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Abstract 

Solar energy is becoming an alternative for the limited fossil fuel resources. One of the simplest and 

most direct applications of this energy is the conversion of solar radiation into heat, which can be used 

in water heating systems. A commonly used solar collector is the flat-plate. A lot of research has been 

conducted in order to analyze the flat-plate operation and improve its efficiency. 

The solar panel can be used either as a stand-alone system or as a large solar system that is connected 

to the electricity grids. The earth receives 84 Terawatts of power and our world consumes about 12 

Terawatts of power per day. We are trying to consume more energy from the sun using solar panel. In 

order to maximize the conversion from solar to electrical energy, the solar panels have to be positioned 

perpendicular to the sun. Thus the tracking of the sun’s location and positioning of the solar panel are 

important. 

The main goal of this article is explaining all the solar thermal systems available and the integration 

possibilities with comparisons for better usages and integration process into design. 

Keywords 
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1. Introduction 

The building sector is responsible for about a third of the total energy consumption of western countries. 

The use of solar energy in buildings is becoming of critical importance if we are to prepare for fossil 

fuel energy shortages and reduce our exposure to global warming impacts and associated 

environmental costs. 

In this regard, there is a pressing need for architects to complete competencies in this field. The present 

manual, conceived for architects and intended to be as clear and practical as possible, summarizes the 

knowledge needed to integrate active solar technologies into buildings, handling at the document in the 
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first part it talk in general and focuses on the definition of architectural integration quality and related 

criteria. It outlines possible practical ways that lead to high quality outcomes. Solar thermal and 

Photovoltaics are treated separately, since one technology is designed to transform the solar radiation 

into heat, while the other is designed to transform it into electricity: two different energies, with very 

different transportation, storage, and safety issues. This brings different formal and operating 

constraints, leading to different integration possibilities. 

Solar Energy in Architecture 

In recent times, the world has fortunately become increasingly constant of the significant potential of 

solar energy as a replacement for non‐renewable fossil fuel energy. The sun is a clean, unlimited and 

almost infinite energy source, providing each hour on earth as much energy as the whole world needs in 

a year. Proven technologies are able to transform its radiation into heat, electricity and even cold, and 

are now largely available at affordable prices. 

Building Energy Needs and Available Solar Technologies 

Solar energy, in its active or passive forms, is able to deliver the entire set of building energy needs 

space heating and lighting, Domestic Hot Water (DHW), electricity, and recently also space cooling 

(Figure 1). 

 

 
Figure 1. Different Solar Technologies Covering Different Building Energy Needs 

 

2. Architectural Integration Quality 

Architectural integration quality is defined as the result of a controlled and coherent integration of the 

solar collectors simultaneously from all points of view, functional, constructive, and formal (aesthetic), 

When the solar system is integrated in the building envelope (as roof covering, façade cladding, sun 

shading, balcony fence…), it must properly take over the functions and associated constraints of the 

envelope elements it is replacing (constructive/functional quality), while preserving the global design 

quality of the building (formal quality). If the design quality is not preserved (i.e., the system is only 

constructively/functionally integrated into the building skin without a formal control), we can only call 
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it a building integrated system. 

2.1 Functional and Constructive Aspects 

The building envelope has to fulfill a wide and complex set of protection and regulation functions, 

requiring the use of different structures and components (opaque/transparent elements, 

monolithic/multilayer structures, composed of fixed/mobile parts…).  

The integration of solar modules in the envelope system should then be studied very carefully, to 

preserve/ensure the standard envelope functions and the durability of the whole. 

The multifunctional use of solar elements taking over one or more envelope functions may require an 

extra effort to building designers, calling for instance for some modifications in the original design of 

the collector, in the way it is mounted or by restraining its use in some parts of the building. On the 

other hand, it brings the major advantages of a global cost reduction and an enhanced architectural 

quality of the integration. 

In addition to the functional compatibility, it is important to ensure that the new multifunctional 

envelope system meets all building construction standards: 

‐ The collector load should be correctly transferred to the load bearing structure through appropriate 

fixing; 

‐ The collector should withstand fire and weather wear and tear; 

‐ It should resist wind load and impact, and should be safe in case of damage; 

‐ Risks of theft and/or damage related to vandalism should be evaluated and appropriate measures 

taken; 

‐ The fixing should avoid thermal bridges and the global U value of the wall should not be negatively 

affected; 

‐ Vapour transfer through the wall should avoid condensation layers, and allow the wall to dry correctly. 

Besides these standard building construction constraints, the integration of solar systems implies other 

issues resulting from specific solar technology attributes, i.e., the presence of a hydraulic system (for 

ST) or electric cabling (for PV) and the high temperatures of some modules. Integrating the new 

function “solar collection” into the building envelope requires an understanding of where (opaque parts, 

transparent parts, fixed/mobile elements), how, and which collectors can be made compatible with the 

other envelope elements, materials and functions. 

2.2 Formal Aspects & Aesthetics 

All the system characteristics affecting building appearance (i.e., system formal characteristics) should 

be coherent with the overall building design): 

‐ The position and dimension of collector field(s) have to be coherent with the architectural 

composition of the whole building (not just within the related façade); 

‐ Collector visible material(s) surface texture(s) and color(s) should be compatible with the other 

building skin materials, colors and textures they are interacting with; 

‐ Module size and shape have to be compatible with the building composition grid and with the various 
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dimensions of the other façade elements; 

‐ Jointing types must be carefully considered while choosing the product, as different jointing types 

underline differently the modular grid of the system in relation to the building. 

Clearly, mastering all characteristics of an integrated solar thermal system in both perspectives of 

energy production and building design is not an easy task for the architect. 

The formal characteristics of the system are strongly dependent on the specific solar technology, which 

imposes the core components of the solar modules, with their specific shapes and materials. 

The more flexibility that can be offered within these imposed forms and materials, the more chances for 

a successful integration. 

The actual flexibility of solar modules is presently very different in the two fields of ST and PV, 

making the integration design work either more or less challenging. 

 

3. Solar Thermal Technologies 

Solar thermal energy can be used for different building applications: direct or indirect space heating, 

Domestic Hot Water production (DHW), and very soon for building cooling. It can be collected in 

different ways, using different technologies. 

‐ passively, through the transparent parts of the building envelope, storing the gains in the building 

mass itself. These systems can only be used for space heating.  

‐ actively on surfaces optimized for heat collection (solar absorbers) placed on the outside of the 

building envelope, and transported by a medium either directly to the place of use or to a storage. 

Among active systems, two main families can be identified according to the medium used for the heat 

transport: air collector’s systems and hydraulic collector’s systems. 

‐ Air systems are characterized by lower costs, but also lower efficiency than hydraulic ones, mainly 

due to air low thermal capacity. Solar thermal gains are generally used immediately and without storage, 

for pre‐heating the fresh air needed for building ventilation. The heat can also be stored by forcing the 

air to circulate in a stones bed underneath the ground, or by using the solar air as cold source in a heat 

pump air/water such applications can be quite expensive, and are therefore rare. Like passive systems, 

air systems can only be used for space heating and will not be further considered here Figure 2. 

 

 

Figure 2. Concentrated Solar Collector System (Left). Air Collector System Working Principle 

(Right). Based on Animage Made by the US Department of Energy, National Renewable Energy 

Laboratory 



http://www.scholink.org/ojs/index.php/se               Sustainability in Environment                      Vol. 2, No. 1, 2017 

40 
Published by SCHOLINK INC. 

3.1 Glazed Flat Plate Collectors (Figure 3) 

They are the most diffused in the EU and typical applications are DHW production and space heating. 

They usually consist of 10 cm thick rectangular boxes of about 2 m2, containing several layers: 

‐ a metal plate with a selective treatment, working as solar absorber; 

‐ a hydraulic circuit connected to the absorber; 

‐ a back insulation; 

‐ a covering glazing, insulating the absorber by greenhouse effect. 

Usual working temperatures are between 50°C and 100°C, but they can rise up to more than 150°C in 

summer (mid latitude climates). Therefore, measures should be taken to avoid overheating risks which 

can damage sensible parts (rubber jointing for instance).  

 

 
Figure 3. Glazed Flat Plate Collectors Applied on a Tilted Roof 

 

 

Figure 4. Section of Glazed Flat Plate Collectors 

 

 

Figure 5. Façade Integration of Glazed Flat Plate Collectors as Façade Cladding, Detail and 

Picture 
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3.2 Unglazed Flat Plate Collectors (Figure 6) 

They are adequate for swimming pools, low temperature space heating systems and DHW pre‐heating. 

They are composed of a selective metal plate (the absorber) and a hydraulic circuit connected to this 

absorber. When used for DHW or space heating they also need a back insulation, but differently from 

glazed collectors, the front part of the absorber is not insulated by a covering glass. Consequently, 

working temperatures are lower, reaching 50°C‐65°C. When used for swimming pool water heating, 

the back insulation is not needed. For this specific application, polymeric absorbers can also be used to 

replace the more performing—and more expensive selective metal plates (most often black polymeric 

pipes systems).  

 

 

Figure 6. Unglazed Flat Plate Collectors Applied on a Roof 

 

 
Figure 7. Section of Unglazed Flat Plate Collectors 

 

 
Figure 8. Roof Integration of Unglazed Flat Plate Collectors Used as Roof Covering 
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Figure 9. Façade Integration of Unglazed Flat Plate Collectors Used as Façade Cladding 

 

3.3 Evacuated‐Tube Collectors (Figure 10) 

Evacuated tubes are especially recommended for applications requiring high working temperatures 

such as industrial applications and solar cooling, but are also used for Domestic Hot Water (DHW) 

production and space heating, particularly in cold climates. They are composed of several individual 

glass tubes, each containing an absorber tube or an absorber plate bound to a heat pipe, surrounded by a 

vacuum. The very high insulation power of the vacuum allows reaching very high temperatures 

(120°C‐180°C) while keeping losses to a minimum even in cold climates.  

 

 
Figure 10. Vacuum Tubes Collectors Mounted on a Tilted 

 

 

Figure 11. Section of Unglazed Flat Plate Collectors 
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Figure 12. Evacuated Tubes Collectors Used as Balcony Eaves, Arch. Beat Kaempfen 

 

 

Figure 13. Used as Deck Sun 

 

3.4 System Sizing and Positioning 

Several major factors must be considered when choosing, sizing and positioning a solar thermal 

system: 

∙ Area availability on the different envelope parts; 

∙ Seasonal solar radiation on these surfaces; 

∙ Desired solar fraction (i.e., the portion of the building's energy covered by the solar system), and 

available storage possibilities. 

As the solar radiation varies with the orientation, systems with lower exposure (Figure at the top) will 

need a larger collector area than well exposed ones to achieve the same solar fraction. This also holds 

true for technology efficiency: the higher the collector efficiency the smaller the needed collector area 

(Figure 14, previous section). Understanding the crossed impact of orientation and technology on 

system size is fundamental for a proper system choice. 

To limit investment costs, solar thermal systems are usually oriented where the yearly solar radiation is 

maximized (45° tilted, facing south for EU mid latitudes), thus minimizing the needed collector area. 

This is a valid approach as long as the total energy produced by the system can be used by the building. 

But because of the summer peak production (Figure 14) this leads to solar fractions up to 50%−60% 

only, in mid‐latitude. 
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Figure 14. Comparison of the Different Annual Production Profiles of 2 Systems (both South 

Oriented, 45° Tilted—Midlatitudes, North Hemisphere) Covering Respectively 50% and 80% of 

DHW needs. No Overproduction Occurs Insummer in the Smaller System (50% of DHW) so that 

all the Produced Energy is Used. The Second System is Dimensioned to Cover 80% of the Annual 

Needs, but This Implies an Important Overproduction in Summer (Red Area) 

 

 
Figure 15. Yearly Solar Radiation in Relation to Orientation and Surface Inclination (Mid 

Latitudes, Northern Hemisphere) 

 

This limitation is specific to solar thermal and is due to heat transportation and storage issues. Whereas 

the electricity produced by PV can be injected for storage in the electricity grid and transported with 

negligible losses, the heat produced by ST is subject to transport losses, and heating grids are very rare. 

Then, unless a district heating grid is available, or a big seasonal storage for a cluster of buildings can 

be considered 2, the heat produced by the system has to be stored within the limited volume of the 

storage tank, in the building itself. The useful solar heat is then only the part that can be directly used or 

stored. 

3.5 Methods Used in Comparison between Available Systems 

In comparison to a similar investigation of solar systems carried out five years ago it is remarkable that 

the solar systems technology has moved towards a higher level of integration the results of all the types 

above were compared and test through these methods: 

3.5.1 Thermal Performance 

For the assessment of the thermal performance, the fractional energy savings, the system efficiency, the 

usable hot water volume, and for comb systems additionally the space heating buffer volume, are taken 

into consideration. 

The assessment concept was intentionally designed in a way that the typical design parameters such as 

collector area, store volume, usable hot water volume and, if existing, the space heating buffer volume 
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did not affect the results as long as they are varied within sensible limits. Due to this approach the 

thermal performance of the system is primarily affected by the performance of the different 

components and their interaction within the complete system. 

3.5.2 Behavior during Operation, Durability and Reliability 

The behavior of the whole thermal solar system or its subsystems, respectively, was observed during 

different operating conditions In order to assess the durability and reliability, the quality and the 

suitability of the materials used as well as the way how they were processed was considered. 

Additionally the period of warranty for the most important components (collector, store and controller) 

was assessed. 

3.5.3 Environmental Aspects 

The energy payback time was determined and the used materials as well as the packaging and 

environmental aspects were assessed. 

3.5.4 Safety Aspects 

The most important components as well as the whole system was investigated with respect to electrical 

safety and the risk of injury due to sharp edges, burning and scald. The documentation was checked 

with regard to notes dealing with safety aspects during the installation of the system. For systems with 

an integrated gas burner safety aspects related to gas and fire were considered additionally. 

3.5.5 Handling 

The way how the system has to be mounted, maintained and operated was assessed. Criteria of this 

assessment were, e.g., the time required for the system installation as well as ergonomic aspects. 

Additionally it was examined if the corresponding work steps were described understandably, detailed 

and correctly in the documentation supplied with the system. 

3.6 Comparisons between Systems 

 

Table 1. Characteristics of Different Solar Systems with Energy Production Integration 

Possibilities and General Pricing 

 Glazed Flat Plates Unglazed Flat Plates Evacuated Tubes 

Working temperatures 50-100°C 25-50°C 120°C 

Main applications  DHW, space heating Swimming pools, space heating, 

DHW pre-heating 

DHW, space heating, solar 

cooling, industry 

Energy production 

(Switzerland, 6m2 field) 

400-600 kwh/m2 300-350 kwh/m2 480-650kwh/m2 

Average cost 

(Switzerland. 2010, 6 m2 

filed) 

370/m2 

(Price variation 

320-480/m2) 

220/m2 

(Price variation 200-260/m2) 

800/m2 

(Price variation 500-1100/m2) 
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Figure 16. Comparison of the Different Solar Thermal Technologies Relevant for DHW and 

Space Heating Production in Relation to Their Efficiency, Cost, Specific Working Temperatures, 

Suitable Applications 

 

4. Case Studies Unglazed Flat Plate Collectors 

 

 

Figure 17. The Facads of the CeRN Building Shading 

Note. CeRN buildings, Bursins, Switzerland, 2004‐2007, arch. Niv‐0, Lausanne Building facts. 

Climate type: continental; Building size: 8’600 m²/46’800 m³; Energetic standard: Minergie Eco label; 

Application: Unglazed metal collectors used as multifunctional façade; Claddings on the south façade. 

Non exposed façades are covered by nonnative elements having the same appearance. 

 

The south-facing facade of the building is covered with thermal solar collectors. The vertical position 

of the collectors provides a good compromise between solar gains and architectural integration. The 

result gives an optimum yield during the cooler months of the year when heating is required. The 

collectors produce maximum energy in the winter season, which is used to heat the floor of the building. 

During summer the system still produces enough energy for the hot water needs of the building. By 

using the facade element, the building owner openly demonstrates their commitment to solar heating 

and renewable energy. 

The solar collectors operate as both solar radiation absorbers and as a multifunctional facade-cladding 

material. They are not just an additional element on the building. The collectors help to meet the 

economic and sustainability criteria of the project. The solar facade is made-up of stainless steel 
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absorbers. The absorbers contain heat exchangers through which the heat transfer fluid circulates. Its 

degree of efficiency, allowing great flexibility in building integration. Inclined planes with slight slopes, 

curved roofs or vertical solar walls on facades are all possible. 

Tests and experience have shown that the absorber concept is outstandingly efficient at relatively low 

temperatures or in mild climates. Under these conditions, the installations give results equal or even 

superior to those of glazed collectors. Unlike glazed solar collectors, they do not overheat.  

The north facade has been completed with stainless steel elements of the same geometry. The elements 

have the same appearance as those on the south side, but they are made from a single sheet of stainless 

steel and are not thermally active. 

 

 

Figure 18. The Stainless Steel Elements are Visible below the Windows of the Upper Floor 

 

 
Figure 19. Partial View of a Non-Active Façade 

 

The solar collectors are multifunctional. They gain energy from solar radiation as well as forming an 

excellent corrosion-resistant building element. The collectors withstand the impact of aggressive 

climates without sustaining any damage and they are fully recyclable. Panels are modular in length, so 

they fit the modular demands of the building. The panels weigh about 10kg/m2, an important 

consideration for easy assembly. 
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Figure 20. Details of the Interconnection of the Stainless Steel Collectors and Connection to the 

Upper Tube for the Heat Transfer Fluid 

 

 

Figure 21. Materials Used in the Construction of the Building Have Been Selected According to 

the Criteria of Ecology, Low Energy Content and Economy 

 

The main materials used in the building are: 

• Timber for the load-bearing structure; 

• Concrete recycled from demolition material; 

• Stainless steel for the facades and solar energy gains; 

• Timber and metal for the window frames. 

The selection of materials is a major component of the sustainable architectural design. It also 

influences the form and arrangement of the buildings. A green roof adds to their eco-friendly profile. 

The water supply comes from two sources. Valuable and expensive drinking water is used only for the 

kitchen, showers and bathrooms. Grey water (used to clean vehicles, irrigate the site and for lavatory 



http://www.scholink.org/ojs/index.php/se               Sustainability in Environment                      Vol. 2, No. 1, 2017 

49 
Published by SCHOLINK INC. 

flushing) is pumped from nearby Lake Geneva. A system to pump water from the lake is already used 

to irrigate the neighboring vineyards. Sealed surfaces are reduced to a minimum, allowing rainwater to 

seep away into the ground. 

A combined heating system is used for low-temperature floor heating and hot water production. The 

solar facade, with an area of 590 m2 facing south-east, provides about 40% of the annual heat 

requirements. The rest is provided through a 240kw woodchip boiler which burns waste wood from 

highway maintenance. The heat protection incorporated into the building means that annual heat 

requirements are only 30 kWh/m2. 

The use of a domed roof-light and windows enable the use of daylight and natural ventilation in the 

offices and garages. This contributes further to the operation of the building in an energy-conscious 

way. Around 97% of the energy consumed in the building is either gained or produced on site. A 190 

m2 photovoltaic array provides electricity that is used in the building. 

 

 
Figure 22. Detailed View of Joint of Four Solar Collectors 

Note. 1 Stainless steel solar collector; 

2 Vertical aluminum profile; 

3 Horizontal aluminum profiles; 

4 Tube connection between lower and upper collector; 

5 Heat insulation. 

 

Collector panels are fixed using aluminum profiles with EPDM1 joints. The profiles are used to fix 

conventional metal cladding. Once mounted, the facade is watertight and durable. 
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Figure 23. Energy Data for the CeRN Building 

 

4.1 Evacuated Tubes Collectors Case Study Sunny Wood, Multiple Family House, Zurich 2002, Arch 

Beat Kämpfen 

 

 

Figure 24. Elevations of the Sunny Wood House Building 

Note. Project information. 

 

The project is based on passive solar design combined with the following technical features:—Highly 

insulated, airtight building envelope: 

- Minimized thermal bridges; 

- Energy efficient windows; 

- Efficient ventilation with heat recovery and ground preheating; 

- PV-roof, grid connected thin film solar cells; 

- Vacuum collectors for DHW and heating; 

- Efficient appliances; 

Total heated area: 1,387 m2. 
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4.1.1 Solar Thermal System: Evacuated Tubes 

6m2 vacuum collectors serve as the balcony railing, the storage tank contains 1400,l (combined 

domestic hot water and space heating). 

Heating: 

Heat is distributed by the fresh air supply, heated with a water-air heat exchanger supplied by the solar 

collectors or heat pump. There are radiators in the bathrooms. 

4.1.2 Solar Collector Type 

Vacuum collectors: B. Schweizer Energie AG, Chnübrächi 36, CH-8197 Rafz ECONOMY everything 

considered, the pure construction costs exceeded the costs of a conventional building by around 5%. 

The energy consumption is only 10% of the consumption of a traditional building. The remaining 

demand will be provided by the building itself. 

4.1.3 Energy Performance 

Space and ventilation heating 14.7kWh/m²a; 

Energy source: solar thermal system, electricity-calculated-Domestic hot water 8.4 kWh/m²a; 

Energy source: solar thermal system, electricity; 

 

5. Photovoltaic Technologies 

Photovoltaics (PV) is a way of generating electrical power by converting solar radiation into Direct 

Current (DC) electricity through the use of semiconductor technologies through the photovoltaic effect. 

Materials presently used for Photovoltaics, discussed thoroughly in the following sections, include 

monocrystalline silicon, polycrystalline silicon, amorphous silicon, cadmium telluride, and copper 

indium gallium selenide/sulphide. All these technologies differ both in terms of employed material and 

structure and they consequently influence the efficiency of the energy conversion. The cell types can be 

grouped in three categories: the traditional crystalline silicon cells (wafer based), the thin‐film cell 

(made from different semiconductors materials) and the nanotechnology based solar cells. This third 

group is now appearing in the market. PV cells must be interconnected to form a PV module. PV 

modules combined with a set of additional application‐dependent system components (e.g., inverters, 

batteries, electrical components, and mounting systems), form a PV system. 

5.1 Available Technologies 

‐ Wafer based crystalline silicon cells: Monocrystalline cells (sc‐Si), Multicrystalline cells (mc‐Si) 

Solar cells made from crystalline silicon continue to account for about 85% of the cells used worldwide. 

Crystalline silicon cells (C‐Si) are subdivided in two main categories: single crystalline (sc‐Si) 

multi‐crystalline (mc‐Si).  

Crystalline silicon cells are typically produced in a complex manufacturing process. In the following 

sections/paragraphs a strong simplification in describing the production process will be made, to make 

clear what the main features of this technology are. Monocrystalline cells are produced from silicon 

wafers; these wafers are extracted from a square block of single crystal silicon, by cutting slices of 
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approximately 0.2 mm thick. This produces square cells of 100 to 150 mm sides with a homogeneous 

structure and a dark blue/blackish color appearance. 

For multicrystalline cells, the melted silicon is cast into square ingots where it solidifies into a 

multitude of crystals with different orientations (frost‐like structure), which gives the cells their spotted 

and shiny surface (Figure 25). 

 

 

Figure 25. Mono and Poly Crystalline Silicon Cells 

 

To collect the electricity, very thin silver contacts are applied on the front of the cells, while a back 

contact is applied at the rear. Finally, an anti‐reflection coating is applied to enhance the light capture 

properties (Figure 26). 

 

 

Figure 26. Crystalline Cell Structure 

 

The efficiency of monocrystalline cells is currently the highest available on the market, ranging 

approximately from 17% to 22%, while multicrystalline cells are around 11% to 17%. To become a 

usable product, crystalline cells are electrically wired together and encapsulated into a substrate and a 

front covering material to create a solar module. The module can be provided with a frame, in order to 

improve its mechanical resistance. If it is kept unframed, the module is also called a “solar laminate” 

(Figure 27). 
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Figure 27. Left: Module Structure for Crystalline Cells, Right: Polycrystalline 

 

5.2 Emerging Pv Technologies (Third Generation) 

The category “Emerging” is used for those technologies which have passed the “proof‐of concept” 

phase, or could be considered as mid‐term options compared with the two main established solar cell 

technologies (crystalline Si and thin‐film solar cells). The category “Novel” will be used for 

developments and ideas which can lead to potentially disruptive technologies, but where there is not yet 

clarity on practically achievable conversion efficiencies or structure cost. Sometimes they are called 

also “third generation” (cells Figure 28). 

 

 
Figure 28. Dye-Sensitized Solar Cell and Module Modules 

 

Novel PV‐technologies are characterized as high‐efficiency approaches. Within this category, a 

distinction is made between approaches that tailor the properties of the active layer to match better the 

solar spectrum, and approaches that modify the incoming solar spectrum and function at the periphery 

of the active device, without fundamentally modifying the active layer properties.  

PV System 

As the voltage and power of individual solar cells is inadequate for most applications, they are 

connected in series. As a consequence, the individual voltages of each cell are added together. The 

result is the formation of a PV module, the main element of a PV system. 

 



http://www.scholink.org/ojs/index.php/se               Sustainability in Environment                      Vol. 2, No. 1, 2017 

54 
Published by SCHOLINK INC. 

 
Figure 29. From the Solar Cell to the BiPV System 

 

The energy output from a single PV module is typically in the range of 180‐250 Watts (also if small 

modules are available) in bright sunshine. A photovoltaic system is normally built up from a number of 

panels (an array), linked together to produce a more significant energy output. Before starting the 

discussion on the infrastructure and the components needed in order to use the produced electricity, we 

have to distinguish between stand alone and grid‐connected systems. 

 

5.3 Integration Possibilities—Roofs 

 

 

Figure 30. Crystalline Roof Systems: Solar Tile from © Ideassolar, Solar Slate from © Megaslate 

 

Tilted Roof: Building added PV systems have been very common on tilted roofs, especially in case of 

integration into existing buildings. Using this solution, there is a need for an additional mounting 

system and in most cases the reinforcement of the roof structure due to the additional loads. 

The system mentioned above have been highly criticized for its aesthetics that urged the market to 

provide building integrated products replacing all types of traditional roof claddings. There are 

products both with crystalline and thin film technologies for roof tiles, shingles and slates that formally 
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match with common roof products (Figure 30). Several metal roof system manufacturers (standing 

seam, click‐roll‐cap, corrugated sheets) developed their own PV products with the integration of thin 

film solar laminates (Figure 31). Moreover, there are also prefabricated roofing systems (insulated 

panels) with integrated thin film laminates available. 

Depending on the insulating features, these PV “sandwiches” can be suitable for any kind of building 

(i.e., industrial or residential). It is somewhat surprising that many so called “first generation” BIPV 

products (i.e., roof tiles) proved to be unsustainable due to many reasons (especially 

cost‐effectiveness). 

 

 
Figure 31. Crystalline Modules for Flat Roof. On the Left: Standard Module on Rack Mounting 

System, from © Prosolar on the Right: Special Rack System for Flexible Laminate on Stainless 

Steel Substrate 

 

Flat Roof: We can distinguish among PV systems with different tilt angles and PV systems on the same 

plane of the roof. The most common are added systems with rack supporting standard glass‐Tedlar 

modules or to use specific tilted rack system for thin film (Figure 32). 

 

 
Figure 32. Integration of Thin Film Laminates on Flexible Substrate in Flat Roof. On the Left: 

Powerply Monocrystalline Module with Plastic Substrate 

 

 

Figrue 33. Semi-Transparent Sky Lights. Community Center Ludesch, Austria, Herman 

Kaufmann: Semitransparent Modules with Crystalline Cells 
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The PV system can also become the complete roof covering, fulfilling all its functions. Most commonly 

semi‐transparent crystalline or translucent thin film panels are used in skylights. These solutions 

provide controlled day lighting for the interior, while simultaneously generating electricity. In the 

selection of the product it is important to consider the thermal (such as U‐value and g‐value) and day 

lighting features. Semi‐transparent crystalline modules are sometimes custom‐made. In this case it 

could happen that the architect has no technical information and data about the performance of the 

component from the manufacturer. A simulation or a special test or measurement should then be asked 

for. Standard translucent thin film modules, however, have more detailed datasheets with this 

information (Figure 34). 

A PV component can substitute the external layer of the facade (i.e., PV as a cladding of a cold facade), 

or it can substitute the whole façade system (i.e., curtain walls—opaque or translucent) Depending on 

the layer(s) the PV component substitutes, it has to meet different requirements that influence the 

choice of the most suitable PV component. In the following, a general overview of the way PV can be 

used in facades is presented (Figure 34). 

 

 

Figure 34. Semi-Transparent Sky Lights. Ospedale Meyer, Florence 

 

 

Figure 35. On the Left Facade Cladding Solutions, on the Right Detail of Ventilation Principle 

 

Photovoltaic modules can be used in all types of façade structures. In opaque cold facades, the PV 

panel is used as a cladding element, mounted on an insulated load‐bearing wall. In this case, the PV is 

usually back ventilated, to avoid lowering the efficiency of the cells. As the cooling air is heated by the 

panels, some systems make use of it for building heating (PVT). 

Several fastening systems have been developed for façade cladding, both with framed panels and 

laminates (unframed modules) and for all PV technologies (Figures 36, 37, 38). 
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Figure 36. On the Left Facade Cladding Detail of Ventilation Principle 

 

 

 

Figure 37. Green Pix Media Wall, Beijing, China, and the upper Figure is Zara Fashion Store 

 

 
Figure 38. Frameless Modules with Spider Glazing System 

 

Photovoltaic modules can be used as shading devices. Quite common these are semi‐transparent 

glass‐glass components integrated as canopies or louvers, but there are also movable shutters with 

semi‐transparent crystalline or thin film (Figures 39, 40, 41). 

 

 
Figure 39. Spandrels and Parapet Solutions 
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Figure 40. SBL Offices Linz, Austria, Helmut Schimek, Shading Louvres with Integrated 

Photovoltaics and Sun Tracking Dystem 

 

 

Figure 41. Solar Shading Solution, Colt Ellisse PV Sliding Shades at Company HQ, 

Bitterfeld-Wolfen, Germany, © Colt, Right: Keuringsdienst, Eindhoven 

 

6. Photovoltaics Vs Solar Thermal 

The ever increasing interest for renewable energies results in a constantly growing market demand for 

active solar systems, both for electricity (photovoltaics) and for heat production (solar thermal). This 

trend, added to the new promotion policies recently set up by the EU, let foresee an increased interest 

for all the sun exposed building surfaces, resulting in a new debate on how to optimize their use for the 

production of solar electricity and/or solar heat. 

Although similarities in the integration on the building envelope of solar thermal and photovoltaic 

systems do exist, there are also major differences that need to be considered. Both technologies deal 

with the same building skin frame, and have similar surfaces and orientations needs. On the other hand, 

they have different intrinsic formal characteristics, different energy transportation and storage issues, 

different insulation needs, shadow influence, etc. 

The impact these technology peculiarities have on the building implementation possibilities are 

described here to support making the best use of the available exposed building surfaces. 

6.1 Significant Collectors Formal Characteristics 

Both fields of solar thermal and PV count several technologies interesting for building integration: 

monocrystalline, polycrystalline and thin films in the field of PV; glazed flat plates, unglazed flat plates 

and vacuum tubes collectors in the field of solar thermal. Unless differently specified, the following 

considerations refer to the most diffused ones in EU, i.e., crystalline‐mono and poly‐cells for PV and 

glazed flat plate collectors for solar thermal. To keep the message clear and short, distinctions will be 

made only when considered important. 
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Shape, Size, Flexibility 

The basics shape, size and dimensional flexibility of the PV modules are fundamentally different from 

the ones of thermal collectors. The size and shape of PV modules are very flexible since they result 

mainly from the juxtaposition of single squared silicon cells (mono or polycrystalline) of 

approximately 12 to 15cm side. Modules can come in the size of less than 0.1m2 (few cells) up to 2m2 

(more than 60 cells). Thanks to the flexibility of the internal connections and the small cells’ size, made 

to measure module can be provided in almost any shape (at a higher price in this case). Moreover, the 

possibility of partial transparency is offered through glass‐glass modules. Thin films modules can also 

offer a new level of freedom when using flexible metal or plastic sheets. Solar thermal collectors are 

much bigger (1.5 to 3m2) and their shape definitely less flexible. This derives mainly from the need of a 

non-flexible hydraulic circuit fixed to the solar absorber to collect the heat: the freedom in module 

shape and size would require reconsidering every time the hydraulic system pattern, which is generally 

difficult and expensive. The lack of market demand for architectural integration is also a cause of this 

poor offer up to recently. The case of evacuated tubes is different: the panel size and shape result from 

the addition of evacuated tubes: length from 1 to 2m, diameter from 6 to 10cm. In most cases though, 

only standard modules are available (Figure 42). 

 

 
Figure 42. Shape and Size Flexibility of Crystalline Photovoltaic Modules 

 

6.2 Module Structure, Thickness, Weight 

The thickness and weight of PV and solar thermal modules are also totally different. PV modules are 

thin (0.4 to 1cm) and relatively light (9‐18kg/m2), while solar thermal ones are much thicker (4 to 10 

cm) and heavier (around 20 kg/m2). PV mainly consists in thin laminated modules encapsulating the 

very thin silicon cells layer between an extra white glass sheet (on top) and a composite material 

(Tedlar/Mylar) or a second sheet of glass. 

Solar thermal collectors are composed by multiple layers in a sandwich structure: glass sheet/air 

cavity/metal absorber/hydraulic system/insulation. Evacuated tubes have a different structure: an 

absorber core protected and insulated by a glass tube. Impact on building integration (Figures 41, 42). 
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Figure 43. Low Thickness Characterizing of Photovoltaic Modules 

 

 

Figure 44. Thickness Standard Glazed Flat Plate Collectors 

 

6.3 The Visible Materials, Surface Textures, Colors 

The glass surface can be smooth, textured or acid etched, but always let’s see the internal layer: the 

silicon cells in PV, the metal absorber in solar thermal.  

The structure, the geometry and the appearance of these layers are very different: the metal absorber of 

solar thermal collectors is generally continuous and covers the whole module area, while for PV the 

cells can be arranged in different patterns, also playing with their spacing. 

PV crystalline cells have a flat surface, mainly blue or black, with a squarish shape Figure 45. The 

absorbers of thermal collectors are characterized by a more or less corrugated metallic surface, coated 

in black or dark blue. Evacuated tubes are different, as described in the previous chapter.  

 

 
Figure 45. Visible Surface Colours and Textures of PV Modules (Left) and ST Collectors (Right) 

 

 

 



http://www.scholink.org/ojs/index.php/se               Sustainability in Environment                      Vol. 2, No. 1, 2017 

61 
Published by SCHOLINK INC. 

6.4 Energy Transport and Storage 

As PV modules produce electricity and solar thermal produces heat, they have to deal with different 

energy transportation, storage and safety issues. 4.4.1 Energy medium and transport Electricity can be 

transported easily and with very small losses through thin (0.8-1.5cm diameter), flexible electric 

cabling. It can then be easily transported over long distances, so that the energy production doesn’t 

need to be close to the consumption place. 

Heat is transported by water (charged with glycol to avoid winter freezing) through the rigid piping of 

the hydraulic system. Heat transportation is very sensitive to losses, meaning on one hand that the 

piping system has to be very well insulated (resulting diameter: 3 to 8cm), on the other hand that the 

heat should be used near the production place. 

Energy storage 

Because of the different ways these energies can be transported, their storage issues are radically 

different, affecting strongly the implementation possibilities. The electricity produced by the PV 

modules can be injected practically without limits into the grid. As a result, the sizing of the system is 

totally independent from the local consumption and the energy produced can exceed by far the building 

electricity needs. On the contrary, the heat produced by thermal collectors has to be stored close to the 

consumption place, usually in the building storage tank. In practice, the storage capacity of the water 

tank is limited, usually offering no more than a few days’ autonomy. Furthermore, solar thermal 

collectors are sensitive to damages resulting from overheating, so that ideally the heat production 

should not exceed the storage capacity. 

6.5 Operating Constraints, Temperatures and Related Insulation Needs 

Suitable operating temperatures are again different between the two technologies: for PV, especially for 

crystalline cells, the lower the operating temperature, the better; for solar thermal, the higher the better 

(still avoiding overheating) Impact on building integration. This difference affects once more the 

integration possibilities in the building envelope: PV modules should be back ventilated for a higher 

efficiency; solar thermal absorbers require back insulation to minimize heat losses. Integrating the 

collectors directly in the building envelope layers, possibly without air gap, is ideal in this sense for 

solar thermal, while freestanding or ventilated applications would be preferable for PV. 

6.5.1 Shadows 

Impact on building integration for solar thermal, the heat losses resulting from partial shadowing are 

just proportional to the shadow size and don’t cause any particular production or safety problem. 

Photovoltaics on the other hand can be very sensitive to partial shadowing: the electricity production 

may be greatly affected by partial shadows if special care is not given to the modules placement and 

string cabling. The energy losses are generally higher than the shadow ratio, with possible risks of 

modules damage if its impact is not well considered during the system design phase. 
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6.5.2 Conclusions 

As shown above, there are clear differences in the characteristics of solar thermal and photovoltaics 

systems, leading to different approaches when integrating them in the building envelope. A synthetic 

overview is presented in the table below (Figure 46). 

 

 
Figure 46. Different Usages of the Technologies in Buildings 

 

 
Figure 47. Formal and Technical Characteristics of Photovoltaics and Solar Thermal 

Note. Please remember that the two technologies are not interchangeable, hence are not competing 

against each other: both are equally needed as they cover different building needs. 

 

It is important to underline one major outcome that concerns the positioning options induced by the 
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different storage constraints: As there are presently no limitations in the storage of the energy produced 

by PV, its annual energy production should be optimized by locating and orienting the PV where its sun 

exposure is maximized (tilted or flat roofs mounting in most cases). This brings one interesting option 

for solar thermal integration. In EU mid latitudes, where the solar radiation varies dramatically during 

the year, the maximum summer production can be twice the winter one. To avoid summer overheating, 

tilted solar thermal systems are usually undersized (solar fractions around 50%). A good way to 

increase the whole year solar fraction while limiting overheating risks is to mount the collectors 

vertically, using the facade areas. The heat production would then be almost constant during the year, 

making it possible to dimension the system according to the real needs. This allows solar fraction of up 

to 90%, while opening the way to building facades use. 

 

 
Figure 48. Comparison of the Monthly Sun Radiation Available on a 45° South Oriented Tilted 

Surface vs. a Vertical South Oriented Surface in Graz, Austria (47° Latitude). Data from W.Weiss 

 

However, if for photovoltaics there is a large offer of products suitable/conceived for building 

integration, exploiting the flexibility of the technology, the situation is different for solar thermal. The 

big size of most collectors now available, their lack of dimensional flexibility as well as the dark 

irregular appearance of their absorber makes it difficult to integrate solar thermal, particularly on 

facades. This is an issue that should be solved urgently, especially in the light of the previous 

considerations: New solar thermal products conceived for building integration should be developed, 

matching the offer available in the PV field, to help answer to the booming demand for architectural 

integration of solar in buildings. This is even more important considering the high efficiency and cost 

effectiveness of this technology. 

 

7. Discussion 

Solar technology made one more step towards professionalism. Most of the investigated products 

convinced due to good quality and performance. And between the variety of systems, in the case 

studies provided it shows the improvements and many integration methods and possibilities. Statistics 

indicate that the production, conversion and consumption of different types of energy are the main 

factors for destruction and pollution of the environment among the man-made factors. 

However, not only the world’s energy consumption will remain constant, but forecasts indicate that 
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consumption will continue growing due to increasing population, the desire for prosperity and 

increasing per capita GDP (Gross Domestic Product) in the world. (The World Bank) Consequences of 

energy consumption are increasing the amount of carbon dioxide emissions and also SOX and NOX 

emissions. Studies show that there are two main solutions to mitigate this issue: 

• Increasing energy efficiency;  

• Increase the share of renewable energy in the global energy mix. 

 

8. Conclusion: 

As seen in the previous chapters, good knowledge in three key topics is needed to properly integrate 

photovoltaics and solar thermal systems into architecture: 

‐ Knowing the different energetic specifications of solar thermal and photovoltaic technologies; 

‐ Understanding the respective system dimensioning principles, with their cross dependences from 

technology, orientation, building needs and storage possibilities; 

‐ Knowing the formal properties of existing products, with their features and limitations, to best use 

their characteristics in a project. 

Upcoming improvements in both the dimensioning and the products integrality domains should help 

more and more professionals access this knowledge: On one hand, new smart software tools for 

architects simplify the study of solar systems variants in the early design stage of projects, when a 

smooth integration process is easiest as freedom is maximized. 

On the other hand, thanks to the growing interest of architects for solar use, manufacturers are 

becoming much more aware of the need for new products specially adapted to architectural integration, 

or at least for an increased flexibility in their existing products, leading to novel development activities 

also in the less developed field of solar thermal integration. 
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