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Abstract 

Introduction: A growing body of research has shown a diminished association between socioeconomic 

status (SES) indicators and a wide range of neuroimaging indicators for racial and ethnic minorities 

compared to majority groups. However, less is known about these effects for resting-state functional 

connectivity between various brain networks. Purpose: This study investigated racial and ethnic 

variation in the correlation between parental education and resting-state functional connectivity 

between the cingulo-opercular (CO) and cingulo-parietal (CP) networks in children. Methods: This 

cross-sectional study used data from the Adolescent Brain Cognitive Development (ABCD) study; we 

analyzed the resting-state functional Magnetic Resonance Imaging (rsfMRI) data of 8,464 American 

pre-adolescents between the ages of 9 and 10. The main outcome measured was resting-state functional 

connectivity between the CO and CP networks calculated using rsfMRI. The independent variable was 

parental education, which was treated as a nominal variable. Age, sex, and family marital status were 

the study covariates. Race and ethnicity were the moderators. Mixed-effects regression models were 

used for data analysis, with and without interaction terms between parental education and race and 

ethnicity. Results: Higher parental education was associated with lower resting-state functional 

connectivity between the CO and CP networks. Race and ethnicity both showed statistically significant 

interactions with parental education on children’s resting-state functional connectivity between CO and 

CP networks, suggesting that the correlation between parental education and the resting-state 

functional connectivity was significantly weaker for Black and Hispanic pre-adolescents compared to 

White and non-Hispanic pre-adolescents. Conclusions: In line with the Minorities’ Diminished Returns 
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theory, the association between parental education and pre-adolescents resting-state functional 

connectivity between CO and CP networks may be weaker in Black and Hispanic children than in 

White and non-Hispanic children. The weaker link between parental education and brain functional 

connectivity for Blacks and Hispanics than for Whites and non-Hispanics may reflect the racism, 

racialization, and social stratification that minimizes the returns of SES indicators, such as parental 

education for non-Whites, who become others in the US. 

Keywords 

socioeconomic status, parental education, brain development, youth, pre-adolescents, MRI, functional 

MRI, functional connectivity 

 

1. Introduction 

Advancement of neuroimaging modalities, such as resting-state functional magnetic resonance imaging 

(rsfMRI), has led to the advancement of our understanding regarding children’s brain development 1-3, 

and how early life experiences such as childhood socioeconomic status (SES) influence brain 

development 4-7. Several rsfMRI indicators correlate with the higher-level cognitive function of children, 

including but not limited to, memory, learning and executive function 8. Altered MRI measures may 

reflect a wide range of cognitive disorders from attention deficit hyperactive disorder (ADHD) 9,10, 

autism spectrum disorder (ASD) 10-12, Alzheimer’s 13, and other conditions in which working memory 

14,15, executive function 14,16, language development 14,17 and emotion regulation 18 are altered.  

Socioeconomic status (SES) indicators, such as parental education, are linked to function and structure 

of the brain 15,19-22 which correlate with various aspects of emotion and cognitive development in 

domains such as language 23, self-regulation (the ability to monitor and control one’s behavior and 

emotions) 20,24, memory25, socio-emotional processing 25, and behaviors 26. High SES is a proxy of 

high-quality parenting and lower exposure to stress, adversity, trauma, and poverty, with all of the 

aforementioned being risk factors of poor brain development 27. High parental education is commonly 

linked to high parenting quality 28 and cognitively stimulating environments 29,30. Children from highly 

educated families are more likely to be raised in low-stress environments, with parental support and 

engagement, promoting brain development 31,32. High parental education is also linked to the 

availability of material and financial resources to the child 29. As a result, high parental education is 

shown to reduce the risk of substance use 33,34, such as alcohol addictions 35,36 and smoking 37,38. 

Similarly, high parental education is linked to a lower risk of antisocial behavior 39, aggressive behavior 

40, behavioral problems 41, mental disorders 42,43, and cognitive problems 44 in children and adolescents.  

Recent research, however, has suggested that parental education may have far fewer effects for 

minority status, while income causes more equal outcomes across racial and ethnic groups 45. In fact, 

people of color with high education are much more likely to be discriminated against in the workplace 

46. As a result, Black and Hispanic families may earn less income and generate less wealth compared to 

non-Hispanic White families 47. However, most research has indicated that parental education is likely 
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to generate fewer outcomes for Black and Hispanic people than non-Hispanic White individuals 45,48,49. 

Income tends to lead to equal outcomes across different racial and ethnic groups 29. A cross-sectional 

study of children between 3 and 20 years of age showed an association between many brain regions 

that have implications for reading, language, executive functions, social cognition, and spatial skills 

with the number of years of parental education 50. 

Early life experiences, such as childhood SES, may impact neural changes that can be measured using 

MRI 51. Many studies to date have established a link between SES indicators and structural and 

functional aspects of the brain 52,53. For example, parental SES is linked to cortical thickness, surface 

area, and volume 54. Studying MRI changes in function and structure of brain regions may help us 

better understand problems such as anxiety 55, obstructive sleep apnea 56, obesity 57, chronic stress 58, 

ADHD 59, major depressive disorder 60and learning disorders 61. Unfortunately, little is known about 

how childhood SES indicators, such as parental education, influence functional connectivity of the 

brain at rest. Similarly, there is a need to examine whether racial groups differ in the associations 

between parental education and pre-adolescents resting-state functional connectivity between 

cingulo-opercular (CO) and cingulo-parietal (CP) networks. 

Most of the existing studies on SES impacts on brain development have focused on average effects 

overall, without comparing groups for such effects. Similarly, most of the literature has reported on 

predominantly middle-class White people. In addition, most of the studies have considered structural or 

functional measures of single regions of interest. This has been the case for most neuroimaging studies 

during the past two decades 52,53,62,63. There is no report on whether racial groups are different or similar 

in the association between parental education and pre-adolescents resting-state functional connectivity 

between CO and CP networks. Even when the studies have included race as a variable, they have 

mainly focused on the additive influences of race and SES, rather than multiplicative effects that allow 

SES effects to vary by race. While SES and race overlap (i.e., they are both proxies of stress, trauma, 

and adversities) 64-66, SES effects seem to be lesser for Black and Hispanic families than non-Hispanic 

White families 67-69. Thus, it is essential to test how race and ethnicity alter what we know about the 

effects of SES on brain functions 64,66, particularly connectivity between various networks and 

structures, which is rarely studied 70,71.  

A growing literature on Marginalization-related Diminished Returns (MDRs) framework 49,72 has 

documented weaker beneficial influences of SES indicators, especially parental education, on 

developmental, behavioral, and health outcomes in racial and ethnic minority families because of 

discrimination, racism, racialization, stratification, othering, and marginalization 29. Weaker effects of 

SES on depression 73, attention 74, impulse control 75, social and behavioral problems 76,77, inhibitory 

control 78, suicidality 28, anxiety 79, and attention deficit hyperactive disorder (ADHD) 80 are shown for 

Black and Hispanic children than non-Hispanic White children. As a consequence of these MDRs, we 

observe sustained disparities in behavior and development in Black and Hispanic families with high SES, 

while the risk drastically drops for high SES non-Hispanic White individuals 50. As mentioned before, to 
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our knowledge, we are not aware of any previous studies examining the relationship between parental 

education and pre-adolescents resting-state functional connectivity between brain networks by race. 

Among various functional connectivity measures evaluated by rsfMRI that are linked to SES are 

connectivity between CO and CP brain networks 81. Analysis of connectivity between various brain 

networks is important because they reflect cross-system-level measures that reflect harmonious brain 

function across networks. The functional connectivity between CO and CP and other brain networks are 

linked to higher-order cognitive function of the brain, and their altered connectivity across these networks 

may be documented in the presence of altered cognition, emotions, and psychiatric disorders 82. 

Among various brain networks is the CO network. The CO network is composed of the thalamus, 

dorsal anterior cingulate cortex, and anterior insula/operculum, and is involved in self-monitoring in 

the cognitive control and sensorimotor processing 83. The CO function is central to monitoring one's 

performance, which helps detect errors so the individual can prevent future cognitive and motion errors 

and mistakes. The CO network, however, has pervasive activity, co-activation, and connectivity with 

several other control-related networks that has made it difficult for scientists to characterize CO brain 

network’s specific function. However, its elevated performance is linked to elevated monitoring, and its 

altered connectivity and function are characteristics of multiple psychiatric disorders, including 

psychotic conditions. Heightened brain connectivity between the CO network and other networks may 

result in higher levels of performance monitoring 83.  

Another brain network is the cognitive/attention network 84. Disorder and different activation and 

connectivity of this network is shown in attention disorders 85. In the Adolescent Brain Cognitive 

Development research (ABCD) study, an increase in connectivity between CP network and other 

networks has been linked to less psychotic symptoms, even after accounting for family history of 

psychotic disorders, internalizing symptoms, and cognitive performance 82.  

1.1 Aims 

This study assessed data from the Adolescent Brain Cognitive Development research (ABCD) 82,86-89 to 

explore racial variations for the association between parental education and resting-state functional 

connectivity between CO and CP networks in a national sample of 9-to-10-year-old pre-adolescents. In 

this study, we went beyond testing additive effects of race, ethnicity, and parental education on the 

resting-state functional connectivity between CO and CP networks. Instead, we explored multiplicative 

effects of race and ethnicity with parental education on resting-state functional connectivity between 

the CO and CP networks. This allows the effects of parental education to vary by race and ethnicity, 

which is in line with the MDRs. Built on the MDRs theory 48,77, we hypothesized that parental 

education would have a weaker effect on resting-state functional connectivity between CO and CP 

networks for Hispanic and Black pre-adolescents compared to non-Hispanic White pre-adolescents. 

This means that we considered Black and Hispanic pre-adolescents' resting-state functional 

connectivity between the CO and CP networks to remain at risk regardless of their parental education, 

whereas we expect the lowest risk in resting-state functional connectivity between CO and CP networks 
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among non-Hispanic White pre-adolescents with high parental education.  

 

2. Methods 

Design and Settings 

This secondarily cross-sectional analysis was based on the Adolescent Brain Cognitive Development 

(ABCD) study 82,86,87,89,90, which is a guiding light of examining children’s brain development with a 

considerable SES, sex, racial, and ethnic diversity in the United States 86,91. We briefly reviewed critical 

aspects of the study, even though there is some comprehensive information regarding ABCD samples, 

methods, measures, and imaging techniques 91.  

Participants and Sampling 

The ABCD study participants were 9 to 10 years old and were selected from 21 sites across 15 states, 

encompassing over 20% of the total United States population of 9-10-year-old children 91,92. For 

sampling and selection, school selection was guided by sex, race, ethnicity, SES, and urbanicity. These 

recruitment processes were precisely designed, implemented, and evaluated across the 21 study sites 93. 

In fact, although the ABCD sample was not representative or random, due to careful sampling, it is a 

near estimation of U.S. children over sociodemographic and demographic factors. The results therefore 

are reliable in regard to age, SES, ethnicity, sex, and urbanicity. Garavan et al. carefully described the 

sampling procedure of the ABCD study 92. 8,464 children, aged 9 to 10-year-olds, participated in the 

study, regardless of race, ethnicity, and psychopathologies, which means that participants were not 

excluded based on the presence or absence of any psychopathology 92. However, we only included 

participants with complete data and those who met criteria for rsfMRI. The formula for selection of our 

participants was: (fsqc_qc="pass") and (rsfmri_cor_network.gordon_ntpoints>375) 

Brain Imaging 

Resting-state (task-negative) functional MRI (resfMRI) was used to estimate pre-adolescents' 

resting-state functional connectivity between the CO and CP networks. Brain imaging in the ABCD 

study was based on three 3 tesla (T) scanner platforms: Philips Healthcare, GE Healthcare, and 

Siemens Healthcare 94. T1-weighted and T2-weighted brain images, carefully harmonized, were drawn 

from The MRI devices 87. In order to reduce bias due to variation in imaging sites, images were 

corrected for gradient non-linearity distortions 95. These available pre-processed structural data were 

calculated based on T1- and T2-weighted images that maximize mutual information's relative position 

and orientation across images 96. By using tissue segmentation and sparse spatial smoothing, the ABCD 

performed intensity non-uniformity correction. Moreover, images were resampled with 1-mm isotropic 

voxels into rigid alignment within the brain atlas. Furthermore, using FreeSurfer software, version 5.3.0 

(Harvard University), volumetric measures were constructed. Images had also undergone surface 

optimization 97,98 and nonlinear registration to a spherical surface-based atlas 98. 

Study Variables 

The study variables included parental education (independent variable), race and ethnicity (moderator), 
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age, sex, family structure (confounders), and resting-state functional connectivity between CO and CP 

networks (dependent variable). 

Independent Variable 

Parental Education: Parental education was a five-level nominal variable: less than high school 

diploma, high school diploma/GED, some college, bachelors’ degree, and graduate studies. Less than a 

high school diploma was the reference group. 

Dependent variable 

Resting-state functional connectivity between CO and CP networks: The outcome was resting-state 

functional connectivity between CO and CP networks, measured by resting-state (task-negative) 

functional MRI. This variable was a continuous measure and reflected Pearson correlation test between 

the BOLD measures of the two networks over time. CO and CP were defined according to the Gordon 

parcellation scheme that divides brain networks into 12 predefined resting state networks (RSN) 99. In 

this study, we only used data of CO and CP. To calculate this information, the ABCD completed 4–5 

five-minute resting state scans (eyes open). This was used to ensure at least eight minutes of relatively 

low-motion data. Preprocessing was carried out by the ABCD Data Analysis and Informatics Core 

using the standardized ABCD pipeline 100. Next, fMRI time courses were projected onto FreeSurfer’s 

cortical surface. Using these time courses, both within- and between-network connectivity (Pearson 

correlation) were calculated on the basis of standard protocols based on the Gordon scheme99. For more 

information regarding these processes, please see here 100,101. Family SES is shown to be correlated 

with the functional connectivity between CO and CO 82. Appendix Figures show that our outcome is 

inversely correlated with memory/executive function and reward responsiveness.  

Moderators: 

Race. Race was reported by the parent and was considered as a moderator. It was treated as a nominal 

variable: Black, Asian, Other/Mixed, and White (reference group). 

Ethnicity. It was a dichotomous variable coded as Hispanic = 1 and non-Hispanic = 0 Confounders: 

Age. Age was a continuous variable. Parents reported the child’s age as months. 

Sex. It was a categorical variable with 1 for boys and 0 for girls.  

Parental Marital Status. It was also a dichotomous variable, self-reported by the parent interviewed, 

and coded 1 vs. 0 for married and unmarried (any other condition). 

Data Analysis 

Data Exploration and Analysis Portal (DEAP), which is a user-friendly online platform for 

multivariable analysis of the ABCD data, was used for data analysis. We reported mean (standard 

deviation (S.D.)) and frequency (%) for descriptive purposes. We also performed ANOVA and 

Chi-square for bivariate tests, including comparing racial groups for study variables. We used 

mixed-effects regression models; given participants are nested to families and families are nested to 

sites. The primary outcome was the children’s resting-state functional connectivity between the CO and 

CP networks. The independent variable was parental education; race and ethnicity were the moderators. 
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Moreover, age, sex, and family marital status were the covariates. To run multivariable analyses, three 

mixed-effects regression models were run (Appendix Table). Model 1 tested the additive effects of 

parental education, race, and ethnicity, with the same covariates, without interaction terms. Model 2 

tested the interaction term between parental education and race on resting-state functional connectivity 

between the CO and CP networks. Model 3 tested the interaction term between parental education and 

ethnicity on resting-state functional connectivity between the CO and CP networks. Before running 

models, we checked the normal distribution of our outcome, lack of collinearity between predictors, 

and the distribution of errors for our model. Regression coefficient (b), SE, and p-value were reported.  

Ethical Aspect 

While the original ABCD research protocol went through an Institutional Review Board (IRB) in 

several institutions, including the University of California, San Diego (UCSD), our analysis was found 

to be exempt from further IRB review by the Charles R Drew University of Medicine and Science 

(CDU). Moreover, several institutional IRBs approved the study protocol. All children provided assent. 

Parents provided consent 91. 

 

3. Results 

This study was performed on 8,464 children aged between 9 to 10 years old. From this number, 3,699 

(51.4%) were male and 3,669 (48.0%) were female. The participants were White (5,665; 66.9%), 1,197 

(14.1%) were Black, 187 (2.2%) were Asian American, and 1,415 (16.7%) were other/mixed race. 

From all, 1,673 (19.8%) were Hispanic and 6,791 (80.2%) were non-Hispanic. Racial groups did not 

differ in age; however, ethnic groups did differ in age. Racial groups did differ in sex; however, ethnic 

groups did not differ in sex. Black and mixed/other race participants showed lowest parental education 

respectively compared to White children. Hispanic adolescents showed lower parental education than 

non-Hispanic adolescents. Racial and ethnic groups also varied in family structure. Also, resting-state 

functional connectivity between CO and CP networks was significantly different across racial and 

ethnic groups (Table 1). 

Table 2 summarizes mixed-effects regression models’ fit statistics, performed in the total sample. 

Model 2 and Model 3 showed a better fit when compared to Model 1, suggesting that interaction 

between parental education and race or ethnicity helped explain the variance of the outcome. 

As shown by Table 3 and Figure 1, when all confounders were controlled, parental education showed a 

positive association with the resting-state functional connectivity between CO and CP networks. Model 

2 showed that parental education had interactions with race on the outcome. This interaction was 

negative, suggesting that the positive effect of parental education was lesser for Black than White 

children. Model 3 showed that parental education interacted with ethnicity on the outcome. This 

interaction was also negative, suggesting that the positive effect of parental education was lesser for 

Hispanic than non-Hispanic children. 
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Table 1. Descriptive Characteristics Overall and by Race (n = 8464) 

 

level Overall White Black Asian Other/Mixed p Non-Hispanic Hispanic p 

n 

 

8464 5665 1197 187 1415  6791 1673  

  Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD)  Mean(SD) Mean(SD)  

Age (month)  119.44 (7.53) 119.50 (7.54) 119.35 (7.29) 119.99 (8.00) 119.23 (7.61) 0.463 119.56 (7.50) 118.96 (7.64) 0.003 

RsfMRI Functional Connectivity 

CO and CP Networks  

-0.01 (0.10) -0.01 (0.09) -0.02 (0.11) -0.02 (0.10) -0.01 (0.09) 0.003 -0.01 (0.09) -0.02 (0.10) 0.002 

  n(%) n(%) n(%) n(%) n(%)  n(%) n(%)  

Parental Education < HS Diploma 335 (4.0) 142 (2.5) 96 (8.0) 5 (2.7) 92 (6.5) < 0.001 125 (1.8) 210 (12.6) < 0.001 

 

HS Diploma/GED 701 (8.3) 272 (4.8) 268 (22.4) 2 (1.1) 159 (11.2)  440 (6.5) 261 (15.6)  

 

Some College 2149 (25.4) 1171 (20.7) 484 (40.4) 14 (7.5) 480 (33.9)  1576 (23.2) 573 (34.2)  

 

Bachelor 2237 (26.4) 1693 (29.9) 172 (14.4) 47 (25.1) 325 (23.0)  1914 (28.2) 323 (19.3)  

 

Post Graduate Degree 3042 (35.9) 2387 (42.1) 177 (14.8) 119 (63.6) 359 (25.4)  2736 (40.3) 306 (18.3)  

Race  White 5665 (66.9) 5665 (100.0) 0 (0.0) 0 (0.0) 0 (0.0) < 0.001 4654 (68.5) 1011 (60.4) < 0.001 

 

Black 1197 (14.1) 0 (0.0) 1197 (100.0) 0 (0.0) 0 (0.0)  1137 (16.7) 60 (3.6)  

 

Asian 187 (2.2) 0 (0.0) 0 (0.0) 187 (100.0) 0 (0.0)  170 (2.5) 17 (1.0)  

 

Other/Mixed 1415 (16.7) 0 (0.0) 0 (0.0) 0 (0.0) 1415 (100.0)  830 (12.2) 585 (35.0)  

Hispanic  No 6791 (80.2) 4654 (82.2) 1137 (95.0) 170 (90.9) 830 (58.7) < 0.001 6791 (100.0) 0 (0.0) < 0.001 

 

Yes 1673 (19.8) 1011 (17.8) 60 (5.0) 17 (9.1) 585 (41.3)  0 (0.0) 1673 (100.0)  

Sex (%) Female 4263 (50.4) 2792 (49.3) 636 (53.1) 111 (59.4) 724 (51.2) 0.005 3418 (50.3) 845 (50.5) 0.919 

 

Male 4201 (49.6) 2873 (50.7) 561 (46.9) 76 (40.6) 691 (48.8)  3373 (49.7) 828 (49.5)  

Married Family No  2519 (29.8) 1126 (19.9) 832 (69.5) 29 (15.5) 532 (37.6) < 0.001 1858 (27.4) 661 (39.5) < 0.001 

 

Yes  5945 (70.2) 4539 (80.1) 365 (30.5) 158 (84.5) 883 (62.4)  4933 (72.6) 1012 (60.5)  

Notes: Source: Adolescent Brain Cognitive Development (ABCD) Study; * Chi-square test; ** Analysis 

of Variance (ANOVA) 

 

Table 2. Effect Sizes and % Variance Explained 

 Model 1 
Model 2 

M1 + Race x Parental Education 

Model 3 

M1 + Ethnicity x Parental Education 

N 8464 8464 8464 

R-squared 0.00741 0.01005 0.00876 

ΔR-squared 0.00154 0.00526 0.00387 

ΔR-squared % 0.15% 0.53% 0.39% 
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Table 3. Regressions in the Overall Sample and by Race with CO and CP Networks Functional 

Connectivity as the Outcome 

 Model 1    Model 2    Model 3    

 
Estimate 

Std. 

Error 
Pr(> | t| ) sig Estimate 

Std. 

Error 
Pr(> | t| ) sig Estimate 

Std. 

Error 
Pr(> | t| ) sig 

Parental Education (HS 

Diploma/GED) 
-0.00108 0.00642 0.8669451 

 
0.02182 0.00997 0.0287088 * -0.02283 0.00976 0.0193869 * 

Parental Education (Some 

College) 
0.00422 0.00576 0.4635545 

 
0.01671 0.00868 0.054267 # -0.01816 0.00908 0.0455952 * 

Parental Education (Bachelor) 0.00964 0.00595 0.105509 
 

0.02498 0.00868 0.0039954 ** -0.01257 0.00924 0.1735315  

Parental Education (Post 

Graduate Degree) 
0.01219 0.00594 0.0400468 * 0.02775 0.00862 0.0012923 ** -0.00891 0.00920 0.3326101  

Race (Black) -0.00429 0.00346 0.2153322 
 

0.03140 0.01298 0.0155597 * -0.00549 0.00354 0.1214157  

Race (Asian) -0.01648 0.00713 0.0208414 * -0.06731 0.04321 0.1192914  -0.01622 0.00713 0.0229061 * 

Race (Other/Mixed) -0.00147 0.00297 0.619932 
 

0.01693 0.01280 0.1859848  -0.00162 0.00297 0.586294  

Hispanic  -0.00490 0.00290 0.0910679 # -0.00364 0.00295 0.2181547  -0.03841 0.01112 0.0005538 *** 

Sex (Male) 0.00994 0.00209 1.9e-06 *** 0.00992 0.00209 2e-06 *** 0.00996 0.00209 1.8e-06 *** 

Married Family 0.00146 0.00263 0.5792842 
 

0.00186 0.00264 0.4815058  0.00175 0.00264 0.5065686  

Age (Month) 0.00009 0.00014 0.5045614 
 

0.00010 0.00014 0.4873677  0.00009 0.00014 0.4995918  

Black x Parental Education 

(HS Diploma/GED) 
- - - - -0.05220 0.01519 0.0005919 *** - - -  

Black x Parental Education 

(Some College) 
- - - - -0.02706 0.01382 0.0502717 # - - -  

Black x Parental Education 

(Bachelor) 
- - - - -0.03729 0.01502 0.0130876 * - - -  

Black x Parental Education 

(Post Graduate Degree) 
- - - - -0.04863 0.01493 0.0011287 ** - - -  

Asian x Parental Education 

(HS Diploma/GED) 
- - - - 0.08140 0.08018 0.3100006  - - -  

Asian x Parental Education 

(Some College) 
- - - - 0.08296 0.05022 0.0985438 . - - -  

Asian x Parental Education 

(Bachelor) 
- - - - 0.05485 0.04545 0.2276022  - - -  

Asian x Parental Education 

(Post Graduate Degree) 
- - - - 0.04703 0.04413 0.2866676  - - -  
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Other/Mix x Parental 

Education (HS Diploma/GED) 
- - - - -0.02689 0.01600 0.0928644 . - - -  

Other/Mix Parental Education 

(Some College) 
- - - - -0.01765 0.01383 0.2017625  - - -  

Other/Mix Parental Education 

(Bachelor) 
- - - - -0.02145 0.01408 0.127556  - - -  

Other/Mix Parental Education 

(Post Graduate Degree) 
- - - - -0.01642 0.01391 0.2380349  - - -  

Hispanic x Parental Education 

(HS Diploma/GED) 
- - - - - - -  0.03561 0.01321 0.0070317 ** 

Hispanic x Parental Education 

(Some College) 
- - - - - - -  0.03784 0.01192 0.0015061 ** 

Hispanic x Parental Education 

(Bachelor) 
- - - - - - -  0.03842 0.01251 0.0021487 ** 

Hispanic x Parental Education 

(Post Graduate Degree) 
- - - - - - -  0.02919 0.01251 0.0196688 * 

#p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001 

 

 

Overall 

 

by race 
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by ethnicity 

Figure 1. Effects of Parental Education on Pre-adolescents Resting-state Functional Connectivity 

between CO and CP Networks Overall and by Race and Ethnicity 

 

4. Discussion 

We found a positive association between parental education and resting-state functional connectivity 

between the CO and CP networks. In line with the MDRs phenomenon, there were racial and ethnic 

differences in the associations between parental education and resting-state functional connectivity 

between the CO and CP networks. The correlation between parental education and resting-state 

functional connectivity between the CO and CP networks was larger for White and non-Hispanic 

children than Black and Hispanic children.  

Our first finding aligns with the well-described effects of SES indicators, such as parental education on 

brain structure and function in adolescents and young people. However, most of this work has been 

conducted on single brain structures such as the hippocampus, cerebral cortex, thalamus, and amygdala 

62,102-104. High SES, for example, is linked to the activity of brain structures that correlate with emotion 

regulation and process 105. Among children between 5 and 18 years old, family SES is associated with 

gray matter volume in the hippocampus 62 and hippocampus functional connectivity. In a cross-sectional 

study of 1,099 3-20-year-old children, parental education was associated with children's left hippocampal 

volume 50. A strong relation is known between the number of years of parental education and the function 

and structure of the brain region involved in language, reading, social cognition, executive functions, and 

spatial skills 50. Hanson et al. reported correlations between parental education and right hippocampal 

size 103. However, very few studies to date have explored the relationship between parental education and 

resting-state functional connectivity between the CO and CP networks. One exception is a recent ABCD 

study that showed SES is linked to the CO-CP functional connectivity at rest 81.. 

The association between parental education and resting-state functional connectivity between the CO 

and CP networks may be because parental education is a proxy of parents' low-risk behaviors 106 and 

high-quality parenting 107,108 as well as lower stress 109. As such, parental education, parenting, and 

parental behaviors can substantially affect the brain development of children 32. Indeed, parenting and 

home environment may be some vehicles by which parental education influences child development. In 

addition, parenting and parental quality are linked to children's behavior problems 110, psychopathologies 

111, and cognitive performance 48,112.  
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In line with the MDRs, our second finding suggests that parental education is more strongly linked to 

resting-state functional connectivity between CO and CP networks for non-Hispanic and White 

children than Hispanic and Black children. Similar MDRs are reported for social and behavioral 

problems 113, attention 74, impulsivity and inhibitory control 114, ADHD 80, anxiety 115, depression 116, 

and suicidality 28 in Black and Hispanic adolescents. 

Parental education and race and ethnicity have multiplicative rather than additive effects on 

resting-state functional connectivity between the CO and CP networks. Thereby, Black and Hispanic 

pre-adolescents, regardless of their SES, remain at high risk. Conversely, high parental education 

reduces the risk in non-Hispanic White pre-adolescents. Several MRI and behavioral studies, for 

example, provide evidence that hippocampus and associated areas are linked to attention deficit 

hyperactive disorder (ADHD) 117, intermittent explosive disorder 117, emotional disorder 118, bipolar 

depression 119, autism 120, schizotypal disorder 121, motor neuron disease 122, functional neurological 

disorders 123, memory 124,125, and executive function 126. 

Several questions should be further addressed in future studies. First, it will be crucial for future 

research to explore societal conditions where parental education strongly affects pre-adolescents’ brains 

across all racial and ethnic families. Such information may provide useful insights into new policies to 

reduce racial and ethnic disparities. To equalize racial and ethnic brain development, there is a need to 

equalize SES. However, there is also a need to equalize the marginal returns of SES. We need social 

and economic policies to deal with racial inequalities in brain development of middle-class Black and 

Hispanic families. Thus, policymakers should test policies that may equitably promote brain health for 

all people, regardless of their race and ethnic background. Elaboration of effective strategies requires a 

full understanding of underlying mechanisms for diminished returns of SES in Black and Hispanic 

families. Equity will not be achieved by closing the SES-based gaps across racial and ethnic groups. 

Social justice-promoting activities and policies are needed to equalize the returns of SES in different 

racial and ethnic minorities. 

In this study, race and ethnicity were social rather than biological determinants. Race and ethnicity are 

social factors in all the MDRs literature, including studies on adolescents' brain development. 

Subsequently, racial and ethnic differences reported here have resulted from the differential treatment 

by society, which is preventable, not differences due to genes that are innate. Race and ethnicity here 

are proxies of racism, including labor market discrimination, low school quality, segregation, and 

differential policing, leading to the reduced effect of parental education, even for high SES and 

successful people who have secured economic and human resources. Thereby, the results should not be 

read as biological inferiority of any race or ethnic group due to genes 127. 

 

5. Limitations 

A few limitations should be mentioned before we can interpret our findings. First, a strong conclusion 

concerning the direction of the causal paths is limited in a cross-sectional design. Longitudinal studies 
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are needed to fully understand how parental education, race, and their interactions impact changes and 

trajectories of brain function. Second, several SES indicators were not included here, which may 

change brain function and structure. These may include homeownership, wealth, and the occupational 

status of parents. Neighborhood-level SES indicators, such as home value, residential-area income, and 

area-level education level, were also not included. Third, the sample was not random. Thus, the results 

may not be generalizable to the entire population of US pre-adolescents. In addition, the sample was 

smaller for Black and Hispanic than White and non-Hispanic children. This is a common problem in 

almost all national studies. Finally, a wide range of relevant functional and structural features of the 

brain was not included. Behavioral manifestations were also not included.  

 

6. Conclusions 

Parental education shows stronger links for non-Hispanic and White pre-adolescents than for Hispanic 

and Black American pre-adolescents. These variations might be in part due to differences in the living 

experiences of racial and ethnic diverse groups of middle-class families, in line with the 

Marginalization-related Diminished Returns (MDRs). It will be crucial for future research to examine 

whether and how racism, social stratification, and segregation reduce the effects of parental education 

in Hispanic and Black communities compared to their White counterparts. It is yet unknown which 

social processes may contribute to a reduction of the benefit of SES indicators in Black and Hispanic 

communities. 
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Supplementary Table 1. Model formula in DEAP 

Model 1 

rsfmri_cor_network.gordon_cinguloparietal_network.gordon_cingulooperc 

~ high.educ.bl + race.4level + hisp + sex + married.bl + age 

Random: ~(1|rel_family_id) 

Model 2 

rsfmri_cor_network.gordon_cinguloparietal_network.gordon_cingulooperc 

~ high.educ.bl + race.4level + hisp + sex + married.bl + age + high.educ.bl * 

race.4level 

Random: ~(1|rel_family_id) 

Model 3 

rsfmri_cor_network.gordon_cinguloparietal_network.gordon_cingulooperc 

~ high.educ.bl + race.4level + hisp + sex + married.bl + age + high.educ.bl * 

hisp 

Random: ~(1|rel_family_id) 
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Correlation between CP CO functional connectivity and memory/executive function 

(nihtbx_picture_agecorrected) (y axis) 

Figure Appendix: Validation of CP CO functional connectivity 

 


