271	0.005	0.287	-0.02	0.263	0.035	0.321	0.076	0.360	0.013	0.284
SW	25	95	56	05	546	30	72	59	29	30	27	92
	-0.07	0.688	-0.12	0.665	-0.42	0.351	-0.49	0.259	-0.28	0.472	-0.24	0.474
SF	641	55	601	81	979	83	759	45	777	73	843	11
	-0.03	0.279	-0.00	0.321	-0.03	0.301	0.001	0.334	0.026	0.357	0.081	0.398
FS	448	99	897	93	821	09	54	76	08	92	08	74
	-0.00	0.276	-0.05	0.243	-0.26	0.041	-0.21	0.086	0.026	0.322	0.069	0.353
FD1	710	66	161	70	333	74	525	04	09	76	34	81
FD2	-0.06	0.230	-0.13	0.174	-0.15	0.164	-0.19	0.123	-0.11	0.191	0.103	0.402
	596	28	442	27	330	59	006	78	947	35	23	86

