Original Paper

Applying the Life Cycle Analysis in the Construction of Social

Housing in Cameroon: The Case of Single-Store Houses at the

Sic Residential Area in Olembe (Yaounde)

Aimé Elime Bouboama^{1*}, Mamba Mpele¹ & Ngouadjio Alain Claude¹

¹ Department of Civil Engineering and Urban Planning, National Advanced School of Engineering, University of Yaoundé I, P.O. Box. 8390, Yaoundé, Cameroon

* Aimé Elime Bouboama, Department of Civil Engineering and Urban Planning, National Advanced School of Engineering, University of Yaoundé I, P. O. Box. 8390, Yaoundé, Cameroon

Received: June 2, 2018 Accepted: June 28, 2018 Online Published: July 6, 2018

Abstract

This study proposes an analysis approach of the life-cycle of two types of social housing of "T4 single-storey houses". This is to determine which phase of the life-cycle calls for special attention in the process of reducing the impact of this sector on the environment. In order to successfully carry out this task, we first carried out a general review of the LCA as a decision-making guiding tool. Then, we alluded to social housing projects in Cameroon as the implementation framework of our guiding tool. Finally, after updating the database of some components of the building sector, we proceeded to the implementation on our two samples. Results obtained high light the importance of the exploitation phase. More interestingly, considering all twelve environmental impact indicators taken into account, the utilization phase that involves exploitation and maintenance is more predominant, causing 82 to 86% of the total impact, followed by the construction phase with 13 to 18%, and then by the demolition phase with 0.01 to 1%. As concerns the economic aspect, the utilization phase remains the most preoccupying. It represents at least 65% of the overall cost of the life cycle, followed by the construction phase and demolition phase.

Keywords

life cycle analysis, social housing, sustainable development, environmental impact

1. Introduction

The housing crisis that has been plaguing Cameroon for close to twenty years has prompted the State to launch social housing projects in various cities of the country. That is why a pilot program for the construction of 10.000 low-cost houses was initiated in the two major cities of Cameroon, that is Yaoundé, the political capital at the Olembéneighborhood (at the northern entrance of the city) and in Douala, the economic capital, in the Mbanga-Bakoko area. However, it is well-known that the civil engineering works in general, and construction of houses in particular, transform and severely damage the environment. As matter off act, the construction activity requires the massive use of natural renewable or non-renewable raw materials. This also implies the production of important quantities of inert wastes and the emission of pollutants such as carbon dioxide, fine particles, and volatile organic compounds. That is why it is imperative to integrate the environmental preservation aspect in the management of projects of such magnitude, because for too many years, the emphasis was mainly laid on the cost of activities, leaving aside the analys is of impacts made on the environment. Thus, in order to render buildings more ecological, it is important to know the various phases of their life cycle. We should also be able to determine the most important phase interms of environment a impacts and avoid shifting pollution from one phase to the other. In order to fill this need and have an integral view of the issue, the Life Cycle Analys is appears to be the appropriate tool. It is in this light that this paper was drafted with the objective of applying the life cycle analys is to a "T4 one-storey" low-cost house in the urban area of the center Region. We shall present the LCA tool, the various phases of the life cycle of a building and determine the most toxic phase in terms of environmental impacts. A better knowledge of the impacts as sociated to products helps to seta order of priorities for improving and informing organizational and technical options.

1.1 Life Cycle Analysis

The Life Cycle Analysis (LCA), that was developed in the sixties, is used to quantify the impacts of a "product" (good, service or process), from the collection of its constitutive raw materials up to their destruction, through their distribution and use ("from the cradle to the grave" analysis). The flow of raw materials and energies involved and produced teach step of the life cycle relisted, and an exhaustive account is made of the consumption of energy, natural resources and polluting emissions in the environment (air, water and soils). The ISO14040 standard describes the essential characteristics of an LCA and good practices in conducing such a study (methodological framework, transparency requirements, measures applicable in case of transmission to third persons, etc.).

The four main steps of a life cycle analysis areas follows:

- The definition of the objective and scope of the study: ISO14041.
- The inventory of resource consumption and of emissions: ISO14041.
- The impact assessment of the life cycle: ISO14042.
- The interpretation of the life cycle's results: ISO14043.

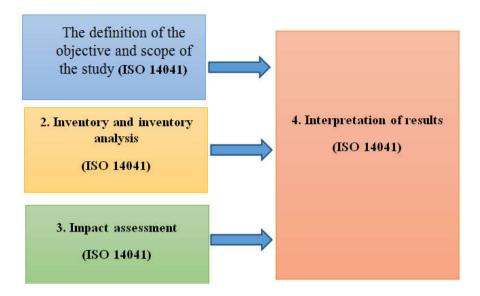


Figure 1. Interactions between the Life Cycle Analysis Steps (ADEME, 2005)

2. Method

2.1 Defining the Objective and the Scope of the Study

2.1.1 Defining the Objective

The aim of our study is to apply the LCA to the low-cost house in urban areas in order to measure the environmental impacts during the life cycle of our building. This will bed neon the basis of the LCA methodology that thoroughly assesses the impacts of a building using twelve environmental indicators:

i. Indicators on the consumption of:

- Energy;
- Water;
- Resources.

ii. The indicators of emissions into nature such as:

- Inert waste;
- Radioactive waste;
- GWP100;
- Cidification;
- Eutrophization;
- Co toxicity;
- Humantoxicity;
- O3-smog;
- Odours.

2.1.2 Defining the Scope

The scope with in which we shall carry out our study features the following items:

i. Function and related functional units

Functional units adopted to determine the value of the various indicators during the three phases of the building's life span:

- Internal usable surface: 93.7m²;
- Internal usable volume of the building: 225m³;
- Occupation: 6 persons;
- In-house services provided by house hold appliances and usual entertainment products such as the gas cooker, the refrigerator, the air-conditioner, the computer, the TV set and the radio;
- Water supply by CDE;
- Electricity: voltage provided 220 volts.

ii. Life span

It is supposed that construction works of our buildings train July 2016 and end in December 2016. Thus, our house is readyon 1st January 2017; the life span of our house is estimated at 50 years.

iii. Limits of the system

The limits define the scope with in which the system is studied. All what fall without this framework is not taken into consideration. The system studied covers the construction, utilization maintenance and demolition of the building period and designed following a good number of well-established hypotheses. Figure 2 presents asketchyvie was well as the scope within which all the flows of materials and energy are listed for the life cycle of the building. This sketchy model of the life cycle is designed to include the astuteness of giving more importance to the nearest material supply points.

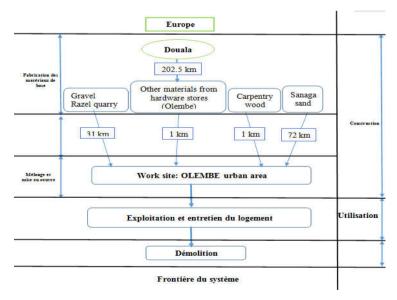


Figure 2. Sketch of the Building's Life Cycle

vi. Flow inventory

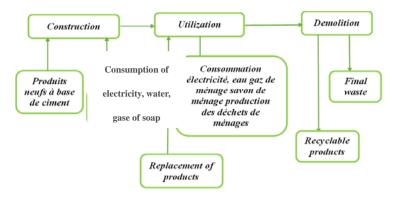


Figure 3. Principle for the Calculation of the Inventory

2.2 Presentation and Justifications of the Building

This is a single-storey low-cost house located in the Olembén eighbor hoodatal attitude of 3.9500° and alongitude of 11.533° in Yaoundé, whose characteristics are given in the Tables below, as well as the Distributionplan. Anestimate of the building is also attached.

Table 1. Civil Engineering Features of the Low-Cost Building

	Projet surface area 120m ²								
		Surface area used	94 m ²						
		Internal volume	225 m ³						
	Type of materials	Materials made w	ith cement						
Various parts	of	1 living room	19 à 30m² (27.76) Paillassede (2.50 x						
the building	Structure of the buildi	ing	0.60)						
	(inner net dimensions	of	m² et 0.90mdehauteur						
	these elements (1 to	7)Threebedrooms	10 à13m²						
	represent the living area	of 1 kitchen	$7m^2$						
	the building)	1 bathroom	3.5m ²						
		1 toilet							
			1m ²						
		Passage way	Atmost 12% of the living area						
		1 drier/launde rette							
	Entry doors of the house		1.10m x 2.17m 1.04m x 2.17m-1.04m x 2.40m						
	French windows								
Dimension	of		1.20m x 2.17m-1.20m x 2.40m						
doors an	nd		1.40m x 2.17m-1.40m x 2.40m						

windows	Windows	0.80m x0.63m-1.20m x 1.60m					
		0.90m x 1.40m-0.90m x 1.50m					
		1.20m x 1.20m-1.20m x 1.40m					
		0.85m x 2.10-0.95m x 2.10m					
	Inner doors	0.70 m x 2.1m					

Table 2. Electrical Features of the Low-Cost House

1 parlour	1 or 2 lighting spots (1DA + 1SA) or 1DA
	2 or 3 sockets with ground connection (P+T)
	1 collective TV antenna
Various parts of Bedrooms	1 lighting spot SA.
the building	1 socket
	1 collective antenna socket in the 2^{nd} bedroom (for parents)
	1 SA lighting spot on the ceiling
1 kitchen	1 0.60 light tube with T-positive socket above the kitchen
	garden
	2 sockets with ground connection (P+T) at 1.60m above
	ground level
Toilet	1SA lighting spot

Table 3. Carpentry Equipment, Technical Andsewage Disposalducts of the House

Equipment	Description
	Carpentry works must be done with good quality materials according to the rule
	book; measures for perfect adjustments and setting up must be respected to the letter.
Carpentry	In any case, the choice of the type of materials must be justified technically
	(resistance, behavior, durableness, water-proofness, the rmalandacoustic
	performances) and financially. Entry doors of the houses must also obey to safety
	and anti-intrusion requirements by the type of materials used, the sealing method
	and the shutting system. Inshort, carpentry works must be carried out according to
	international rules and norms relatingto the type of the proposed carpentry works.
	Four technical ducts must be provided for and putin place according to norms
Technical ducts	inforce; they will host electrical installations for power, telephone and TV supply
Sewage dispos	alSeparate plumbing piping must be provided for wastes ewage, sewage water and rain
system	water. They could end into a single main sewer, especially in the case of a combined
	system. Rain water will bedrained through appropriate piping; we should avoid
	direct draining over front walls or other method that could contribute to their rapid

degradation.

Table 4. Estimates

WORKS DESCRIPTION	UNIT	QUANTITY
Work site installation		
Work site installation and clearing	FF	
Subtota 11.00		
Draining and disposal of rain water		
Putting in place of rein forced or prefabricated manholes	u	1
Subtotal 2.00		
Sanitation EU-EV		
Construction of man holes EU-EV	u	3
125PVC piping network	ml	1.5
Construction of water treatment and sanitation systems EU-EV (skeptical pits	Ens	1
andsumps)		
Subtotal 3.00		
Establishment-Foundations		
Pitexc avations	m^3	11.38
Trench excavations	m^3	29.5
Paved compacted back fills	m^3	25.16
Excavation back fills	m^3	4.84
Oversite concrete at a dosage of 150kg/m3	m^3	2.7
Concrete for pillar and long beams hoesata dosage of 300kg/m ³	m^3	3.5
Concrete blocks for basement wall	m^2	30
RC foundation wall tie at a dosage of 350kg/m ³	m^3	3
Subtotal 4.00		
Bricklaying		
Hollowconcrete blocks of 15x20x40	m^2	203
Reinforcedconcrete for pillars, lintels and upper wallties	m^3	11.5
Cement mortarcoating	m^2	405
Bush hammered cement topping	m^2	110
Flags tone paving at adosage of 300kg/m3 over a sandy bed	m^2	94
Subtotal5.00		
FRAMEWORK-ROOFING		
Wooden trusses 3*15	m^3	2
Wooden purlins (4*8)	m3	1.5

Roofingaluminum sheets 6/10	m^2	99.69
Fascia boards protected with sheets of 7/10	m3	120
PVCrain water gutters, including hooks and others accessories	ml	19.81
Downspouts, including holders	ml	29.38
Dropped ceiling, including joisting	m²	110
Subtotal 6.00		
Carpentry-Wood		
Supply and installation of complete solid doors of de 0.85 x 2.10	U	7
Supplyand installation of complete thermal-reak door of		
of0.65 x 2.10	U	2
of 0.02 x 0,6 x 2.10	U	1
Supply and installation of glass sash window frames	U	7
Supply and installation of complete cupboards, including all room implements	U	4.69
(240 x 220)		
Supply and installation under-counter cup boards	U	1
Subtotal 7.00		
Metaljoinery, NACO & glazing		
10 mm-Wrought ironsecurity grids	U	7
Pairs of 8-balde NACO sashes	U	8
Of 5blades	U	3
1.2 mclear NACO blade	U	66
Of 0.6m	U	19.06
Subtotal 8.00		
Electricity		
Straps	U	1
Distribution box	U	1
S.A.S witch	U	7
Three-way switches	U	7
Double S.A switches	U	7
Double three-way switches	U	7
Push buttons	U	7
Light tubes	U	15
Bulbs	U	6
Simple windows	U	3
Installation	FF	
Subtotal 9.00		

Plumbing		
Coldwater PVC pressure supply pipe 20/27	ml	16.88
Coldwater PVC pressure supply pipe 15/27	ml	26.25
Hotwater copper supply pipe	ml	18.13
PVCÆ63 waste pipe	ml	27.19
PVCÆ100 waste pipe	ml	11.25
Supply and install ation of a complete wash stand, including valves and	U	2.81
fittings and emptying		
Supply and installation of a WC low-end flushing tank accessories included	U	2.81
Supply and installation of a complete Bidet, including fittings and waste outlet	U	
Supply and installation of a ground bathroom floor drain included	U	2.44
Supply and installation of a stainless two-compartment sink including fittings	U	1
and waste outlet		
Supply and installation of a complete shower stack, including fittings and	U	2.44
waste outlet		
Supply and installation of a bathroom shelf	U	2.81
Supply and installation of asoap holder	U	2.81
Supply and installation of a toilet paper dispenser	U	2.81
Supply and installation of a 60x40 bathroom mirror	U	2.81
Supply and installation of a two-layer towelbar	U	2.44
Supply and installation of aground floor drain	U	2.44
Supply and installation of a single compartment laundry tub	U	1
Supply and installation of a faucet	U	1
Subtotal 10.00		
Wall facing and flooring		
Stone ware tiles for living room and dining room	m^2	25
2X2 Stone ware tiles in toilet floorings and W.C	m^2	9,38
Faïence tiles of 15X15 on toilet and W.C walls, and at 0.45cm above the sink	m^2	11,25
of the kitchen's work top		
Subtotal11.00		
Paintings		
Vinyl pain to nouter walls, including all main spaces	m²	187,5
Vinyl paint on inner walls, ceilings and subfloors, including main spaces	m²	490,63
Glycerophtalic paint on wood works, metallicjoinery, kitchen and	m²	35,94
wash-uprooms and adjoining areas		
Cellulosiclacquer on all wood works and adjoining areas comprises	m²	4,53

Subtotal12.00

2.3 Hypotheses and Elements of the Study

In order to apply the LCA on social lodging, we need to set down some hypotheses and we must have some elements.

2.3.1 Hypotheses

H1: General environmental impacts indicators obtained at the end of the building's life cycle are assessed following the steps described below.

Data presented, taking into consideration the extraction of the raw materials and the production of materials that are manufactured or not; then impacts resulting from the following processes are added:

- Transportation of manufactured parts to the building site;
- Energy and carbon dioxide produced during the manual phase of the use of the building's components;
- Impact indicators through hout the use of the building (lighting, specific electricity);
- Environmental impact of maintenance and improvement materials;
- Environmental impacts of the destruction of the house;
- However, it should be noted that the value of environmental impacts during the production of building materials (trucks, Wheel barrows, scoops, vibrators, etc.) were not taken into account.

H2: It is considered that environmental impacts of the building's components are constant over the time.

H3: Processes and factor excluded. Inade concentratedeff or to farchitectural systems that directly impact the use of energy and the overall heating potential of the low-cos thouse, some components of alow-cost house and some external factors were not listed. Belowisa list of some questions that were not included in the study:

- The location, since it deals with impacts on local ecosystems, personal questions on transportation, and urban issues on planning (including ewage and road infrastructures);
- The house surroundings (for instance foot path concrete, developments, draining);
- Furniture (kitchen and bathroom boxes, etc.);
- TV and telephone connections (external and internal systems, including wiring and firealarm);
- Behavioral models of inhabitants; this involves food consumption, leisure equipment, clothing, furniture, the supply of pet;
- animals, cleaning products or other articles that require no energy for the operation;
- Other environmental impacts happening in the whole life cycle;
- Environmental and social impacts related to the origin of building materials;
- Upcoming technological developments that significantly reduce energy consumption and the cost of house hold appliances;

H4: Materials supply sites remain the same through hout the life cycle.

H5: For an overall lappraisal of our building, it is supposed that the price of materials would slightly increase in the long run.

2.3 Hypotheses and Elements of the Study

2.3.1 Elements of the Study

We have established accorrelation between the HNPS and the EQUER software inorder to fill the indicator deficit of the HNPS. Of course, we carried out a compatibility operation on our various indicators so that our study should not be distorted.

1) Transportation of materials

- Supply of materials manufactured in Douala;
- Gravel supply site: Razel quarry situated at Nkometou.

Table 5. Transportation of Materials (ELIME, 2012)

Materials	Equipment	Energy	consumed	Distance (km)
		(MJ/t.km)		
Sand	20 ttruck	1.1		72
Gravel	20 ttruck	1.1		31
Hard ware store	16 ttruck	1.1		203.5
materials (cement,				
steel)				

The power of the 16t truck remains equal to that of the 20t truck to take the vehicle's energy consumption in Cameroon into account, due to their age.

Table 6. Unit Power Consumption for the Production of Basic Constituents and Basic Tasks Needed for the Building (ELIME et al., 2009)

Designation	Unitpower consun	nption
Steel	26355.00MJ/t	
PVC	9 240.00MJ	I/t
Cement	473.6MJ/t Lime	10164.00MJ/t Asphalt5 390.00MJ/t Geotextile96.56MJ/m2
Asphaltemulsion 60%	3 839.00MJ/t	ı
Crushed aggregates	44.00MJ/t	
Rolled aggregates	33.00MJ/t	
Fuel	36.00MJ/t	
Deforestation, cleaning	and clearing offoftheland a	acquired 18.56KMJ/m2
Clearing of light mater	ials	13.80MJ/m3
Clearing of rock materi	als 38.4M	J/m3

Storageofclearedmaterials 6.72MJ/m3

Compacting the backfill 6.04 MJ/m3

Transportationwithtrucks luMJ/txkmTransportation bysea 300.00MJ/tour Hotcoatingproductionstation

302.50MJ/t

Lukeworm coatingproductionstation .40MJ/t Coldproductionstation(concrete) 15.40MJ/t Water station

10.00MJ/t

Clearing of shoulders 1.6MJ/T

Platform reshaping over10cm 6.72MJ/m3

Reshaping withmixing 33.67MJ/m3 Reinforcedconcrete liningby m3ofconcrete 6.13MJ/m3

Reinforcement 3.25MJ/T Steeltubeguardrails 253.5MJ/ml Geotextileworks 3.12MJ/m2

Construction of guardrails 6.05 MJ/Mml

Table 7. Powersource

		MJ of production						
Energy(MJ)	MJ	1.299	1.558	36				
Water	kg	0.02481	0.1036	6.032052117				
Resources	10 ⁻⁰⁹	7.7E-18	4.389E-16	8.94723E-15				
Waste	Teq	0.0058	0.006819	0.105302932				
Radioactivewaste	dm³	0.000000034	0.00000052	0.000140717				
GWP100	kgC02	0.00117	0.08395	2.352312704				
Acidification	kgS02	0.000006	0.000099	0.005159609				
Eutrophization	kgPO ₄ ³-	0.000000058	0.000011	0.000328339				
Ecotoxicity	m^3	0.04933	0.3737	67.89576547				
Human toxicity	kg	7.686	0.00013	0.007035831				
03-smog	kg	0.0000036	0.000084	0.004221498				
Odours	m³	7.686	159.3	463.8957655				

Table 8. Basics Constituent's Indicators

Indicators	Unit	Reinforcementsteel(T)	Galvanized	PVC(T)	Cement(T)	Lime(T)	Sand(T)	Crushed	Rolled	Transportation	Water	Woodfor	Irondoor	Tilings(T)	Paint(T)
			steelsheets					aggregates	aggregate	pertonperkm	station	development	(T)		
			(T)					(T)	s (T)	(T)	(T)	(T)			
Energy(MJ)	МЈ	26355.000	70380.000	9240.0	5473.600	10164.00	33.000	44.000	33.000	1.100	10.000	6545.000	1.7E+05	8110.000	24089.400
Water	kg	15537.600	3.4E+05	6584.2	3263.180	7463.220	18.453	91.845	23.690	0.487	389.575	664.950	1.0E+05	3100.000	20746.800
Resources	10 ⁻⁰⁹	3.69E-12	4.26E-10	0.0	9.30E-13	3.22E-12	5.00E+00	2.56E-14	9.38E-15	4.33E-16	6.72E-15	2.18E-13	2.41E-13	2.24E-12	3.07E-10
Waste	Teq	0.972	1.301	0.0	2.544	0.000	1392.830	0.192	0.000	0.034	0.003	29.150	2979.900	190.000	110.700

Radioactive	dm³	0.030	0.041	0.0	0.008	0.0E+00	0.064	0.001	0.0E+00	4.1E-06	3.2E-05	0.007	0.126	0.047	0.046
waste															
GWP100	kgC02	1277.370	3880.000	273.6	955.506	1216.979	1.857	8.086	1.788	0.067	0.003	-455.217	8421.233	360.000	675.000
Acidification	kgS02	3.242	20.890	2.0	2.361	3.141	0.006	0.028	0.021	0.001	0.000	0.079	21.047	1.000	4.320
Eutrophization	n kgPO ₄ ³	0.341	1.359	0.1	0.279	0.362	0.001	0.005	0.003	0.000	0.000	0.013	2.233	0.140	0.221
Ecotoxicity	m^3	0.166	3.3E+05	14895.3	0.014	17859.96	0.000	0.000	54.417	2.191	0.675	0.001	1.078	0.003	19134.900
Human	kg	46.232	53.200	3.1	6.385	4.059	0.014	0.063	0.026	0.001	0.045	0.770	191.730	2.100	17.820
toxicity															
0 ₃ -smog	kg	0.419	8.258	0.8	0.102	2.632	0.002	0.009	0.021	0.001	0.000	0.018	2.823	0.071	1.512
Odors	m^3	0.000	6.6E+07	3.9E+05	0.000	1.7E+06	0.000	0.000	3128.850	77082.000	28.996	0.00E+00	7.70E-04	0.00E+00	1.8E+06

Table 9. Summary of Building Indicators of Mixing for 1m³

DV		Indicators related	toIndicators related	toIndicators related	toIndicators related	toIndicators related to
		production	production	production	production	production
	MJ	1744.073	1735.388	1768.127	3105.06208	950.337
Water	Kg	1082.559041	1070.513065	1170.982885	1972.623717	664.292142
Resources	10 ⁻⁰⁹	9.607245283	8.981773585	4.128113206	4.003018868	4.553433962
Waste	Teq	2674.997715	2500.893867	1150.1001014	1115.455297	4.553433962
Radioactive	dm^3	0.12554079	0.117521114	0.055979418	0.056016007	0.060273789
waste						
GWP100	kgCO2	292.8515671	292.4544076	301.6139902	401.2517281	158.767475
Acidification	kgSO2	0.720745445	0.719942734	0.749917848	0.99953794	0.397631405
Eutrophization	kgPO4 ³	3-0.086000569	0.085859004	0.090972114	0.118866464	0.049391979
Ecotoxicity	m^3	0.122308268	0.105426045	0.10239312	0.126577522	0.059756299
Human toxicity	m^3	1.950416141	1.947527583	2.016359405	4.198039263	1.06033054
O3-smog	kg	0.034615889	0.034356165	0.043757584	0.066092981	0.029054502
Odors	m^3	5.07431939	4.34941664	4.204436107	4.929343145	2.464669438

Table 10. Building Processes Given by the 2008 HNSP

Work siteprocess	Unit	Energy
Loosematerials	MJ/3	13.8
Cold production site (concrete)	MJ/t	15.4
3	3	6.13
Reinforced concrete formwork by mof concrete	MJ/m	
Reinforcement	MJ/t	3.25

Table 11. Energetical Formulas

Symbol	Name	Formulas					
EaEnergy spent for physical	ET=*GW * T*NEO	Energy	during	in	active		
activity perhour		period and perhour					
GWP100	CO2 releases by an individual per hour and in						
	terms of physical activity						
GWP0	CO2 released by an idle person and per hour						
T	working time in hours						
N	Number of persons carrying out a given task						

Table 12. Energy and GWP100 Indicators for Some Work Site Processes

Worksite process	Uni	tEnergy per	Numbe	erWorking time	e Ener	CO2 released
			of		gy	in
Trenching of soft soil laid at 20m					in	
		Person (kca	l)person	as(H)	MJ	kg
	3 m	400	2	4.1	13.8	0.83350588
Cold production station (concrete)	t	400	2	4.6	15.4	0.93515294
Reinforced concrete lining per m ³	of^3	275	2	2.67	6.13	0.37037647
concre	tem	l				

Table 13. Energy for the Manual Use of Project's Materials

Mortar for coating	Unit	Number of persons	Time i	n Energy (Kcal) per perso	n and per ho	urOverall e	energy
	\mathbf{M}^3	1	Hours	120		(MJ) 12.	0384
			24				
Chipboards	T	1	5	140		2.926	
Wood and framework	m^3	2	16	140		18.7264	
Energy for the use of som	e build	ing materials with in t	he framew	vork of the project			
Unit Number of			Time i	n Energy (Kcal) per	Energy	Thicknes	s Overall
							energy
persons			Hours) Person and perhour	(MJ/m^2)	(mm)	(MJ)
Roofing m ² 2			0.2	150	0.2508	0.3	836
Paint m ² 1			0.15	130	0.08151	0.3	271.7
Doors m ² 1			0.1	135	0.05643	30	1.881
WC/toilet	tile	es	$m^{2}0.6$	100	0.2508	4	62.7
1							

Table 14. Complementary Data Perkg of Constitutive Material

Indicator	Unit	Adobe	Raw	Cinderblock
			compressed	(dosage 300kg/m³)
			earth	
			blocks	
AR	MJ	0.002745	0.002521	0.76506
Water	kg	0.00015	5.89E-05	0.46544
Resources	10 ⁻⁰⁹	0	0	0.00391
Waste	Teq	0	0	1.08735
Radioactivewaste	dm³	0	0	0.00005
GWP100	Kg C02	0.04565	0.042	0.12764
Acidification	Kg S02	0	0	0.00031
Eutrophization	Kg	0	0	0.00004
	PO_4^{3-}			
Ecotoxicity	m^3	0	0	0.00005 Given:
Human	kg	0	0	0.00085~E: raw materials extraction indicator; F : indicator for the
toxicity				production
O3-smog	kg	0	0	0.00001
Odours	m³	0	0	0.00189

Table 15. Some Features of the Two Buildings

Designatio	Urbanarea
Water supply	CDE
Lighting and household equipment power supply	Electricity
Plumbing equipment	Complete
Equipment network for power use	Finished electrical
waste liquid solliquid solid	Septic tanks
	HYSACAMcompan

3. Result

Given: **E**: raw materials extraction indicator; **F**: indicator for the production of materials; **T**: transportation indicator; and finally, **M**: indicator for the putting in place of the building site: being the environnemental impact indicator. We have therefore: $\mathbf{I} = \mathbf{E} + \mathbf{F} + \mathbf{M} + \mathbf{T}$

Table 16. Environmental Impact Indicators during Construction Phase

Indicator	Unit	Cleaning concrete	
Mortar	Concrete blocks		
Concrete	Reinforced concrete		
Framework	Alu ironsheets	Woodenddoorand wi	ndowframes
Irondoor	Tiles	Paint OTAL	
Energy MJ 5126.612 1017	73.0195 13883.1784 1	8505.4889 19866.4081 60192.623	6 49.1610806
115.502852 2415.105 21.977	79478 4840.251 135189.3	28	
Water kg 3103.001 607	1.18166 8841.67966 1	1864.8294 12356.1092 6106.796	524 21.94172
11.7392042 1418.004 8.6298	35595 4168.60435 5397	2.5163	
Resources 10 ⁻⁰⁹ 9.43371	E-13 1.9354E-12 2.7	991E-12 3.6787E-12 3.5474E-1	2 2.001E-12
1.9295E-14 3.8935E-15 3.35	58E-15 7.68E-15 6.1683	E-11 7.6622E-11	
Waste Teq7220445.67700	7 13772341.6 80436	i43.98 10916365.1 6685626.38	267.738675
1.56159122 0.51650882 41.4	1477 0.56790116 22.2429	02 46638756.8	
Radioactivedm³ 0.340476	44 0.65070569 0.39	726874 0.5380221 0.34046447	0.06566129
0.00021607 0.00012603 0.00	017493 7.3134E-05 0.009	2226 2.34398586	
GWP100 kgC02 814.92	25 1575.39481 2198	3.37311 2964.9696 2477.6091	-4179.53126
2.95768187 -7.96608246 117	7.1317 1.18603122 135.6	26498 6100.67545	
Acidification kgS02 2.2	17 4.45659223 6.215	99842 8.23451138 6.77730458	0.72584867
0.03142082 0.00150981 0.29	9274 0.01278235 0.86801	181 29.8335023	
EutrophizationkgPO ₄ ³⁻	0.27552467 0.5620634	44 0.79145656 1.04188178	0.83801109
0.12152245 0.00501987 0.00	0025185 0.031059 0.0020	4443 0.04448619 3.71332133	
Ecotoxicity m³ 818.0543	37 2249.78451 2919	.76822 3354.05343 2356.59181	6.09237596
94.4126156 0.38724589 0.01	4994 38.4893754 3844.7	4218 15682.3911	
Human kg 5.60187785	5 10.9681371 15.31	3067 20.5321762 26.155531	7.07249902
0.03933776 0.0136536 2.666	679 0.01588238 3.580533	11 91.9594849	
O3-smog kg 0.3858940	4 0.98260527 1.3502	20245 1.61481222 1.23904098	0.16714323
0.03378227 0.00045336 0.03	3927 0.01376708 0.30380	808 6.13077897	
Odoursm³ 28801.9215	79208.2915 102795.	524 118086.169 82967.3557	214.270567
3323.82423 13.6326997 0.00	0001071 1355.02993 3669	950.281 783716.299	

Table 17. Environmental Impact Indicators during the Exploitation Phase

Energy	MJ	1.299	279936	363636.9	10	4320	43200	0.0143	1003.97	600 6	602393.7	0.605	357	2.9988	1072.3859	1010302.95
Water	kg	0.02481		6945.212	389.5749		1682963.6	0.006301	66.75984	4	40059.685	0.266583	36.27		109.56591	1730078.031
Resources	10-09	7.7E-18		2.16E-12	6.72E-15		2.902E-11	5.62E-18	2.83E-13	1	1.697E-10	2.38E-16	1.19E-14		3.634E-14	2E-10
Waste	Teq	0.0058		1623.629	0.002973		12.84323	0.000415	4.394164	2	2636.7472	0.017559	1.59		4.820749	4278.039963
Radioactivewaste		dm³	3	3.4E-08				0.009518	3.24E	E-05			0.13977	744	5.28E-08	0.000335

0.2010845	2.23E-0	6 0.00039			0.0011762	0.351	552929					
GWP100	kgC02	0.0011	327.52	0.003359	14.511182	0.000868	54.097	32458.949	0.036715	-24.83	-74.3501	32726.634
Acidification	kgS02	6E-06	1.679616	3.29E-05	0.1422763	9.43E-06	0.063796	38.28302	0.000399	0.0043	0.0140916	40.11900353
Eutrophization	kgPO ₄ 3-	5.8E-08	0.016236	2.19E-06	0.009474	1.51E-06	0.007088	4.2539455	6.39E-05	0.00072	0.0023506	4.282006412
Ecotoxicity	m³	0.04933	13809.24	0.675289	2917.248	0.028487	240.8123	144504.46	1.205211	0.000036	3.6142949	161234.5653
Humantoxicity	kg	7.686	2151588	0.044788	193.48243	1.17E-05	0.083772	50.270218	0.000495	0.042	0.1274336	2151831.976
O3-smog	kg	3.6E-06	1.00777	1.16E-05	0.0502054	1.02E-05	0.05413	32.483872	0.000431	0.00098	0.0042313	33.54607867
Odours	m³	7.686	2151588	28.9961	125263	1.00288	102652	61592354	42.42982	0	127.2385	63869332

Table 18. Environmental Impact Indicators during the Maintenance Phase

Indicator	Unit	Wall (bricklaying and coating)	Paint	Sheets f	orWooden door	Iron door	Floor	Toilet and We	C Total
				roofing			covering	equipment	
Power	MJ	2672.91088	43562.259	49.1610806	269.506654	1610.07	4675.07088	73.7726449	52912.7511
Water	kg	1656.98459	37517.4391	21.94172	27.3914764	945.336	2997.43059	27.3278772	43193.8514
Resources	10-0	5.2606E-13	5.5514E-10	1.9295E-14	9.0848E-15	2.2372E-15	9.2936E-13	2.432E-14	5.5665E-10
Waste	Teq	2423998.4	200.186118	1.56159122	1.20518726	27.6318	2757818.55	1.79835366	5182049.33
Radioactivewaste	dm³	0.1164416	0.08300338	0.00021607	0.00029406	0.0011662	0.13592137	0.00023159	0.33727429
GWP100	kgC	419.307547	1220.63848	2.95768187	-18.5875257	78.0878	749.044952	3.75576552	2455.2047
Acidification	kgS	1.18584341	7.81210627	0.03142082	0.0035229	0.19516	2.08029761	0.04047743	11.3488284
Eutrophization	KgP	0.15039111	0.40037574	0.00501987	0.00058765	0.020706	0.26321224	0.00647401	0.84676662
Ecotoxicity	m³	574.394748	34602.6796	94.4126156	0.90357374	0.009996	847.339813	121.883022	36241.6234
Human toxicity	kg	2.92013378	32.224798	0.03933776	0.03185839	1.77786	5.18707609	0.05029419	42.2313582
O3-smog	kg	0.25920086	2.73427273	0.03378227	0.00105783	0.02618	0.40795256	0.04359574	3.50604198
Odours	m³	20222.6461	3302552.53	3323.82423	31.8096325	0.00000714	29832.2952	4290.92811	3360254.03

Table 19. Impact Indicators during the Destruction Phase

		Excavator for destruction		Truck for transportation		Overall destruction Indicator					
Indicator	Unit	Indicator bytonsof aggregat	$licator\ by tons of\ aggregates Transport at ion intonsper\ kmQuantity o\ faggre\ gates\ to\ transport\ intons Distance (km)$								
Power	MJ	16	1.1	97	5	2085.5					
Water	kg	7.050131926	0.48469657			683.8628					
Resources	10-09	6.29024E-15	4.32454E-16			6.102E-13					
Waste	Teq	0.464379947	0.031926121			45.044855					
Radioactivewas	tedm³	5.910E-05	4.062E-06			0.00573					
GWP100	kgC0	0.970976	0.0667517			94.1846					
Acidification	kgS0	2 0.01055	0.0007255			1.0237					
Eutrophization	kgPO	0 ₄ 30.001688	0.000116			0.16379					

Table 20. Summary of Environmental Impacts of the Various Phases of the Life Cycle of Theurban L.C. H.

	Unit	Constructio	nExploitationMaintena	nceDestructionTotal
Water	kg	53972.5163	1730078.03 43193.851	4 918.940633 1828163.34
Resources	10-09	7.6622E-11	2.0091E-10 5.5665E-1	0 8.1989E-13 8.3501E-10
Waste	Teq	46638756.8	4278.03996 5182049.3	33 60.5290237 51825144.7
Radioactivewasi	tedm³	2.34398586	0.35155293 0.3372742	29 0.00770369 3.04051677
GWP100	kgC02	6100.67545	32726.6349 2455.2047	126.560686 41409.0757
Acidification	kgS02	29.8335023	40.1190035 11.348828	4 1.37565963 82.6769939
Eutrophization	kgPO ₄ ³	-3.71332133	4.28200641 0.8467666	52 0.22010554 9.0621999
Ecotoxicity	m³	15682.3911	161234.565 36241.623	4 4154.49208 217313.072
Humantoxicity	kg	91.9594849	2151831.98 42.231358	32 1.70581794 2151967.87
O3-smog	kg	6.13077897	33.5460787 3.5060419	08 1.4857124 44.668612
Odors	m³	783716.299	63869332.3 3360254.0	3 146260.132 68159562.7

The diagram above shows that the exploitation phase is the most important for all indicators, except for two indicators: waste and radio active waste. This situation is due to the fact that liquid and solid wastes produced by users are not taken into account. Thus, the set wo indicators are two outlier points of the study.

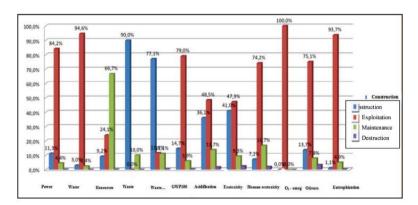


Figure 4. Impact Indicators of Urban Low-Cost Housing

Of the twelve indicators under study, two have the most exploited results of the study with in the frame work of LCA applied to the building. These are power and overall heating potential (GWP100). The power indicator mainly deals with:

- Any power taken from nature to produce building materials;
- The production of power such as electricity. House holdgas (grey power);

- Exploitation power (electricity AES-SONEL);
- Production power and power used to pump water into houses.

3.1 Flow Assessment

Table 21. Water and Electricity Consumption

	Unit Number of persor	ns Daily consumption	per Monthly consumption	of Maintenan
		inhabitant	the	ce
			household	
Electricity	y KW 6	0.5944	107	0
	Н			
Water	m³ 6	0.06	10.8	780

Table 22. Cooking Gas and Soap Consumption

	Unit	Number of personsMonthly consumption of the household	
Domestic gas	L	6	26.5
Household soa	p300g cub	pe6	12

Table 23. Use of the Urban House

Electrical bulb	8	1.16	43.10344	
Electric install ation r	epairs1	20	1.5	
electric				
Wooden furniture	1	25	2	
Wooden bed for bedroom 3		15	3.34	
Cop board repairs	4	15	2.34	

Table 24. Maintenance of the Social House

State employee Number or quantity	Usage duration	Frequency of replacement
Walls	45	0.11
Inner paintings	5	9
Outer paintings	5 9 Roos 25	1
Emptying the septic tank	7	6.15
Plumbing rehabilitation	5	9
Equipping of toilets	10	4
Floor covering	25	1
Windows repairs	7 35	0.42
Wooden doors	5 25	1

Iron outer door 35 0.42	Iron outer door	35	U4/
-------------------------	-----------------	----	-----

4. Rsult Analysis

4.1 Impact Study

Here is the list of the twelve environmental impact indicators of the two houses according their various life cycle phases. Of the twelve environmental impact indicator sex amined, it appears that:

- The destruction phase is the one that has the smallest number of environmental impacts while the exploitation phase has the higher number (9/12) and the most important ones. This could be explained by the high speed and the precision with which destruction is generally carried out; conversely, exploitation takes more time.
- For the water consumption indicator, the urban house has a high consumption rate. This is due to the fact that water supply.
- intown(CDE) is done with many losses.
- For consumption indicators of: *Waste. Radio active waste and odours.* the construction phase features the highest number of indicators.

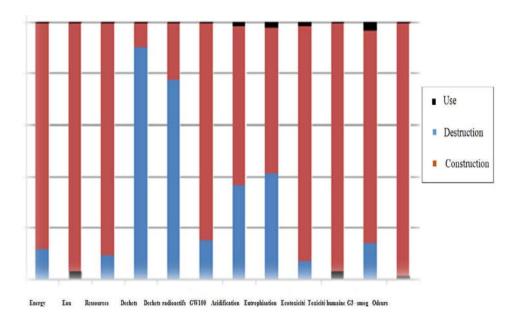


Figure 5. Share of Impacts for Various Phases of Urban Low-Cost Housing

4.2 Balance Sheet and Interpretation of the Life Cycle of LCH

The results of the LCA of the building constructedup till now apply to all environmental aspects: raw materials and power consumption; waste; green house-effect gas; acidification; eutrophization; Ecotoxicity; human ecotoxicity and odours; power consumption; impacton the climatic change called GWP100 are impacts that could be well directly appraised by users of the buildings.

Of the twelve indicators, except the two on waste (because waste produced by users of the building

were not taken into account); the contribution of the use phase (exploitation and maintenance) of the building is very pre occupying as illustrated by the following Table.

Table 25. Percentage of Environmental Impacts of Variousphases of the Buildings' Life Cycle

	Utilization	Construction	Destruction
Urban house	86%	13%	1%

5. Conclusion

At the end of our study, the issue was applying life cycle analysis (LCA) to a "T4 single-storey" urban low-cost house. To that end, we had a data base setup by the HNPSP in 2008; using the data base from Switzerland. We completed the data missing in the 2008 HNPS database. On the basis of these data, we applied the LCA to a low-cost house and to that effect. We used the twelve impact indicators for acomplete implementation of the LCA.

The methodology used for the LCA of our building involved quantifying materials and components, and then the substances taken and released from and into the environment, taking into consideration invent or iesmainly provided by the 2008 HNPS database, the ECOINVENT data base from the EQUER software and field analyses. Results provided by our sample low-cost house reveal that the basis of utilization (exploitation and maintenance) is the most preoccupying at the level of environmental impacts, which reach their highest point during this phase and represent 86% of the life cycle's overall limpacts.

References

Abdo, J. (2011). Analysedu cycle deviedes structures routières (p. 69). Cycle deviepourl' efficacité énergétiquedes bâtiments.

ADEME. (2005). Introductionà l'analysede cycle devie (p. 14).

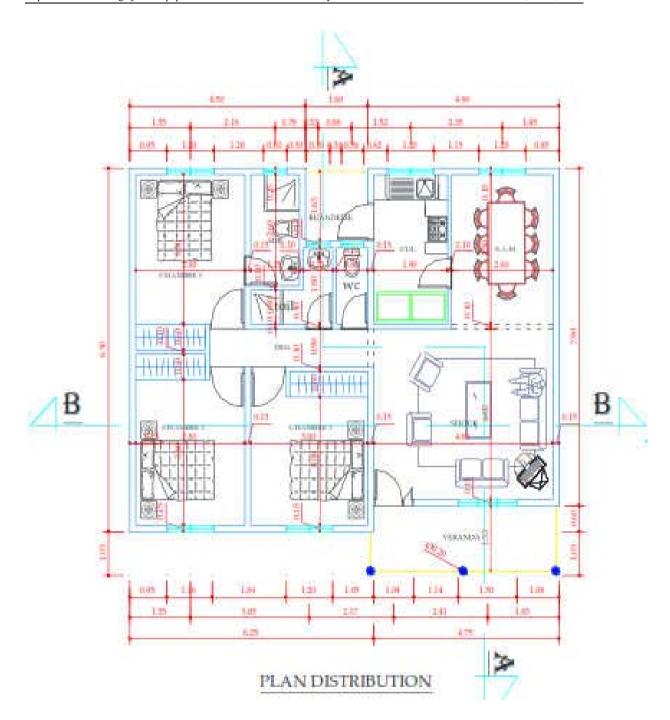
ADEME. (2009). Étuded' unemé thodes implifié epourlaréalisationdes ACV desbio produits (p. 32). France.

CAMEROUN. (2013). 10000 localités deszonesruralescamerounaisesansélectricité. Retrieved from http://www.investiraucameroun.com/energie/

CITEPA. (2009). Invent airedes émission sdes polluants atmosphériquesen France séries sectori elleset analyse étendues SECTEN rapportd' invent air enational (p. 306).

Coimba. (2011). Développement des outils d'évaluation de la qualité environnemental edesbâtim entsparl'analysedu cycle devie (p. 244).

CSTB. (2011). Évaluationde laper formance environnemental edes bâtiments (p. 166). Définitiond'ordredegrandeur. Traitementstatistique. Université deparisest.


Elime, B. A. (2012). Élaborationd' unindicateurd' analyse duc ycledevie: Application àlacon sommation d'énergie (p. 153). Thèsede doctorat. Ecolenational esupérieur poly technique.

Cameroun.

- Elime, B., Mamba, M., & Tamo, T. (2009). L'ACV appliqué eàl' évaluation énergétiqued' uneroute: Outild'aideàladécision (pp. 429-467). Ecole nationalesupérieurpolytechnique. Cameroun.
- ENCYCLOECOLO. (2013). Épuisementdes ressourcesnaturelles. Retrieved from http://www.encyclo-ecolo.com/Epuisement_des_ressources
- Lasvaux, S. (2010). Étuded' unmodèle simplifié pourl' analyse decycledevie desbatiments (p. 434). Thèsededoctorat. Ecolenationalesupérieuredesminesdeparis.
- Mbessa, M. (2005). Traitédegéniecivil: Matériaux, 11, 172.
- Messi, A. (2011). Cours debétonarmé. Ecole national esupérieu repoly technique (p. 42). Cameroun. Ngnikam, E. (2006). Énergieetéco développementen Cameroun.
- MINHDU. (2013). *Program mede constructionde 10.000 logement set 50.000 parcelles*. Retrieved from http://www.minhdu.gov.cm
- Peuportier, B. (2004). *Lasimulationet les nouvelles attentes liées à concept de développement durable* (p. 19). Ecole des Mines de, Paris.
- Peuportier, B. (2012). Analysed ucycle devied ansla construction (p. 10). Ecoledes Minesde Paris.
- Peuportier, B. (2012). *EQUER: Développement dunoyaude calculdes Indicateursd' impacts environnement aux* version.
- Salman, A. A. (2010). *Miseau pointd' unebasededonnées des rendements* prévisionnels dans les travaux des bâtiments Mémoire d'ingénieur de conception de géniecivil.
- Trocme, M., & Peuportier, B. (2007). *Analysed ecycledevied' un bâtiment* (p. 10). Ecoledes Minesde Paris. Centre énergieet procédé.
- William, W. (2011). *Analyseducycle devied'unlogementsocial* Mémoired' ingénieurde conceptiondegéniecivil.

Appendix

Architectural Aspect: themodel chosen is of type T4

