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Abstract  

During training process of LSTM, the prediction accuracy is affected by a variation of factors, 

including the selection of training samples, the network structure, the optimization algorithm, and the 

stock market status. This paper tries to conduct a systematic research on several influencing factors of 

LSTM training in context of time series prediction. The experiment uses Shanghai and Shenzhen 300 

constituent stocks from 2006 to 2017 as samples. The influencing factors of the study include indicator 

sampling, sample length, network structure, optimization method, and data of the bull and bear market, 

and this experiment compared the effects of PCA, dropout, and L2 regularization on predict accuracy 

and efficiency. Indice sampling, number of samples, network structure, optimization techniques, and 

PCA are found to be have their scope of application. Further, dropout and L2 regularization are found 

positive to improve the accuracy. The experiments cover most of the factors, however have to be 

compared by data overseas. This paper is of significance for feature and parameter selection in LSTM 

training process. 
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1. Introduction 

In recent years, there have been many studies with LSTM, some of which especially suitable for stock 

market time series forecasting (Hochreiter & Schmidhuber, 1997). The complex model structure and its 

huge number of parameters, however, have serious effect on the accuracy and performance. In practice, 

the selection of various factors such as training samples, model structure, and optimization methods is 

often subjective. As a result, it has become the biggest problem in engineering applications. Especially 
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in multi-dimensional scenarios such as stock market time series forecasting, the influencing factors are 

more complicated.  

The research on the influencing factors of LSTM model prediction accuracy, includes sample 

characteristics, network structure selection and optimization methods. The choice of influencing factors 

depends on fairly different application. Rao et al. use LSTM to classify texts on multiple social media 

platforms, comparing the effects of optimization methods, batch sizes, and activation functions on 

model performance (Rao & Spasojevic, 2016). Maknickienė et al. used LSTM in the USD/JPY 

exchange rate forecast (Maknickienė, Rutkauskas, & Maknickas, 2011). They found that neurons 

amounts and the number of training iterations were basically stable over a certain range. The hybrid 

model of ARMR and RNN built by Rather et al. uses the yield of 6 stocks as the model input, which 

can achieve higher precision than RNN (Rather, Agarwal, & Sastry, 2015). Xiong et al. used the yields 

and volatility of daily Standard & Poor’s 500 index, and used 25 Google trends which reflect the trends 

of various major domestic industry and economy to predict the volatility of the Standard & Poor’s 500 

index, as well as found that Adam can achieve better accuracy (Xiong, Nichols, & Shen, 2016). To sum 

up, the above research is oriented to different fields, covering the training factors, network structure, 

neurons amounts, optimization methods and other influencing factors, but there are widespread 

problems such as insufficient training samples, insufficient factor selection, etc. In the stock market 

time series forecasting, the sample and indicators selection in different time intervals may get 

completely different prediction conclusions, so it is necessary to make more complete verification 

about the above factors. 

Generally, reducing network errors by increasing the number of hidden layers, but it is prone to 

“over-fitting” and complicates the network. It is often subjective that selection of hidden layers amount 

and neurons quantity. Angel made an attempt in this aspect, and proposed an estimation method for the 

number of hidden layer nodes by using interval estimation (Angel, 2017). Thomas proposed a 

self-organizing cognitron to identify an optimal set of neurons in a hidden layer and optimal number of 

hidden layers in neural model using gradient decent based on number of neurons and error at each 

iterations (Thomas, Manoj, & Annappa, 2016). The mathematical model proposed by Wagarachchi can 

dynamically drop the hidden layer during training (Wagarachchi & Karunananda, 2016). This paper 

will refer to this conclusion for selecting hidden layers amount. 

Recent research have shown that some adaptive learning rate optimization methods are not superior to 

SGD (Stochastic Gradient Descent), experiments on ResNet and other networks by Keskar et al. show 

that the Adam, Adagrad or RMSprop methods only work well in the initial stage, and they propose a 

method of dynamically switching to SGD (Keskar & Socher, 2017). Feng compared SGD, MSGD, 

AdaDdelta, AdaGrad, Adam, RMSprop and other methods in the question answer field experiment, and 

received the similar results (Feng, Xiang, & Zhou, 2015). But in LSTM experiment, Adam is better 

(Andrychowicz et al., 2016). Recently proposed techniques such as Dropout (Srivastava et al., 2014; 

Bluche, Kermorvant, & Louradour, 2015) and regularization (L2 regularization) (Theodoridis, 2015) 
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have effectively alleviated the problem of DNN training overfitting. This paper will further compare 

the optimization methods. 

This paper takes the 2006-2017 stock data of Shanghai and Shenzhen 300 constituents as a sample, and 

built a model based on LSTM deep neural network. This paper made the systematic comparison of 

several factors affecting the prediction accuracy. And it test the influence of principal component 

analysis and optimization strategies such as dropout and L2 regularization on prediction accuracy. 

 

2. Research Ideas and Framework 

At present, there is no systematic study on the influence of specific input indicators selection, model 

structure and optimization method on accuracy in model training. In this paper, the LSTM deep neural 

network is used to predict the stock market time series, and the factors affecting accuracy are studied 

through multiple sets of contrast experiments. The optimal training samples, model structure and 

optimization methods are selected to improve the prediction accuracy. Selection of indicators further 

consider the differences between the bull and bear markets. 

The overall thought is to conduct multiple contrast experiments on the basis of baseline experiments, 

which is the study on impact of model accuracy by researching training samples, network structure, or 

optimization . 

a. Comparison of indicators: For input characteristics, the transaction basic data, technical 

indicator data, transaction basic data + market data, technical indicator data + market data, 

transaction data + market data + technical indicators, and all indicators as input and comparison the 

rate of accuracy to select the best input characteristics (baseline experiment); 

b. The PCA was used to reduce the dimensionality of 28 indicators, and the processing results were 

used as input variables to compare with the corresponding non-dimensionality reduction models; 

c. Change sample length for examining the effect of length on prediction accuracy; 

d. Change training samples quantity for examining the effect of sample size on prediction accuracy; 

e. Model structure comparison: After the previous step, choseing the most optimal model, and 

adjusting the number of neurons in the hidden layer to research the influence of different hidden layers 

neurons amount on the prediction accuracy; 

f. Comparison of optimization methods: The SGD, RMSprop and Adam methods are used to 

optimize the network training process, and to study the influence of different optimization methods on 

prediction accuracy; 

g. Comparison of the bull and bear market: Compare the effects of models in different market status, 

and optimize the model with dropout and L2 regularization techniques. 

2.1 Variable Selection 

Usually, the market broadly divides the indicators into: (1) Various basic data related to stock trading; 

(2) Statistical technical indicators derived from transaction data; (3) An index related to the macro 

situation of the stock market; (4) Fundamental factors. Indicator (1) to (3) are collectively called as 
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trading indicators, and (4) is financial indicators. The selection principle of trading indicators must 

include complete basic data, and select some representative indicators in trend indicators and emotional 

indicators. The Shanghai and Shenzhen 300 Index represents the comprehensive situation of the two 

domestic markets, and also includes the common financial indicators in the market. The details are 

shown in Table 1. 

 

Table 1. Trading Indicator 

Type of Indicators Indicators Abbreviation Calculation formula 

Ⅰ. Basic Trading 

Indicators 

Opening price of the day Open  

Highest price of the day High  

Lowest price of the day Low  

Closing price of the day Close  

Quote change Change  

Volume Vol  

Ⅱ. Technical 

Indicators 

Turnover Rate TR TR = Vol/Total shares in circulation * 100% 

Simple Moving Average SMA Moving average within N day=The sum of the 

closing prices on the N day/N 

Moving Average 

Convergence Divergence 

MACD EMA(12) = EMA of Previous day(12) × 11/13 + 

Close × 2/13 

DIF DIF = EMA(12)- EMA(26) 

DEA DEA = DEA of Previous day × 8/10 + DIF of 

Present day × 2/10 

Stochastic Oscillator KDJ_K K value of Present day = 2/3×K value of 

Previous day + 1/3×RSV of Present day 

KDJ_D D value of Present day = 2/3× D value of 

Previous day + 1/3×K value of Present day 

KDJ_J J value of Present day = 3×K value of Present 

day - 2×D value of Present day 

Bias Ratio BIAS BIAS =(Close－Moving average closing price 

within N day)/Moving average closing price 

within N day×100％(3-12)6RSI 

Relative Strength Index RSI RSI = The sum of the closing gains in N 

days/(The sum of the closing gains in N days + 

The sum of the closing declines in N days) 

×100% 

Rate of change ROC ROC = Close/N days ago closing price 
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Psychological line PSY PSY = Rising days within N day/N×100 

Ⅲ. Macro Index

（CSI300 Index） 

 

Opening price of the day Open_300  

Highest price of the day High_300  

Lowest price of the day Low_300  

Closing price of the day Close_300  

Quote change Change_300  

Volume Volume_300  

*Note. Stochastic N day RSV = (Closing price within N day-Lowest price within N day)/(High price 

within N day-Lowest price within N day) * 100%. 

 

The financial indicators adopt several indicators of Price to Earning Ratio, Price to Sales Ratio, Price 

Cash Flow Ratio and Price to book Ratio, the details are shown in Table 2. 

 

Table 2. Financial Indicator 

Type of indicators Indicators Abbreviation Calculation formula 

Ⅳ financial 

indicators 

Price to Earning Ratio PE 
PE = Share price/Earnings per share attributable to the 

parent company in the last 12 months 

Price to Sales Ratio PS 
PS = Share price/Operating income per share for the last 12 

months 

Price Cash Flow Ratio PC 
PC = Share price/Operating cash flow per share for the last 

12 months 

Price to Book Ratio PB PB = Share price/Recent earnings per share net assets 

 

2.2 Distinguish the Bull and Bear Market 

Considering that market reactions may be inconsistent under different market conditions, this paper 

draws on the nonparametric method of He Xingqiang et al. (He & Zhou, 2006) to find the crests and 

troughs of stock market index changes. Set the monthly average of the stock market index as m
tp . 

Definition: When if and only if m
tp  is the maximum value in a time window with a width of 3 months, 

m
tp  is crest; the same, when if and only if m

tp  is the minimum value in a time window with a width of 

3 months, m
tp  is trough. 

The crests and troughs need to alternate, so the lower price of the connected crests and the higher price 

in the connected troughs are eliminated. In addition, in order to eliminate the false bull and bear market 

cycles in the future, we will not miss the big bull and big bears that correspond to the big rise and fall 

in the short term. The bull and bear markets will follow the requirements below: (1) Except for bull or 

bear market cycles with a period of less than 6 months; (2) Except for crests and troughs that are less 
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than 4 months from the endpoint; (3) If the one-way duration of a bull or bear market does not exceed 

4 months, the price change before and after the price reversal must be greater than 20%. 

 

3. Experimental Results 

3.1 Model Structure 

(1) Input layer and output layer selection: This article uses the daily data within the previous N days to 

predict the average increase and decrease in the next 3 days. There are 28 input variable form 4 

categories, and X is selected after screening (X <= 28); Output layer has three neurons (2 represent 

large rises, 1 represent small rises and falls, and large falls by 0). 

(2) Hidden layer selection: Considering the length of the time series itself, this paper set two hidden 

layers. When the number of two hidden layer nodes is similar in the double hidden layer network, the 

network training effect is best. Set the initial hidden layer node number to 136. Based on this, the 

comparison experiment adjusts the number of hidden layer nodes to observe influence of model 

structure on model accuracy.  

(3) Hyperparameters: The time series length is set to 30. Select RMSprop as the optimization method 

and use Categorical Cross-Entropy (Boer et al., 2005) as the loss function, batch size is set to 32, the 

number of iterations is set to 30. The model is a multi-classification model, and the model accuracy 

evaluation uses the default accuracy. Accuracy measures the correct proportion of the classification and 

represents the performance of model. Let
iŷ be the prediction category of the 

thi  sample, and 
iy  is the 

real category of the 
thi  sample. Defined the accuracy rate on n samples: 

                           
1

1
a 1( )

n

i i
i

ccuracy y y
n





                              (1) 

Where 1(x) means that the value is 1 when the prediction result is consistent with the real result, 

otherwise, 1(x) is 0. 

3.2 Data Set Selection and Preprocessing 

The original data was collected from the CSMAR database. There is large differences in China’s stock 

market system before and after 2005, this paper selects the Shanghai and Shenzhen 300 Index and its 

constituent stocks from January 1, 2006 to January 19, 2017. 

(1) Preliminary screening: Removed 10 stocks with missing financial indicators in 2005 and 

retained 290 stocks; 

(2) Calculate technical indicators and forecast targets, which is rise and fall of the average closing 

price of stocks in the next three days; 

(3) Need to merge the CSI 300 Index based on date and individual stock data; 

(4) The Max-Min method is used to perform dimensionless processing on 28 types of feature data, 

and the data is segmented into standard input data with a sequence length of 30, and finally 

592756 samples are obtained. 
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(5) Extract the column Change where the price is up and down, and calculate the average rise and 

fall extent of each stock in the next three days. The average price of the next three days on the 

tth day set as 
3tc . Then, in order to make the number of each type of training samples similar, 

take the front and back tertiles of all stock ups and downs (AC), which is recorded as 0.33AC, 

0.67AC. 

·If 
3tc  < 0.33AC, marking the sample as 0; 

·If 0.33AC <= 
3tc  < 0.67AC, marking the sample as 1; 

·If 
3tc  >= 0.67AC, marking the sample as 2. 

(6) The data is randomly scrambled, and then 80% of them are taken as training data. There is 3/4 

of them are further used as train_data (355653), thereby training the model; take 1/4 of them as 

the verification data val_data (118551) to compare contrast model. The remaining 20% of data 

as the final test data (118552) to test the accuracy and stability of the model. The optimization 

process is Rmsprop. 

3.3 Implementation Process 

This experimental uses NVIDIA CUDA programming techniques to accelerate the training of deep 

neural networks. The experimental environment of this paper is CPU: Intel i7-6900K, GPU: TITAN X, 

memory: 4*12G, operating system is Ubuntu, data processing and model algorithm are written in 

python, using keras based on tensorflow framework. 

 

4. Result 

4.1 Comparison of Indicators (Baseline Experiment) 

According to the above four types of indicators, setting the following six comparison models to select 

the best input features. 

 

Table 3. The Influence of Input Characteristics on Model Accuracy (Compared to Random 

Model Accuracy = 33.33%) 

Model dimension Indicator selection accuracy 

M1 6 Ⅰ Basic Trading Indicators 51.94% 

M2 12 Ⅱ Technical Indicators 44.36% 

M13 12 Ⅰ Basic Trading Indicators Ⅲ Macro Index（CSI300 Index） 62.40% 

M23 18 Ⅱ Technical Indicators   Ⅲ Macro Index（CSI300 Index） 60.58% 

M123 24 Ⅰ Basic Trading Indicators    Ⅱ Technical Indicators 

Ⅲ Macro Index（CSI300 Index） 

61.00% 

M1234 28 Ⅰ Basic Trading Indicators    Ⅱ Technical Indicators  

Ⅲ Macro Index（CSI300 Index） Ⅳ financial indicators 

60.70% 

*Note. This table select the highest value in the 30 iterations of the model, the same below. 
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