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Abstract 

Coarse Woody Debris (CWD; defined here as fallen and standing dead trees and tree branches) is a 

critical-structural and functional component of forest ecosystems that typically comprises a large 

proportion of total aboveground carbon storage. Coarse woody debris estimation for the tropics is 

uncommon, and little is known about how carbon storage in CWD will respond to climate change. 

Given the predominant role that tropical forests play in global carbon cycling, this information gap 

compromises efforts to forecast climate change impacts on terrestrial carbon balance. In this study, we 

aimed to identify the variation in Coarse Woody Debris (CWD) stocks between forest types (Old-growth 

and selective logging forests) and among the plots in Ipendja mixed lowland terra firme tropical 

rainforest (central Africa). The study also examined the consequence for CWD carbon stocks 

estimation. The study area is located in Ipendja forest management unit (UFA), close to Dongou district 

(Likouala Department), in Northern Republic of Congo. Data collection were done with eight 

rectangular plots, each 25 x 200 m (0.5 ha). The method of line intercepts sampling has been used in 

each studied site. A total number of 135 CWD samples of diameter  10 cm in the studied plots have 

been recorded. It was obvious that stocks of CWD in Mokelimwaekili (mean: 19.96 Mg ha-1; sum: 

79.84 Mg ha-1) were higher than those of Sombo (mean: 8.9 Mg ha-1; sum: 35 Mg ha-1). There was a 

significance difference in Ipendja evergreen forest about CWD stocks across two forest types and 

studied plots. This finding suggests that values vary among forest types and that separate reference 
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values should be adopted for estimates of undisturbed forest carbon stocks in the different ecosystems 

in Congo basin. Different reference values represent the variability of CWD among forest types and 

contribute to reducing uncertainties in current estimates of carbon stocks in central African forest 

ecosystems. 
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1. Introduction 

Coarse Woody Debris (CWD) is an important component of carbon storage in tropical forests 

(Chambers et al., 2000; Rice et al., 2004; Palace et al., 2012; Osone et al., 2016). In undisturbed moist 

forests, it may account for approximately 10% of the total carbon storage (Pregitzer & Euskirchen, 

2004) and can constitute up to 33% of the forests’ Above Ground Biomass (AGB) (Baker et al., 2007). 

A disturbance event usually causes large changes in Coarse Woody Debris (CWD) stocks and fluxes 

(Osone et al., 2016). Increased mortality due to disturbance promotes carbon flux from the living mass 

to the Coarse Woody Debris (CWD) pool (Rice et al., 2004), and the subsequent decomposition of the 

dead trees increases the total carbon emission of the stand. Therefore, quantifying the stocks and fluxes 

of coarse woody debris helps our understanding of the carbon balance of the disturbed forests. 

Undisturbed tropical rainforests are generally highly resistant to fires because of the moist 

microclimate and low fuel loads that create low-flammability conditions (Osone et al., 2016). 

The Kyoto protocol has led to increased attention to the potential of carbon sequestration in forests in 

order to mitigate rising levels of atmospheric CO2. In the past decades, forests have absorbed about 

30% of worldwide anthropogenic CO2 emissions annually (Schulze et al., 2000). However, much 

uncertainty remains about forest carbon sink-source dynamics, especially the effects of forest 

management (Bellassen & Luyssaert, 2014; Ekoungoulou et al., 2014c). Naudts et al. (2016) founded 

that despite increases in forest area and in forest management in Europe in the past 250 years, European 

forests have failed to achieve a net removal of CO2 from the atmosphere. This was attributed to 

increase wood extraction which has resulted in a removal of CO2 from biomass, dead wood and forest 

soils. Thus, Naudts et al. (2016) demonstrated that not all aspects of forest management would mitigate 

climate change.  

Globally, Coarse Woody Debris (CWD) contains about 36-72 Pg. of carbon (but see Russell et al., 

2015 for factors that greatly affect such estimation), and the fate of this carbon will affect forest carbon 

dynamics (Cornwell et al., 2009) as well as global surface carbon stocks with feedback to climate 

(Brovkin et al., 2012). 

In recent literature it has been proposed that leaving dead wood in the form of CWD in forests rather 

than clearing it, contributes to the system’s carbon sequestration (Luyssaert et al., 2007; Gough et al., 

2007; Nave et al., 2010; Cornelissen et al., 2012; Wiebe et al., 2014). Apart from carbon sequestration, 

coarse woody debris may also provide other ecosystem services such as a habitat, food and nutrients 
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for numerous organisms. For instance, many saprophytic organisms are threatened by extinction due to 

the global decrease in the presence of coarse woody debris (Grove, 2002; Magnusson et al., 2016). 

Coarse Woody Debris (CWD) is an important carbon pool in forests. Resilience times of coarse woody 

debris vary widely based on their size, species and local environment. Half-lives of up to 230 years 

have been found (Harmon et al., 1986), however Kueppers et al. (2004) reported average residence 

times of up to 800 years for coniferous species in a subalpine setting. Locally, especially in cases of 

buried CWD on paludified sites, CWD may persist for over centuries (McFee & Stone, 1966; Triska & 

Cromack, 1980; Moroni et al., 2015). Although exact definitions may vary, Coarse Woody Debris 

(CWD) is usually defined as wood fragments with minimum diameters of between 2.5 and 10 cm 

(Harmon et al., 1986). Distinctions can be made between fine woody debris and intact stems and 

branches, the latter of which may be downed or still standing. Following up mentioned ideas, we 

adhere to the classification proposed by Harmon and Sexton (1996). Fragments smaller than 10 cm in 

diameter and 1.5 m in length are fine woody debris (Magnusson et al., 2016). Larger fragments can be 

present as snags (vertical standing fragments resulting from natural processes), stumps (short vertical 

elements resulting from cutting) and logs (i.e., downed woody debris, DWD). 

A common distinction between DWD and snags is a lean angle of 45◦, larger angles representing snags 

and lower angles representing DWD. We adhere to Harmon and Sexton’s (1996) proposal that also 

short elements at lean angles > 45◦ be defined as either snags (in case they result come from natural 

processes) or stumps (in case they result come from cutting). Belowground elements can be divided 

into buried wood and coarse roots (Harmon & Sexton, 1996). Although most studies focus on snags 

and logs, roots and stumps are important constituents of coarse woody debris (Palviainen & Finer, 

2015), and are included in our definition of CWD. 

However, most studies on Coarse Woody Debris (CWD) have focused on the aboveground CWD-pool 

and respiration fluxes of carbon from CWD, using eddy-covariance and respiration chamber methods 

(Gough et al., 2007; Luyssaert et al., 2007; Ohtsuka et al., 2014; Kahl et al., 2015), rather than 

incorporating the effect of CWD on soil carbon pools. This in spite of the fact CWD may yield a larger 

Dissolved Organic Carbon (DOC) flux to the forest soil per unit mass than foliar litter (Hafner et al., 

2005). Secondly, CWD buried in the soil or covered by thick vegetation layers (most notably mosses) is 

not usually quantified. However, this pool of buried dead wood can be a significant forest ecosystem 

carbon pool with a very low turnover rate (McFee & Stone, 1966; Harmon & Sexton, 1996; Moroni et 

al., 2015). Despite its importance, this pool is not accounted for in forest carbon models (Moroni et al., 

2015) and is often purposefully removed from soil or litter sampling efforts (McFee & Stone, 1966; 

Harmon & Sexton, 1996; Moroni et al., 2015), causing it to be a “missing carbon pool” in present day 

forest carbon cycle research (Magnusson et al., 2016). Failure to incorporate belowground processes in 

research into carbon dynamics of CWD results in a compromised vision at best. Decomposition of 

CWD continues as it is gradually transformed into soil organic matter, making it hard to determine 

endpoints of decomposition and effects on forest carbon pools in studies that focus merely on the 
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aboveground pools of CWD (Mcfee & Stone, 1966; Magnusson et al., 2016). Plot-based method is 

useful for the studies that compare stocks of Coarse Woody Debris (CWD) with inputs from tree 

mortality within existing one hectare permanent plots. Line intersects method is useful for assessing 

questions about the stocks of Coarse Woody Debris (CWD) at larger scales for assessing, i.e., the 

degree to which the plots are representative of the wider landscape (Baker & Chao, 2011). 

The present study about the carbon stocks of Coarse Woody Debris (CWD) in Ipendja forest, will allow 

us to estimate the carbon stocks in forest ecosystems of the Likouala Department (Northern Republic of 

Congo) using Allometric equations. The results of this study will be useful to the Republic of Congo’s 

national forest carbon quantification program, managed by the CN-REDD + Congo Project, and the 

Republic of Congo’s Ministry of Forest Economy and Sustainable Development. 

The objectives of this study were to: (i) quantify the Coarse Woody Debris (CWD) stocks including 

standing dead trees (snags) and fallen dead trees and branches (logs) in Ipendja mixed tropical forest 

using algometric equations; (ii) identify the drivers of coarse woody debris variation between two 

forests types (Old-growth and selective logging forests) of Ipendja lowland evergreen terra firme 

tropical forest. 

 

2. Materials and Methods 

2.1 Study Area 

The area in which the present study was conducted is located in Republic of Congo’s northern part, 

specifically in Ipendja (Figure 1) forest management unit (UFA), located at Dongou district (Likouala 

Department). Ipendja (2°32’N, 17°20’E) forest management unit (UFA) is managed by Thanry-Congo 

logging company according to them agreement allowed by Republic of Congo’s Ministry of forest 

economy and sustainable development. The Department of Likouala covers an area that is around 

150,000 hectares (STC, 2016). This Department extends 230 km from East to West and about 550 km 

from North to South. Likouala Department is limited at the North by the Central African Republic, at 

the South by the Department of Cuvette-Centrale, at the East by the Democratic Republic of Congo, at 

the West by Sangha Department (STC, 2016). 
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Figure 1. Location of Study Area 

 

2.1.1 Climate 

The tropical climate country is characterized by heavy precipitation and high temperatures and 

humidity. The Equator crosses the country just north of Liranga. In the north a dry season extends from 

November through March and a rainy season from April through October, whereas in the south the 

reverse is true. On both sides of the Equator, however, local climates exist with two dry and two wet 

seasons. Annual precipitation is abundant throughout the country, but seasonal and regional variations 

are important. Precipitation averages more than 48 inches (1,200 mm) annually but often surpasses 80 

inches (2,000 mm) (ANAC, 2016). Temperatures are relatively stable, with little variation between 

seasons. More variation occurs between day and night, when the difference between the highs and lows 

averages about 27 °F (15 °C). Over most of the country, annual average temperatures range between 

the high 60s and low 80s F (low and high 20s C), although in the south the cooling effect of the 

Benguela current may produce temperatures as low as the mid-50s F (low 10s C). The average daily 

humidity is around 80 percent. 

However, the Impfondo station, located around 60 kilometers in southeast of the massif to be 

developed, shows that this dry season tends to disappear in the northeast part (STC, 2016). So, the 

Ipendja forest management unit (UFA) therefore presently suffers with an equatorial climate with no 

real dry season, with minimum precipitation in January and February (> 50mm) and peaks from 

September to December (> 150mm), for an annual total of around 1600 mm (ANAC, 2016). With 

amplitude ranging from 2 to 2.5 °C, the average annual temperature is around 25 °C (ANAC, 2016). 
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Figure 2. Annual Mean Temperatures of Ipendja Forest Management Unit from 1901 to 2011 (a). 

Temperature (a) Has Been Adapted from the Source of Global Climate Monitor (Retrieved 22 

March, 2017, from http://www.globalclimatemonitor.org). Climograph of the Main 

Meteorological Station around the Study Area with the Mean from 1978 to 2015 (b) 

 

2.1.2 Soils 

About two-thirds of the country is covered with coarse-grained soils that contain sand and gravel. 

Lateritic soils, with a high proportion of iron and aluminum sesquioxydes, characterize low-lying areas. 

Because of the hot and humid climate, organic matter is decomposed by rapid bacterial action before it 

can accumulate into humus; moreover, top soil is washed away by the heavy rains (Ekoungoulou et al., 

2018a). In the savanna regions, the fertile alluvial soils are threatened with erosion by wind as well as 

rain. A diverse pattern of coarse- and fine-grained soils covers the plateaus and hills (STC, 2016). The 

(b) 

(a)



http://www.scholink.org/ojs/index.php/se                 Sustainability in Environment                     Vol. 3, No. 2, 2018 

148 
Published by SCHOLINK INC. 

forest massif to be developed is located in the Congolese cuvette, covered with recent deposits of the 

Quaternary, composed mainly by sandstone, clay, sands and silts over several tens of meters of depth 

(Ekoungoulou et al., 2018b). Resulting by the climatic consequence, the soils of Ipendja forest are the 

ferrallitic type and alluvial hydromorphic (STC, 2016), forming the following secondary minerals: 

kaolin (type 1/1 alumina silicates); Goethite and Hematite (iron hydroxide) and Gibbs (Alumina 

hydroxides). From sandy texture and low-cohesion organic lumpy structure, these soils are susceptible 

to erosion and favourable to soil leaching (STC, 2016; Ekoungoulou et al., 2017). They are composed 

by a fine-textured top-layer, an intermediate stony induration layer and a lower layer corresponding to 

the altered bedrock. Fairly poor in base and high pH, soils are very low-fertility and the humus 

formation layer is very slow (STC, 2016). 

2.2 Data Collection 

Plot-based and line intersect are both available methods developed by RAINFOR network (Retrieved 

February 17, 2017, from http://www.rainfor.org) for the Coarse Woody Debris (CWD) measurements. 

Both methods can be used in existing studies of Coarse Woody Debris (CWD) stocks in RAINFOR 

plots. In this study only the line intersects sampling method has been used according to RAINFOR 

network protocol (Baker & Chao, 2011). Therefore, the field measurements were based on techniques 

using rectangular plots, each 5000m2 (25x200 m; i.e., 0.5ha). The study had retained eight rectangular 

plots each separated by roughly 1 or 2 km. The overall 8 rectangular plots were designed into 

Mokelimwaekili (4 plots) and Sombo (4 plots) sites in Ipendja. Coarse woody debris measurements 

have been conduct on plots with a slope ＜ 5° (almost flat). Also, measurements have been making 

solely on the coarse woody debris diameter ≥10 cm, and only these were marked with a nail and Poly 

Vinyl Chloride (PVC) plastic label (Pearson & Brown, 2005; Lopez-Gonzalez et al., 2011). The coarse 

woody debris less than 10 cm of diameter would normally be measured only in fairly young forest. 

Ipendja forest management unit (UFA) is not a young forest. Also, Ipendja forest is a tropical evergreen 

lowland terra firme moist forest with a status of old-growth (Mokelimwaekili) and selective logging 

(Sombo) forests. Therefore, a GPS model Garmin 62CSx has been used to record the plots location 

(coordinates) in minutes, second and degrees. Altitudes, longitudes, latitudes were then recorded for 

each plot in study area. 

2.2.1 Line Intersects Sampling 

Line intersects sampling performed provides a fast method to obtain landscape-level estimates of 

Coarse Woody Debris (CWD) stocks and allow sampling for the calibration of the decomposition 

classes and measurement of CWD avoid space outside the permanent plots (Baker et al., 2004). This 

method allowed until a total of 2 km of line transect, divided into several smaller units is recommended 

to provide reasonable precision: 400 m transects produced Coarse Woody Debris (CWD) estimates 

with a standard error of 20% of the mean in a southwestern Amazon forest (Baker et al., 2007). Ideally, 

line transects should always be more than 20m apart, to maintain independence, and be established in 

random directions across the landscape, to avoid bias from directional mortality events due to 



http://www.scholink.org/ojs/index.php/se                 Sustainability in Environment                     Vol. 3, No. 2, 2018 

149 
Published by SCHOLINK INC. 

topography or the predominant wind direction. During the field a measurement of 200 m, line transects 

has been used for by plot (each 200 m x 25 m). The line transects were established in two perpendicular 

directions, combining ease of set up with these objectives (Pearson & Brown, 2005). Measurements 

were done with rectangular plots of Coarse Woody Debris (CWD), two measurements have been made 

along the longest axis and perpendicular to that axis and the geometric mean calculated for use 

calculating the CWD volume.  

2.2.2 Measurement of Fallen Dead Trees and Branches (Logs) 

The fallen dead trees and branches have been measured using the method of line intersects sampling 

(Pearson & Brown, 2005; Baker & Chao, 2011). It was consisting of two lines of 200 m and 25 m in 

each cardinal direction (North-South and East-West) forming a right angle at the center of a plot. The 

diameter and height of every piece of Coarse Woody Debris (CWD) which is located in the perimeter 

of the study plot is systematically measured and the position of the latter by report to one of the ends of 

sampling line. The measure has been held using a double decameter model Forestry Pro. In each piece 

of fallen dead trees and branches it was attributed one of the categories of density follows: solid 

(machete bounces on wood); intermediate (machetes between partly and there is a loss of wood) and 

rotten (more great loss and the wood is brittle). 

2.2.3 Measurement of Standing Dead Trees (Snags) 

The snags or standing dead trees have been measured in the eight study plots. The diameter and their 

state of decomposition were recorded. Standing dead trees were classified into four categories, such as 

Category 1: Tree with branches and twigs resembling a living tree (except for foliage); Category 2: 

Tree without twigs but still with large and small branches; Category 3: Trees with large branches only; 

and Category 4: Trunk only, without branches. For category 4, the height of tree and its diameter at 

ground level were measured, and the crown diameter was measured. A laser hypsometer (Brand Nikon, 

model WJ072214, Forestry Pro) has been used to measure the height of snag in each study plot. The 

diameter for each standing dead tree has been measured by making use of methods for live trees 

according to Forest Plots (www.forestplots.net) and AfriTRON network (www.afritron.org) protocols 

(Lopez-Gonzalez et al., 2011). The height of snag has been measured in each study plot. 

2.3 Data Analysis 

2.3.1 Coarse Woody Debris (CWD) 

The Coarse Woody Debris (CWD) were analyzed in two steps, such as analysis of standing dead trees 

and analysis of fallen dead trees and branches for each study plot in Ipendja forest. Equation proposed 

by Warren and Olsen (1964) has been used to estimate the volume of fallen dead trees and branches (2). 

Equation developed by Mund (2004) has been used to estimate the volume of standing dead trees (1). 

The fallen dead trees and branches are also called by logs (Pedlar et al., 2002). The standing dead trees 

are also called by snags (Pedlar et al., 2002). 

2.3.2 Standing Dead Trees (Snags) 

Line intercepts sampling only provides information on fallen dead wood. If only line intersects 
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sampling is used, then belt transects 10 m wide on either side of the transect line (Chao et al., 2008; 

Woodall & Liknes, 2008) should be used to measure, in addition, all standing dead trees and stumps, as 

described in the previous section. 

To calculate the volume of standing dead trees in study area, the following equation developed by 

Mund (2004) has been used: 

V(m3)=π×h×f×(
2

D
)2                         (1) 

Where V is the standing dead trees volume per unit area (m3), π is 3.14, D is diameter of standing 

dead trees (cm), f is the form factor with the value of 0.627, h is height of standing dead trees (m). 

2.3.3 Fallen Dead Trees and Branches 

The diameter of each piece of fallen dead tree and branch, crossing the sampling line was 

systematically measured. And a dead piece of wood was measured if and only if more than 50% of the 

dead wood was above ground, and the sampling line was at least 50% of the diameter of the fallen 

piece of wood (Walker et al., 2011). Measurement of wood volume on the ground by line intersect 

consists basically of tallying the diameters of intersected pieces along a sample line. To calculate fallen 

dead trees and branches, the below equation proposed by Warren and Olsen (1964) has been used: 

L

d
V i

8

π
22 ）（                                (2) 

Where V is the fallen dead trees and branches volume per unit area (m3), di is the diameter (cm) of 

i㏒  and L(m) is the length of the transect line (Warren & Olsen, 1964). The variance of the volume  

(σ2) for (3) n transects is weighted by transect lengths (Lj), as recommended by De Vries (1986) cited in 

Keller et al. (2004), as: 

  ]L×)1/[(])V([σ j
2

~
2 nVL jj                    (3) 

The conversion of results obtained from volume to mass have been performed by setting the 0.5 as 

value of wood density for each sampling (Pearson & Brown, 2005). To estimate carbon stocks, the 

mass of Coarse Woody Debris (CWD) has been multiplied by wood density to obtain the carbon for 

each plot (Pearson & Brown, 2005; Basuki et al., 2009). Moreover, carbon stock is typically derived 

from live or Coarse Woody Debris (CWD) mass by assuming that 50% of the CWD mass is made up 

carbon (Brown, 1997; Cairns et al., 1997; Pearson & Brown, 2005; Basuki et al., 2009).  

2.3.4 Statistical Analysis 

Differences in the mean of Coarse Woody Debris (CWD) mass between the two forest type such as 

old-growth and selective logging forests were tested using one-way ANOVA, Levene or Tukey’s 

multiple comparison tests. Differences between the measured and predicted Coarse Woody Debris 

(CWD) mass were tested by the Student’s t-test. Kruskal-Wallis test, Wilcoxon test have been applied 

across plots, sites and between or for each sample case by case. Statistical analyses were performed 

with PAST version 3.05 (Hammer et al., 2001) and Sigma Plot version 10.0 software’s. Study area’s 
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location map has been performed using the ArcGIS v.9.3 software. 

 

3. Results 

The investigation revealed that a total number of 135 samples of diameter ≥ 10 cm in the studied 

plots have been recorded (Table 1). These 135 Coarse Woody Debris (CWD) samples measured were 

divided into two studied sites, respectively Mokelimwaekili (site 1, n = 57) and Sombo (site 2, n = 78). 

In Mokelimwaekili forest, 10 samples of standing dead trees and 47 samples of fallen dead trees and 

branches have been recorded. In Sombo forest, 18 samples of standing dead trees and 60 samples of 

fallen dead trees and branches have been recorded. It was obvious that stock of coarse woody debris in 

Mokelimwaekili site (mean = 19.96 Mg ha-1; sum = 79.84 Mg ha-1) were higher than those of Sombo 

site (mean = 8.9 Mg ha-1; sum = 35 Mg ha-1). Regarding the relative frequency of Coarse Woody Debris 

(CWD) samples measured, the most representative plot in study area with height relative frequency 

were plot 4 (27%), followed by plot 7 (19%) and plot 5 (13%). Plot 3 (7%), plot 2 (7%) and plot 1 (2%) 

had a low relative frequency of coarse woody debris samples in Ipendja mixed evergreen lowland 

tropical forest (Figure 4a). About the Coarse Woody Debris (CWD) storage, the most representative 

plot in study sites with height mass of Coarse Woody Debris (CWD) were plot 3 (31.55 Mg ha-1; 27%), 

followed by plot 4 (19%; 21.46 Mg ha-1), and plot 7 (15%; 17.48 Mg ha-1). Plot 6 (7.07 Mg ha-1; 6%), 

plot 5 (6 Mg ha-1; 5%), and plot 8 (5.1 Mg ha-1; 5%) had a low frequency of Coarse Woody Debris 

(CWD) mass (Figure 4b) in Ipendja mixed evergreen lowland tropical forest (Table 1).  

In this study, the fallen dead trees and branches have been recorded in all plots studied. It is important 

to mention that, during this research the standing dead trees have been recording in study plots 

excluding plot 1. Figure 3c shows that fallen dead trees and branches mass were higher than the 

standing dead trees mass founded in eight studied plots of Ipendja forest. Figure 3d shows that more 

standing dead trees samples recorded had a height ranging from 7 to 12 m for Mokelimwaekili forest as 

well as for Sombo forest. Figure 3a showed relationship between diameter and length of fallen dead 

trees branches. The logs recorded built up for both Mokelimwaekili and Sombo (Figure 3a). This study 

shows that plot 3 (31.55 Mg ha-1) were the most important regarding Coarse Woody Debris (CWD) 

mass (Figure 3b). While the number of Coarse Woody Debris (CWD) samples recorded for plot 3 were 

few (10 samples, 31.55 Mg ha-1) compared with the number of coarse woody debris samples recorded 

for plot 4 (36 samples, 21.46 Mg ha-1) as asserted in Table 1. 

One-way ANOVA and Levene test showed a significant difference between standing dead trees stocks 

and fallen dead trees and branches stocks (F = 17.97, df = 7.089, p = 0.003). Kruskal-Wallis test shows 

that there is a significant difference between fallen dead trees and branches mass and standing dead 

trees mass (H(chi
2): 11.29, p = 0.0007). The t-test has been performed for only Coarse Woody Debris 

(CWD) mass in eight plots, and the results shows that the mean are significantly different ( p = 0.002, 

confidence interval at 95%: 6.8856-21.992). Wilcoxon test (normal approximation inaccurate) shows 

that the medians are significantly different (p = 0.0078, W: 36, Normal approximation z: 2.52). 
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One-way ANOVA performed using PAST v.3.05 shows that, there is no significant difference between 

Mokelimwaekili forest and Sombo forest (F = 4.468, df = 5.203, p = 0.086). Levene’s test for 

homogeneity of variance showed a significant difference between Mokelimwaekili and Sombo sites 

about the coarse woody debris stocks (from mean: p = 0.422, from medians: p = 0.394). Kruskal-Walls 

test shows that there is no significant difference between Sombo and Mokelimwaekli sites for coarse 

woody debris storage (H(chi
2): 3, p = 0.0832). 

 

Table 1. Various Features of Coarse Woody Debris Recorded in Study Area. D: Average Diameter 

of Coarse Woody Debris (in cm) Recorded in each Plot; FS: Forest Status; OG: Old-Growth 

Forest; SL: Selective Logging Forest (Logging Performed in Ipendja UFA from 2002 to 2003 by 

One Stem per Hectare); CWD: Coarse Woody Debris Mass (Sum of Fallen Dead Trees and 

Branches Mass, and Standing Dead Trees Mass, in Mg ha-1); MME: Mokelimwaekili Site; 

Altitude: Altitude (in m) of Each Studied Plot Measured Using a GPS Model Garmin 62CSx; 

Height: Average Height of Standing Dead Trees Recorded for each Plot in Ipendja Mixed 

Lowland Evergreen Forest (in m); Length: Average Length of Fallen Dead Trees and Branches 

for each Plot in Ipendja Mixed Lowland Evergreen Forest (in m); n: Number of Coarse Woody 

Debris Sample Recorded by Plot in Studied Sites; Logs: Mass of Fallen Dead Trees and Branches 

for Each Plot (Mg ha-1); Snags: Mass of Standing Dead Trees for Each Plot in Ipendja Forest (Mg 

ha-1) 

     

CWD 

Fallen dead trees and branches  Standing dead trees 

Plots Sites FS Altitude D Length n logs D Height n snags

Plot1 MME OG 397 15.09 24.75 17.05 2 15.09     

Plot2 MME OG 385 11.74 20.65 6.8 6 10.51 47.26 11.33 3 1.24 

Plot3 MME OG 385 31.55 35.7 6.2 8 31.41 18.7 8.7 2 0.14 

Plot4 MME OG 390 21.46 28.12 5.6 31 19.49 73.58 7.4 5 1.97 

Plot5 Sombo SL 378 6 15.12 3.5 11 5.6 33.05 7.5 7 0.4 

Plot6 Sombo SL 383 7.07 16.9 3.8 16 7.04 13.25 4.6 2 0.03 

Plot7 Sombo SL 377 17.48 26.32 4.9 23 17.07 37.66 6 3 0.41 

Plot8 Sombo SL 384 5.12 14.36 5.1 10 5.08 14.21 4.9 6 0.04 
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Figure 3. Diameter-Length Relationship of Fallen Dead Trees and Branches in Study Area (a). 

Distribution of Coarse Woody Debris Storage (CWD; in Mg ha-1) by Plot in Ipendja Forest (b). 

Variation between Standing Dead Trees Mass (Snags; in Mg ha-1) and Fallen Dead Trees and 

Branches Mass (logs; in Mg ha-1) with Graph Type Performed as Whisker Length of 95% 

Interval, Whisker Type: Standard Error, Standard Deviation, and Frame in studied Plots (c). 

Relationship between Diameter-Height of Standing Dead Trees (snags; in Mg ha-1), and Graph 

Performed with 95% Ellipses, Frame and Filled Regions (d) 

 

 

Figure 4. Relative Frequency of Coarse Woody Debris Samples Measured per Plot in Ipendja 

Forest (a). Relative Frequency of Coarse Woody Debris Storage by Plot in Study Area (b) 

(a) (b)

(c) (d) 
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4. Discussion 

Any Coarse Woody Debris (CWD) that did not allowed the taking into account of these measurement 

conditions wasn’t measured. In this study, we used a 200 m transect line per study plot, which has not 

been the case in other studies in tropical Africa (Baker et al., 2007; Carlson, 2013; Bocko et al., 2017; 

Ifo et al., 2017). Baker et al. (2007), Bocko et al. (2017), Ifo et al. (2017) and Carlson (2013) used 400 

m, 100 m, 100 m and 800 m transect lines per study plot, respectively, in southern Peru, Congo, Congo 

and Gabon. Their results showed that the stocks of coarse woody debris increase also with the length of 

transect line studied. It was obvious that the number of coarse woody debris recorded in Sombo were 

higher than those of Mokelimwaekili by the fact that Sombo site is a selective logging forest (Logging 

performed in Ipendja forest management unit from 2002 to 2003 by one stem per hectare), while 

Mokelimwaekili is an old-growth forest. During inventorying period there are observation highlight of 

wind break in Sombo site and that forest is in regeneration period. Ifo et al. (2017) mentioned that most 

of Republic of Congo’s primary forests have the wind break phenomenon. 

Several factors could explain the changes in coarse woody debris stocks in the study area: forest type, 

age, structure and dynamics of the studied forests (Baker et al., 2004). Apart from these factors, we can 

also mention the meteorological phenomenon (hurricanes, storms), but also the natural phenomena of 

wind break. Meteorological parameters’ action has been noted by several other authors among which 

Keller et al. (2004), Pfeifer et al. (2015) and Ifo et al. (2017). They asserted that among the factors that 

contribute to the production of coarse woody debris stocks but also to their accumulation on forest soils, 

there is the action of storms. 

De Vries (1986) derived the theoretical variance of the estimation. In this respect there is a subtle 

difference between Buffon’s needle problem and LIS. In the former, needles are independently cast at 

random onto a lined area. Thus the probability of an intersection for any one needle is independent of the 

probability of an intersection of any other needle. In LIS, however, it is the needles that are fixed and a 

line placed at random. Knowledge that a certain needle has been intersected then affects the probability 

of intersection of the remainder. This introduces a covariance term that cannot, in general, be specified 

exactly although, given the scale of logging residue applications, this component is almost certainly 

negligible. A second approximation is introduced by taking p(1-p) = p since p is small. It often appears to 

be overlooked that Warren and Olsen (1964) derived an expression for the coefficient of variation of V 

which, when transformed, is equivalent to the expression for the variance given by De Vries (1986). 

These expressions for the variance involve, of course, the unknown population values. In practice the 

precision is estimated through the variance of the volume estimates generated by more than one sampling 

line. 

Worldwide, forests have absorbed around 30% of global anthropogenic emissions of carbon dioxide 

(CO2) annually, thereby acting as important carbon sinks (Magnusson et al., 2016). It is proposed that 

leaving large fragments of dead wood, Coarse Woody Debris (CWD), in forest ecosystems may 

contribute to the forest carbon sink strength (Magnusson et al., 2016). Coarse Woody Debris (CWD) 
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may take years to centuries to degrade completely, and non-respired carbon from CWD may enter the 

forest soil directly or in the form of dissolved organic Carbon. Although aboveground decomposition of 

Coarse Woody Debris (CWD) has been studied frequently, little is known about the relative size, 

composition and fate of different Carbon fluxes from Coarse Woody Debris (CWD) to soils under 

various substrate-specific and environmental conditions. Thus, the exact contribution of carbon from 

Coarse Woody Debris (CWD) to carbon sequestration within forest soils is poorly understood and 

quantified, although understanding CWD degradation and stabilization processes is essential for 

effective forest carbon sink management. Magnusson et al. (2016) provided insight into these processes 

on the interface of forest ecology and soil science, and identify knowledge gaps that are critical to 

understanding of the effects of CWD on the forest soil carbon sink. It may be seen as a “call-to-action” 

crossing disciplinary boundaries, which proposes the use of compound-specific analytical studies and 

manipulation studies to elucidate carbon fluxes from Coarse Woody Debris (CWD). Carbon fluxes 

from decaying Coarse Woody Debris (CWD) can vary considerably due to interspecific and 

intraspecific differences in composition and different environmental conditions. These variations in 

carbon from Coarse Woody Debris (CWD) need to be studied in detail and related to recent advances in 

soil carbon sequestration research. 

 

5. Conclusion 

Endogenous factors (aging of the forest ecosystem) or external factors such as the action of very strong 

winds could explain the differences observed in the two forest types (old-growth and selective logging 

forests) of Ipendja lowland evergreen terra firme tropical forest. This study also showed that Coarse 

Woody Debris (CWD) compartment should be taken into account in quantifying tropical forest 

ecosystems’ carbon stocks. This study indicates that carbon storage and emissions in selective logging 

forests may be markedly different to those in primary forests (old-growth forests). The averages of the 

coarse woody debris stocks vary clearly between the two characteristics types of studied forest in 

Ipendja UFA, and also between the standing dead trees stocks and the fallen dead trees and branches 

stocks. Coarse woody debris stocks increased from old-growth forest to selective logging forest in 

Ipendja evergreen terra firme lowland forest. This research basically studies the different reference 

values represent the variability of Coarse Woody Debris (CWD) among forest types which will 

contribute to reducing uncertainties in current estimates of carbon stocks in central African forest 

ecosystems. The structural parameters and sampling methods best explain the differences in carbon 

stocks noted between the two types of studied forests and those found in the literature. 
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