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Abstract 

Modern measurement technology has enabled the capture of high-dimensional data by researchers and 

statisticians and classical statistical inferences, such as the renowned Hotelling’s T2 test, are no longer 

valid when the dimension of the data equals or exceeds the sample size. Importantly, when correlations 

among variables in a dataset exist, taking them into account in the analysis method would provide more 

accurate conclusions. In this article, we consider the hypothesis testing problem for two mean vectors 

in high-dimensional data with an underlying normality assumption. A new test is proposed based on the 

idea of keeping more information from the sample covariances. The asymptotic null distribution of the 

test statistic is derived. The simulation results show that the proposed test performs well comparing 

with other competing tests and becomes more powerful when the dimension increases for a given 

sample size. The proposed test is also illustrated with an analysis of DNA microarray data.  
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1. Introduction 

With modern measurement technology, high-dimensional data are nowadays growing in fields as 

diverse as genetic microarrays, medical imaging, econometrics, geophysics, text or document 

classification, etc. Such a data creates a wide variety of challenges for quantitative researchers, 

particularly for statisticians. New strategies are required to analyze and extract useful information from 

this kind of data. When the data dimension p is larger than the sample size n, many classical statistical 

methods cannot be applied. For example, the classical Hotelling’s T2 test is not applicable in the case of 

high-dimensional data (Rencher, 2001; Seber, 2009; Zhang & Xu, 2009) even this test is uniformly 

most powerful when the dimension is less than the sample size or p < n. The reason is that the 

Hotelling’s T2 statistic requires the sample covariance matrix invertible; but when the data dimension 
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equals or exceeds the sample size, the sample covariance matrix loses its full rank and becomes 

singular (Eaton & Perlman, 1973).  

To make inference on mean vectors is one of the fundamental techniques which can be generalized to 

other topics in high-dimensional data analysis such as discriminant analysis and regression analysis. 

Extensive studies have been published for the mean testing problem when both p and n go to infinity 

with the ratio p / n is bounded. Amongst these works, some have addressed the problem of testing 

concerning mean vector(s) in high-dimensional data by overcoming the need of the inverse of sample 

covariance matrix. These developments include Dempster (1958), Bai and Saranadasa (1996), 

Srivastava and Du (2008), Srivastava (2009), Zhang and Xu (2009), Chen and Qin (2010) and Park and 

Ayyala (2013). Most of the tests perform well when n large or / (0,1)p n  , but in practice we often 

found the datasets with fixed sample size but much larger dimension or p   (Park & Ayyala, 

2013). The test using for one-sample analysis in high-dimensional data can be found in 

Jiamwattanapong and Chongcharoen (2015). However, the main attempt of this study is to construct a 

new test for two-sample problems in such a data. Most importantly, the idea of gaining more 

information from the sample covariance matrix originally came from Srivastava and Du (2008), and 

considered the situation that the data are multivariate normal.  

Now let 1,...,
ii inx x  represent a random sample of p dimensional multivariate normal random 

vectors from the i th group, 1,2 ,i   each of which has mean vector μi , and unknown common 

positive definite covariance matrix Σ , or ( , )x μ Σij p iN . The sample mean vectors ( xi ) and the 

pooled sample covariance matrix (S p ) are used as the estimates of the population counterparts. Let the 

sample mean vectors, the sample covariance matrices, and the pooled sample covariance matrix be 

defined, respectively, by 
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where 
1 2 2n n    . 

Consider the hypothesis testing problem:  

 1 2:μ μH   vs. 1 2:μ μK   , (4) 

and the data come from multivariate normal distributions. When the dimension 1 2,  2p n n     , 

the Hotelling’s T2 test is defined as  

 
2 11 2

1 2 1 2
1 2

( ) ( ) .x x S x xp

n n
T

n n

  


 (5) 

The Hotelling’s T2 test is uniformly most powerful and the statistic T2 can be converted to a central 
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F  distribution as 2( 1) /p T p   , 1p pF    1 2, 2n n     (Davis, 2002; Anderson, 2003). 

However, it can be easily seen from (5) that the Hotelling’s T2 statistic requires the pooled sample 

covariance matrix pS  invertible, so it cannot be applied for high-dimensional data because of the 

singularity of the pooled sample covariance matrix. 

The approach of this paper is based on the idea of keeping the information of the sample covariance 

matrix as much as possible (Srivastava & Du, 2008; Srivastava, 2009) and also based on the idea of 

using the submatrices on the diagonal of the sample covariance matrix (Jiamwattanapong & 

Chongcharoen, 2015). The hypothesis testing problem is in (4) where the data xij , 1,2, 1,..., ii j n  , 

are independent p dimensional multivariate normal random vectors with mean vectors iμ , 1, 2i  , 

and unknown common positive definite covariance matrix Σ . The situation we consider here, say high 

dimension problem, is that
 

p  , 1 2 2n n    . The organization of this paper is as follows. 

Description of the new test statistic and its asymptotic null distribution are presented in the next section. 

The influential works are discussed as the competing tests followed by a report on the performance of 

the proposed test via simulation study. Then the proposed test is demonstrated by using a dataset of 

DNA microarray. The last section goes to the conclusion of the study. 

 

2. Test Statistic and Its Asymptotic Distribution 

In this section, we describe the proposed test for the testing problem (4) in the case that the dimension 

of the data exceeds the rank of the pooled sample covariance matrix, or p   where 1 2 2n n    . 

The unknown common positive definite covariance matrix Σ  can be written is blocks as 

11 12 1

21 22 2

1 2

 ,

m

m
p p

mmm m

 
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 

  
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 



Σ Σ Σ

Σ Σ Σ
Σ

Σ Σ Σ
 

where Σkk , 1,...,j m  are k kq q  blocks or submatrices on the diagonal of Σ  where 6kq    

and 
1

m

k
k

q p


 . The population correlation matrix R is defined as  

 1/2 1/2 =( ) ,D ΣD kl 
 R R

 
 

where D 11diag( ,..., )pp  , , 1,...,ii i p   are the diagonal elements of Σ  and ,kkR 1,...,k m  

is a k kq q  submatrix. 

In order to obtain the asymptotic null distribution, an assumption on the population correlation matrix 

is made as follows: 

 As p   and ,n    ,0kl R  ,k l  , 1,...,  .k l m  (6) 

The pooled sample covariance matrix S p , defined in (3), is partitioned as for Σ  and define a block 

diagonal matrix 
qD  as 

11 22diag( , ,..., )q mmD S S S , where Skk , 1,...,k m  
are submatrices obtained 
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from the pooled sample covariance matrix S p , giving  
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(7) 

In the case where the first 1m  blocks 11 22 ( 1)( 1), ,..., m m S S S  are size of q, i.e., 1 2 1... mq q q q     

and 
1

1

m

mk
k

p q q




  , the block size q is called the “common block” size of qD  (Jiamwattanapong & 

Chongcharoen, 2015). When 3kq   , Skk , 1,...,k m  
are invertible (Eaton & Perlman, 1973); 

thus, the inverse of qD  can be obtained as 
1 1 1

11diag( ,..., )q mm
  D S S .  

Let the statistic Tn be as 

 
11 2
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n n
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 (8) 

where ,xi 1, 2i   defined in (1) and qD  in (7). The following theorem gives the expectation and 

variance of the statistic Tn. 

Theorem 1. Let xij , 1,2, 1,..., ii j n  , be independent p dimensional multivariate normal random 

vectors with unknown mean vectors 
iμ , 1, 2i  , and unknown common positive definite covariance 

matrix Σ . When 1p n  , let the sample mean vectors, the sample covariance matrices, and the 

pooled sample covariance matrix be defined by (1) to (3) respectively. Then, under assumption (6), the 

expectation and variance of Tn in (8) are, respectively,  
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Proof. Partition the sample mean vectors ix , 1, 2,i   corresponding to the block sizes in qD , i.e.,  
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where ikx  is of dimension 1kq  , 6kq    and 
1

m

k
k

q p


 .  

The statistic Tn can be written in terms of Yk as 

nT
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As the statistic Yk has Hotelling’s T2 distribution with kq  and 1kq    degrees of freedom, it can 

also be converted to a statistic of the F  distribution with kq  and 1kq    degrees of freedom 

statistic as follows: 
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By applying the first moment of the statistic F  with kq  and 1kq    degrees of freedom, we 

have 
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By assumption (6), which Yj and Yk are independent when ,j k , 1,...,j k m , the covariances 

between Yj and Yj are zero, so when applying the second central moment of the statistic F, we have the 

variance of Tn as 
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The proof is complete. 

We propose a test, for the hypothesis problem 1 2:μ μH   vs. 1 2:μ μK  , which is based on the 

statistic Tn as 
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(9) 

The following theorem gives the asymptotic null distribution of the test statistic Tn. 

Theorem 2. Let Tq be defined in (9). Under assumption (6) and under the null hypothesis 1 2μ μ . 

Then (0,1) ,
d

qT N  

where “
d

” denotes the convergence in distribution. 

Proof. Under assumption (6), when n  is fixed, the condition p   is equivalent to m  . 

Following from Theorem 1, as 6kq   , this satisfies Lyapunov’s condition of the Central Limit 

Theorem for non-identically distributed random variables. Thus, we have 
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This completes the proof. 

It should be noted here that the test statistic Tq is invariant under a group of scalar transformation 

x Dx , where D 1diag( ,..., )pd d  and 0,id   for all , 1,...,i i p . For this case of two-sample 

problems, ones may have little trouble to decide on how large of block size should be. We can give 

some guidance when there is no prior information to arrange variables as blocks that ones should keep 

maximum block size of 6,kq   1 2 2n n    .  
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3. Other Competing Tests 

In this section, three important tests for the hypothesis problem (4) when p   where 

1 2 2n n     are discussed: Dempster (1958) non-exact test, TD, Bai and Saranadasa (1996) Test, TBS, 

and Srivastava and Du (2008) test, TSD. All of these tests can be considered as they are based on the 

same form of a statistic d as 

 1 2 1 2( ) ( )x x A x xd   
 (10) 

where A is a p p  matrix used to develop such a test. For example, when A I p , then 

1 2 1 2( ) ( )x x x xd   

 

which this term is appeared in the initial test, proposed by Dempster (1958). 

The Dempster test statistic is defined as  

   

1 2
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where , 1,2xi i   are defined in (1) and SP is the pooled sample covariance matrix defined in (3). 

Under the null hypothesis, the statistic TD can be approximated by the F   distribution with ˆ[ ]r  and 

ˆ[ ]r  degrees of freedom, where [ ]a  denotes the largest integer less than or equal to a .  
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S  where  1 2 2n n   , the 

approximate degrees of freedom of the numerator r̂  can be obtained from 
2
1 2ˆ ˆ ˆ/r pa a . It is known 

that under particular conditions, Dempster’s test is the uniformly most powerful test when the 

population covariance matrix 2
Σ I  where 2 0  . Under null hypothesis, Dempster’s test is 

approximate F   distribution whereas the following two tests, Bai and Saranadasa’s test, TBS, and 

Srivastava and Du’s test, TSD, have asymptotic normality. The test proposed by Bai and Saranadasa 

(1996) is given by 
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(12) 

where  1 2 2n n   . When considering 1 2 1 2( ) ( )x x A x xd    , in (10), it can be seen that TBS

 

is 

rather similar to Dempster’s TD test in such a way that both of them also use A I p  in their statistics 

but Bai and Saranadasa derived their statistic TBS to a standard normal distribution instead of 

approximating it by an F   distribution, like Dempster non-exact test. It is also noted here that both 

Dempster’s test and Bai and Saranadasa’s test are invariant under orthogonal transformation 

,x Qxc  0c   and Q Q I p  . The other influential test, presented by Srivastava and Du (2008), is 

based on the statistic TSD as 
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(13) 

where 1 2 2n n    , 
2 3/2

, 1 tr( ) /p nc p  R , 1
DSD
  = 11diag(1/ ,...,1/ )pps s , Sii are diagonal elements of. 

Sp Like TBS, the test statistic TSD has asymptotic normality under the null hypothesis. It can be seen that 

the test TSD is developed by applying 1
A DSD

  in (10) to keep the information more from the diagonal 

elements of the pooled sample covariance matrix. The test TSD performs well when 
2 ,pΣ I 2 0  , 

particularly for dimension and sample size large. 

 

4. Simulation Study 

The performance of the proposed test was evaluated through a simulation study and also it was 

compared with those of the three tests in the literature: TD (Dempster, 1958), TBS (Bai & Saranadasa, 

1996) and TSD (Srivastava & Du, 2008). Attained significance level and the empirical power of the four 

test statistics were evaluated and four forms of population covariance matrices were studied. The 

attained significance level and the empirical power are defined first as follows. 

4.1 Attained Significance Level (ASL) and Empirical Power 

Let 1z   be the 100(1 )%
 
quantile of the asymptotic null distribution of the test statistic T, e.g., T 

= Tq, then 1z   is the 100(1 )%
 

quantile of the standard normal distribution (0,1)N  with m 

iterations of the datasets simulated under the null hypothesis. Also let ˆ ˆ[ ],[ ],1r rF    be the 100(1 )%
 

quantile of the approximate null distribution of Dempster’s test statistic TD. The ASL for the three tests 

TBS, TSD and Tq is computed as ASL 
1number of Ht z

rep


  and that for TD is as ASL 

ˆ ˆ[ ],[ ],1number of 
 ,

H r rt F

rep

 
  where tH represents the values of the test statistic T based on the datasets 

generated under the null hypothesis and rep is the number of iterations in the simulation. The nominal 

significance level   = 0.05 was chosen throughout the simulation. As the ASL is approximately 

distributed as the binomial distribution b(10000, 0,05), so the standard deviation is estimated by 

(ASL)se 0.05(0.95) /10,000 0.00218 .  

The empirical power was obtained by generating datasets under the alternative hypothesis with rep 

=10,000 replications, followed by computing the empirical power as 

 Empirical power 
number of 

 ,Kt c

rep


   

where tK represents the values of the test statistic T based on the datasets generated under the alternative 

hypothesis and c  equals 1z   or ˆ ˆ[ ],[ ],1r rF   , as defined previously. 
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4.2 Parameter Selection 

The mean vectors for the null hypothesis are 1 2 (0,...,0) μ μ  and those for the alternative 

hypothesis are 1μ (0,...,0)  and 2μ 1 2( , ,..., )p    2 1, k  0 , 2 ( 1.0, 0.5),
iid

k U  

1,2,..., / 2k p . Four forms of population covariance matrix are included in these simulations: 1) 

1 ,Σ I p
2) 2Σ  11diag( ,..., )mm Σ Σ , where Σkk  (1 ) ,c c   I 11  0.8c   and 1 is a vector of 1’s, 

, 1,..., 1Σkk k m   are of dimension ,q and the last block is mq , where ( 1) mp m q q   , 3) 3Σ

1/2 1/2
  D DR , where 

1/2
1diag( ,..., )p  D , i

12 ( 1) ( 1) /i p i p      and 11diag( ,..., )mmR R R , 

where ( ),kk ijR ( 1) ( )
i ji j

ij c
  , , 1,..., ii j q  and 0.9c  , and 4) 4Σ

1/2 1/2
  D DR , where 

4Σ  are formed as in the third case except that the blocks in R are of five different sizes and these 

blocks are randomly located on the diagonal.  

The simulations were studied at (p, ni) = (60,20), (100,20), (100,40), (200,20), (200,40), (200,60), 

(400,20), (400,40), and (400,60). i = 1,2. For each combination of the data dimension (p) and sample 

size (ni), the proposed statistic Tq was computed for the chosen common block size (q) of 6 

1 2, 2n n    . The first form covariance matrix, which is an identity matrix, was studied under these 

simulations so that we can compare with the best one, the Dempster’s test. Also, the results from the 

simulations of the important works, Bai and Saranadasa TBS and Srivastava and Du TSD tests were 

provided. Under each setting, ni, i = 1,2, multivariate normal vectors with the chosen mean vector and 

covariance matrix were generated, then the ASL and the empirical power were recorded. 

4.3 Simulation Results 

The performance of the proposed test was evaluated through simulations with four different forms of 

covariance matrix. Both the attained significance levels and the empirical powers for each form of 

covariance matrix are reported in Tables 1 to 4.  

The performance of the proposed test statistic Tq when 1 p Σ Σ I  was investigated, as shown in 

Table 1. The proposed statistic Tq was computed for both cases where the common block sizes in matrix 

Dq were q = 1 and q 6  , 1 2 2n n    . In this form of covariance matrix, Σ I p , all of the 

tests perform well which, as is known for this case, the Dempster’s test is uniformly most powerful test. 

The ASLs of the proposed test Tq and the TBS test are quite similar. i.e., they are slightly higher than the 

nominal level 0.05. For some cases of 200p  , even the empirical powers of the proposed test Tq 

were in acceptable level but the powers were slightly lower than the other three tests. In addition, when 

consider the empirical power, it is obvious that the proposed test Tq performed better when the 

dimension (p) increased.  
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Table 1. ASLs and Empirical Powers When 1 Σ Σ I  at Nominal Significance Level = 0.05  

p
 

ni 
ASL    Empirical Power   

TD TBS TSD Tq TD TBS TSD Tq 

q = 1          

60 20 0.051 0.059 0.053 0.058 1.000 1.000 1.000 1.000 

100 20 0.050 0.059 0.050 0.056 1.000 1.000 1.000 1.000 

 40 0.049 0.055 0.048 0.055 1.000 1.000 1.000 1.000 

200 20 0.050 0.056 0.045 0.057 1.000 1.000 1.000 1.000 

 40 0.051 0.056 0.046 0.056 1.000 1.000 1.000 1.000 

 60 0.047 0.053 0.045 0.053 1.000 1.000 1.000 1.000 

400 20 0.050 0.054 0.038 0.054 1.000 1.000 1.000 1.000 

 40 0.053 0.058 0.045 0.056 1.000 1.000 1.000 1.000 

 60 0.053 0.056 0.043 0.053 1.000 1.000 1.000 1.000 

6 q v          

60 20 0.051 0.059 0.053 0.051 1.000 1.000 1.000 0.869 

100 20 0.050 0.059 0.050 0.053 1.000 1.000 1.000 0.960 

 40 0.049 0.055 0.048 0.052 1.000 1.000 1.000 0.958 

200 20 0.050 0.056 0.045 0.058 1.000 1.000 1.000 0.997 

 40 0.051 0.056 0.046 0.056 1.000 1.000 1.000 1.000 

 60 0.047 0.053 0.045 0.046 1.000 1.000 1.000 1.000 

400 20 0.050 0.054 0.038 0.056 1.000 1.000 1.000 1.000 

 40 0.053 0.058 0.045 0.057 1.000 1.000 1.000 1.000 

 60 0.053 0.056 0.043 0.057 1.000 1.000 1.000 1.000 

 

For the covariance matrix 
2Σ Σ  and the common block size in Dq chosen corresponded to Σ  with 

the common block size being 1 1... 6mq q v    , the results are shown in Table 2. In this form of 

covariance matrix, the proposed statistic Tq performed well and was superior to all other statistics. The 

ASLs of TSD and TBS were not close to the nominal level 0.05. The ASL of TBS was too high whereas 

that of TSD was too low. The results when the covariance matrix 
3Σ Σ  with the common block size 

being 1 1... 6mq q v    , as shown in Table 3, are similar to those in Table 2 even when the elements 

in the blocks of 
3Σ  were changed. In other words, varying the entries of the blocks in the covariance 

matrix but still keeping the same block size, did not have much impact on the proposed statistic Tq; it 

still performed well. Additionally, when the ASLs of the test statistics TSD and TBS were not close to the 

nominal value 0.05, their empirical powers, whether they were high or not, were less reliable.  
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Table 2. ASLs and Empirical Powers When 2Σ Σ ( 6 q v ) at Nominal Significance Level 

= 0.05  

p
 

ni 

ASL Empirical Power 

TD TBS TSD Tq TD TBS TSD Tq 

60 20 0.050 0.080 0.026 0.051 0.636 0.765 0.465 1.000 

100 20 0.046 0.074 0.024 0.053 0.852 0.933 0.716 1.000 

 
40 0.041 0.070 0.017 0.052 0.983 1.000 0.839 1.000 

200 20 0.055 0.076 0.028 0.058 0.997 0.999 0.983 1.000 

 
40 0.046 0.072 0.015 0.052 1.000 1.000 0.997 1.000 

 
60 0.048 0.075 0.009 0.046 1.000 1.000 0.999 1.000 

400 20 0.054 0.071 0.023 0.057 1.000 1.000 1.000 1.000 

 
40 0.052 0.074 0.015 0.057 1.000 1.000 1.000 1.000 

 
60 0.050 0.075 0.011 0.057 1.000 1.000 1.000 1.000 

 

Table 3. ASLs and Empirical Powers When 
3Σ Σ ( 6 q v ) at Nominal Significance Level 

= 0.05  

p
 

ni 

ASL Empirical Power 

TD TBS TSD Tq TD TBS TSD Tq 

60 20 0.051 0.071 0.040 0.051 0.212 0.287 0.468 1.000 

100 20 0.051 0.071 0.041 0.053 0.319 0.387 0.702 1.000 

 
40 0.052 0.071 0.035 0.052 0.747 0.825 0.994 1.000 

200 20 0.052 0.067 0.037 0.058 0.589 0.650 0.962 1.000 

 
40 0.050 0.066 0.036 0.052 0.984 0.991 1.000 1.000 

 
60 0.050 0.065 0.034 0.046 1.000 1.000 1.000 1.000 

400 20 0.058 0.068 0.037 0.057 0.884 0.907 0.999 1.000 

 
40 0.057 0.067 0.039 0.057 1.000 1.000 1.000 1.000 

 
60 0.053 0.065 0.037 0.057 1.000 1.000 1.000 1.000 

 

For the last form of covariance matrix 
4Σ Σ , which contained blocks of five different sizes (the 

smallest block size is set to smaller than 10 and the largest size is 6v ) on the diagonal, it can be 

concluded that the proposed statistic Tq outperformed both statistics TSD and TBS used for comparison, 

as shown in Table 4. Once again, when the ASLs of the test statistics TSD and TBS were not close to the 

nominal value 0.05, their empirical powers were less reliable than Tq. From the results, the ASLs of TSD 

are under the nominal value of 0.05 while those of TBS are over; this indicates the unfavorable 

performance of the two test statistics. 
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Table 4. ASLs and Empirical Powers When 
4Σ Σ  (with Five Different Block Sizes) at Nominal 

Significance Level = 0.05  

p
 

ni 

ASL Empirical Power 

TD TBS TSD Tq TD TBS TSD Tq 

60 20 0.050 0.068 0.041 0.048 0.249 0.315 0.568 1.000 

100 20 0.052 0.071 0.041 0.052 0.328 0.399 0.723 1.000 

 
40 0.052 0.067 0.039 0.049 0.809 0.871 0.999 1.000 

200 20 0.052 0.065 0.037 0.052 0.601 0.666 0.965 1.000 

 
40 0.052 0.066 0.039 0.050 0.988 0.994 1.000 1.000 

 
60 0.052 0.065 0.035 0.049 1.000 1.000 1.000 1.000 

400 20 0.054 0.065 0.036 0.052 0.900 0.922 1.000 1.000 

 
40 0.056 0.064 0.039 0.053 1.000 1.000 1.000 1.000 

 
60 0.053 0.065 0.036 0.053 1.000 1.000 1.000 1.000 

 

5. Demonstration of the Proposed Test 

An example to demonstrate the new test is an analysis of DNA microarray data from an oncology study. 

The data, published by Notterman et al. (2001) were retrieved on April 20, 2015 from the Princeton 

University Gene Expression Project website (http://www.genomics-pubs.princeton.edu/oncology). A 

selection of 200 genes (p) was used to test the mean vectors of two independent groups, tumor tissue 

and normal tissue. Each group is the sample size of 10, i.e., n1 = n2 = 10, provided that 

1 2 2 18n n     .  

Before calculating the test statistics for mean vectors, the data were tested for the equality of 

covariance matrices, using the method presented by Chaipitak and Chongcharoen (2013), and led to the 

conclusion of equal covariance matrices.  

 

Table 5. Testing the Equality of the Gene Expression Levels between Tumor and Normal Tissue 

 TD 
TBS 

TSD 
Tq 

Test Statistic 3.922 7.028 5.574 12.147 

p value < 0.001 < 0.001 < 0.001 < 0.001 

 

To compute the proposed test statistic Tq, the variables in blocks were arranged in such a way that the 

correlation coefficient of any two adjacent variables in the same block was greater than or equal to 0.5 

and the largest block size was 12. The test values TD, by Dempster (1958) in (11), TBS, by Bai and 

Saranadasa (1996) in (12), and TSD, by Srivastava and Du (2008) in (13) were also reported. The test 

results from all of the tests are shown in Table 5; all of them lead to the rejection of the null hypothesis 

of no difference between the two mean vectors, i.e., the gene expression levels of tumor tissue are 

significantly different from those of normal tissue at the 0.05 level of significance. 
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6. Conclusion 

In this study, we developed a new test for two-sample problems in high-dimensional data when the data 

are multivariate normal. The development of the test is based on the idea of keeping more information 

from the pooled sample covariance matrix. When the data dimension goes to infinity, or p  , the 

proposed test statistic has been shown to follow a standard normal distribution under the null 

hypothesis. One of the advantages of the new test and is that it is invariant under a group of scalar 

transformation. Simulation results show that the proposed test performs well and becomes more 

powerful when the dimension increases for a given sample size.  
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