
Applied Science and Innovative Research

ISSN 2474-4972 (Print) ISSN 2474-4980 (Online)

Vol. 7, No. 2, 2023

www.scholink.org/ojs/index.php/asir

30

Original Paper

Task Scheduling Optimization in Cloud Computing by Jaya

Algorithm

Ahmed Y. Hamed1, M. Kh. Elnahary1 & Hamdy H. El-Sayed1

1 Faculty of Computers and Artificial Intelligence, Department of Computer Science, Sohag University,

Sohag, 82524, Egypt

Received: March 2, 2023 Accepted: March 16, 2023 Online Published: March 20, 2023

doi:10.22158/asir.v7n2p30 URL: http://doi.org/10.22158/asir.v7n2p30

Abstract

Cloud computing provides resources to its consumers as a service. The cloud computing paradigm

offers dynamic services by providing virtualized resources via the internet for enabling applications,

and these services are provided by large-scale data centers known as clouds. Cloud computing is

entirely reliant on the internet to provide its services to consumers. Cloud computing offers several

advantages, including the fact that users only pay for what they use weekly, monthly, or yearly, that

anybody with an internet connection may use the cloud, and that there is no need to purchase resources,

hardware, or software on their own. This paper proposes an efficient task scheduling algorithm based

on the Jaya algorithm for the cloud computing environment. We evaluate the performance of our

method by applying it to three instances. The recommended technique produced the optimal solution in

makespan, speedup, efficiency, and throughput, according to the findings.

Keywords

Heterogeneous resources, Jaya algorithm, Task scheduling, Cloud Computing

1. Introduction

Task scheduling in heterogeneous computing systems linked by high-speed networks has received a lot

of attention. Such approaches promise the quick processing of computationally heavy applications with

a wide range of calculation requirements. A significant application can be divided into several smaller

subtasks before parallel processing. These smaller subtasks usually involve dependencies that indicate

precedence restrictions, in which the outcomes of other subtasks are necessary before a particular

subtask may be done. Decomposing a computation into smaller subtasks and performing the subtasks

on several processors might lower the computation’s overall execution time, i.e., the makespan. As a

result, a task scheduling algorithm usually schedules all subtasks on a given number of available

www.scholink.org/ojs/index.php/asir Applied Science and Innovative Research Vol. 7, No. 2, 2023

31
Published by SCHOLINK INC.

processors to minimize makespan while respecting precedence restrictions. The development of task

scheduling algorithms that allocate subtasks of an application to processors is a difficulty in

heterogeneous computing systems. As a result, various techniques for minimizing makespan for

parallelizing subtasks with precedence connections have been presented. The precedence connections

are represented as a directed acyclic graph (DAG) with vertices representing computations and directed

edges describing dependencies between those vertices. DAGs have been demonstrated to be expressive

for various applications (Xu, Li, Hu, & Li, 2014). This paper introduced an efficient algorithm based on

the Jaya algorithm called the efficient Jaya algorithm (EJA) to lower the makespan and optimize the

speedup, efficiency, and throughput to handle the task scheduling problem successfully.

The paper is organized as follows: The notations are presented in section 2. Related work is presented

in Section 3. The problem description is given in Section 4. The Jaya algorithm is given in Section 5.

Section 6 describes the EJA approach. The evaluation of the proposed algorithm is presented in section

7. Section 8 concludes and offers future work.

2. Notation

3. Related Work

A heuristic-based task scheduling approach in parallel and distributed heterogeneous computing

systems generally consists of two phases: job prioritization and processor selection. Varying priority

produces different makespan on a heterogeneous computing system in a heuristic-based job scheduling

method. As a result, an intelligent scheduling algorithm should be able to give priority to each subtask

based on the resources required to reduce makespan. This work (Xu, Li, Hu, & Li, 2014) proposes a job

scheduling approach for heterogeneous computing systems based on a multiple priority queues genetic

algorithm (MPQGA). The primary concept behind our method is to use the benefits of both

evolutionary and heuristic algorithms while avoiding their downsides. The suggested technique uses a

GRT It refers to the graph of tasks

TASi It refers to the task i

VTMi It refers to the virtual machine i

NVTM It refers to a virtual machine’s number

NTAS It refers to the number of tasks

COM_CO(TASi, TASj) It refers to the communication cost between TASi and TASj

Sta_Time(TASi, VTMj) It refers to the start time of task i on a VTMj

Fts_Time(TASi, VTMj) It refers to the finish time of task i on a VTMj

Rey_Time(VTMi) It refers to the VTM’s ready time i

DALT It refers to a list of tasks arranged in topological order of DAG

Data_Arr(TSi, VMj) It refers to the time of task’s i data arrival to VTMj

www.scholink.org/ojs/index.php/asir Applied Science and Innovative Research Vol. 7, No. 2, 2023

32
Published by SCHOLINK INC.

genetic algorithm (GA) approach to prioritize each subtask while searching for a solution for the

task-to-processor mapping using a heuristic-based earliest completion time (EFT). The MPQGA

approach also creates crossover, mutation, and fitness functions appropriate for directed acyclic graph

(DAG) scheduling.

Cloud computing provides resources to its consumers as a service. The cloud computing paradigm

offers dynamic services by providing virtualized resources via the internet for enabling applications,

and these services are provided by large-scale data centers known as clouds. Cloud computing is

entirely reliant on the internet to provide its services to consumers. Cloud computing offers several

advantages, including the fact that users only pay for what they use (weekly, monthly, or yearly), that

anybody with an internet connection may use the cloud, and that there is no need to purchase resources

(hardware, software) on their own. This study (June, 2014) introduces a novel approach, Hybrid

enhanced particle swarm optimization with mutation crossover, to get the most out of resources.

Optimized resource use is vital, and scheduling plays a significant role.

Cloud computing has lately experienced rapid growth and has emerged as a commercial reality in

information technology. Cloud computing is a supplement, consumption, and delivery model for

internet-based Information Technology services charged per usage. The scheduling of cloud services

influences the cost-benefit of this computing paradigm by service providers to users. Tasks should be

scheduled efficiently in such a circumstance to decrease execution cost and time. In this research (Kaur,

& Verma, 2012), the authors suggested a meta-heuristic-based scheduling method that reduces

execution time and cost. An enhanced genetic algorithm is created by combining two existing

scheduling methods for scheduling activities while considering their computational complexity and

computing capability of processing elements.

Due to the expansion of data centers’ size, complexity, and performance, client needs in execution time

and throughput has become increasingly complicated. Against this backdrop, this paper introduces a

new resource allocation model that improves task scheduling by combining a multi-objective

optimization (MOO) and particle swarm optimization (PSO) technique. The authors create a novel

multi-objective PSO (MOPSO) algorithm based on a unique ranking technique. This algorithm’s

fundamental idea is that jobs are assigned to virtual machines to reduce waiting time and maximize

system throughput (Alkayal, Jennings, & Abulkhair, 2016).

When excellent efficiency is required, task scheduling is one of the essential concerns in heterogeneous

contexts. Because task scheduling is a Nondeterministic Polynomial (NP)-hard issue, various

evolutionary methods have been developed to address it. Because population-based algorithms have a

slow convergence rate, they are combined with local search algorithms. Thus, in this study (Dordaie &

Navimipour, 2018), a hybrid particle swarm optimization and hill-climbing method are suggested to

improve the task scheduling makespan.

www.scholink.org/ojs/index.php/asir Applied Science and Innovative Research Vol. 7, No. 2, 2023

33
Published by SCHOLINK INC.

4. Problem Description

In cloud computing, task scheduling is represented as a graph with NTAS tasks (TAS1, TAS2, TAS3, ...,

TASNTAS). Each node (task) with GRT and E-directed edges represents a subset of the tasks’ requests

(Hamed & Alkinani, 2021). Each node (task) represents an instruction that may be executed

sequentially on the same virtual machine as other instructions; it may have one or more inputs. The

availability of the inputs triggers the execution of an exit or entry task. A partial request with a

precedence constraint (TASi → TASj), i.e., TASi precedes TASj in the implementation process. The

execution time of a task TASi is denoted by (TASi) weight. Let COM_CO(TASi, TASj) be the cost of

communication of an edge, and it will be equal to zero if TASi and TASj are scheduled on the same

virtual machine. Start and finish times are denoted by Sta_Time(TASi, VTMj) and Fts_Time(TASi,

VTMj), respectively [6]. The Data_Arr of TASi at virtual machine VTMj is given by:

Data_Arr(TASi. VTMj) = max{Fts_Time(TASk, VTMj) + COM_CO(TASi, TASk)} (1)

Where k = 1.2, ..., number of Parents

The task scheduling problem in cloud computing may be defined as determining the best time to

allocate or schedule the start times of the specified tasks on virtual machines. While maintaining

precedence is restricted, the completion time (schedule length) and execution cost decrease. The

completion time is defined as the schedule length or finishes time calculated as follows:

Scheduled Length=max(Fts_Time(TASi, VTMj)) (2)

Fts_Time(TASi,VTMj)=Sta_Time(TASi,VTMj)+ WETij (3)

Where i = 1.2., NTAS, and j = 1,2, …NVTM

Algorithm 1: To find the schedule length (Hamed & Alkinani, 2021)

Input the schedule of tasks as shown in Table 1

Rey_Time[VTMj] = 0 where j = 1, 2,…NVTM.

For i = 1 : NTAS

{

 From DALT take the first task TASi to be executed and remove it from DALT.

 For j = 1 : NVTM

 {

If TASi is scheduled to virtual machine VTMj

 Sta_Time(TASi,VTMj)=max{Ret_Time(VTMj),Data_Arr(TASi, VTMj)}

Fts_Time(TASi, VTMj) = Sta_Time(TASi, VTMj) + WET(TASi, VTMj)

Rey_Time(VTMj) = Fts_Time(TASi, VTMj)

End If

 }

}

Schedule length = max(Fts_Time)

www.scholink.org/ojs/index.php/asir Applied Science and Innovative Research Vol. 7, No. 2, 2023

34
Published by SCHOLINK INC.

5. Jaya Algorithm

Let G(y) be the objective function that has to be minimized (or maximized). Assume that there are ‘m’

number of design variables (i.e. j=1,2,...,m) and ‘n’ number of possible solutions (i.e. population size,

k=1,2,...,n) at any iteration i. Let the best candidate acquire the best value of G(y) (i.e., G(y)best) in all

candidate solutions, and the worst candidate obtain the worst value of G(y) (i.e., G(y)worst) in all

candidate solutions. If the value of the jth variable for the kth candidate during the ith iteration is Yj,k,i,

then this value is updated according to the following Eq (4) (Venkata Rao, 2016).

Y’j,k,i = Yj,k,i + ran1,j,i (Yj,best,i - │Yj,k,i│) - ran2,j,i (Yj,worst,i - │Yj,k,i│) (4)

where Yj,best,i is the variable j value for the best candidate and Yj,worst,i is the variable j value for the

worst candidate Y’j,k,i is the updated value of Yj,k,i, and ran1,j,i and ran2,j,i are the two random values for

the jth variable in the range [0, 1] during the ith iteration. The word "ran1,j,i ((Yj,best,i - Yj,k,i)" denotes the

solution’s propensity to get closer to the best solution, whereas the term "- ran2,j,i (Yj,worst,i - Yj,k,i)"

denotes the solution’s inclination to avoid the worst solution. If Y’j,k,i yields a superior function value, it

is accepted. At the end of the iteration, all of the acceptable function values are kept, and these values

form the input to the following iteration (Venkata Rao, 2016).

Jaya algorithm

Initialize population size, number of design variables, and termination criterion

Iteration=1

While (iteration <= termination criterion)

 Identify the best and the worst solutions in the population

 Modify the solutions based on the best and the worst solutions by using Eq.(4)

 If the solution of Y’j,k,i is better than Yj,k,i

 Update the old solution with the new obtained solution

 End if

 Iteration =iteration +1

End while

6. The Proposed Algorithm

Because it is evident that the vector representation in the Jaya algorithm is in continuous value form,

we will utilize the five ways to transform these continuous values into discrete values. The first rule is

the Smallest Position Value (SPV) (Dubey & Gupta, 2017), the second is the Largest Position Value

(LPV) (Wang, Pan, & Tasgetiren, 2011), the third is the round nearest function, the fourth is the floor

nearest function, and the fifth is the Ciel nearest function. Table 1 shows how we will utilize the

modulus function with the number of virtual machines in the SPV and LPV to raise the result by one.

www.scholink.org/ojs/index.php/asir Applied Science and Innovative Research Vol. 7, No. 2, 2023

35
Published by SCHOLINK INC.

Table 1. Convert Continuous Values to Discrete Values

Population 1.0 1.6 1.4 3.0 2.3 1.9 2.0

SPV rule 1 3 2 6 7 5 4

modulus with SPV and NVRM=3 2 1 3 1 2 3 2

LPV rule 4 5 7 6 2 3 1

modulus with LPV and NVRM=3 2 3 2 1 3 1 2

round nearest function 1 2 1 3 2 2 2

floor nearest function 1 1 1 3 2 1 2

ceil nearest function 1 2 2 3 3 2 2

Algorithm 2: The function that converts a continuous value to a discrete value

Function convert_to_discrete (u)

Rand=random number between [1…5]

If (Rand == 1)

 Transform the continuous values by the SPV rule

Else if (Rand == 2)

 Transform the continuous values by the LPV rule

Else if (Rand == 3)

 Transform the continuous values by round the nearest function

Else if (Rand == 4)

 Transform the continuous values by the nearest function

Else

 Transform the continuous values by ceil nearest function

End if

End function

Algorithm 3: EJA

Input DAG with communication and computation cost

Initialize population size, number of design variables, lower bound, upper bound, and termination

criterion

Initialize population by using population = lower bound + rand * (upper bound – lower bound)

Convert the Initialize population by using Algorithm 2

Calculate the schedule length by using Algorithm 1

Iteration=1

While (iteration <= termination criterion)

Identify the best and the worst solutions in the population

www.scholink.org/ojs/index.php/asir Applied Science and Innovative Research Vol. 7, No. 2, 2023

36
Published by SCHOLINK INC.

Modify the solutions based on the best and the worst solutions by using Eq.(4)

Convert the obtained solution by using Algorithm 2

Calculate the schedule length by using Algorithm 1

If the solution of Y’j,k,i is better than Yj,k,i

Update the old solution with the new obtained solution

End if

Iteration =iteration +1

End while

7. Evaluation of the EJA

We demonstrate the EJA’s performance by applying it to three instances. The first scenario has ten tasks

and three heterogeneous virtual machines, and the second scenario has ten tasks and three heterogeneous

virtual machines. The third is made up of three heterogeneous virtual machines and eleven tasks.

Speedup = min VTMj
 (∑

WETi,j

schedule lengthTASi
) (5)

Efficiency =
Speedup

NVTM
 (6)

Throughput =
NTAS

Schedule Length
 (7)

7.1 Case 1

In this case, the tasks {TAS1, TAS2, TAS3, TAS4, TAS5, TAS6, TAS7, TAS8, TAS9, TAS10} are executed

on three heterogeneous virtual machines {VTM1, VTM2, VTM3}. The cost of executing each task on

different virtual machines is shown in Table 2 (Younes, Ben Salah, Farag, Alghamdi, & Badawi, 2019).

The schedule obtained by EJA is shown in Table 3. The results obtained by the EJA are compared with

those obtained by the Whale Optimization Algorithm (WOA) (Thennarasu, Selvam, & Srihari, 2021),

Gravitational Search Algorithm (GSA) (Biswas, Kuila, Ray, & Sarkar, 2019), and Hybrid Heuristic and

Genetic-based scheduling task algorithm for heterogeneous computing (HHG) (Sulaiman, Halim, Lebbah,

Waqas, & Tu, 2021). The results obtained by the EJA and WOA, GSA, and HHG are illustrated in Table

4. The task priority of EJA {TAS1, TAS6, TAS4, TAS5, TAS2, TAS3, TAS8, TAS9, TAS7, TAS10}. Figure

1, Figure 2, Figure 3, and Figure 4 represent the results obtained by the EJA, WOA, GSA, and HHG in

terms of makespan, speedup, efficiency, and throughput.

www.scholink.org/ojs/index.php/asir Applied Science and Innovative Research Vol. 7, No. 2, 2023

37
Published by SCHOLINK INC.

Table 2. Computation Cost for Case 1

TAS/ VTM VTM1 VTM2 VTM3

TAS1 22 21 36

TAS2 22 18 18

TAS3 32 27 43

TAS4 7 10 4

TAS5 29 27 35

TAS6 26 17 24

TAS7 14 25 30

TAS8 29 23 36

TAS9 15 21 8

TAS10 13 16 33

Table 3. Schedule Obtained by EJA for Case 1

 VTM1 VTM2 VTM3

 Sta_Time Fts_Time Sta_Time Fts_Time Sta_Time Fts_Time

TAS1 - - 0 21 - -

TAS2 - - 21 39 - -

TAS3 - - 39 66 - -

TAS4 64 71 - - - -

TAS5 - - - - 34 69

TAS6 38 64 - - - -

TAS7 - - 66 91 - -

TAS8 71 100 - - - -

TAS9 - - - - 78 86

TAS10 100 113 - - - -

Table 4. The Comparative Results for Case 1

Algorithm Makespan

WOA 122

GSA 122

HHG 117

EJA 113

www.scholink.org/ojs/index.php/asir Applied Science and Innovative Research Vol. 7, No. 2, 2023

38
Published by SCHOLINK INC.

Figure 1. Comparison of Makespan for Case 1

Figure 2. Comparison of Speedup for Case 1

Figure 3. Comparison of Efficiency for Case 1

Figure 4. Comparison of Throughput for Case 1

105

110

115

120

125

WOA GSA HHG EJA

M
ak

es
p
an

1.6

1.65

1.7

1.75

1.8

1.85

WOA GSA HHG EJA

S
p
ee

d
u
p

0.54

0.56

0.58

0.6

0.62

WOA GSA HHG EJA

E
ff

ic
ie

n
cy

0.075

0.08

0.085

0.09

WOA GSA HHG EJA

T
h
ro

u
g
h
p
u
t

www.scholink.org/ojs/index.php/asir Applied Science and Innovative Research Vol. 7, No. 2, 2023

39
Published by SCHOLINK INC.

7.2 Case 2

In this case, the tasks {TAS1, TAS2, TAS3, TAS4, TAS5, TAS6, TAS7, TAS8, TAS9, TAS10} are executed

on three heterogeneous virtual machines {VTM1, VTM2, VTM3}. The cost of executing each task on

different virtual machines is shown in Table 5 (Younes, Ben Salah, Farag, Alghamdi, & Badawi, 2019).

The schedule obtained by EJA is shown in Table 6. The results obtained by the EJA are compared with

those obtained by the Ant Colony Optimization (ACO) (Tawfeek, El-Sisi, Keshk, & Torkey, 2015),

Heterogeneous Earliest Finish Time (HEFT) (Topcuoglu, Hariri, & Wu, 2002), and Critical Path on

Processor (CPOP) (Topcuoglu, Hariri, & Wu, 2002). The results obtained by the EJA and ACO, HEFT,

and CPOP are illustrated in Table 7. The task priority of EJA { TAS1, TAS4, TAS3, TAS2, TAS5, TAS6,

TAS9, TAS8, TAS7, TAS10}. Figure 5, Figure 6, Figure 7, and Figure 8 represent the results obtained by

the EJA, ACO, HEFT, and CPOP in terms of makespan, speedup, efficiency, and throughput.

Table 5. Computation Cost for Case 1

TAS/ VTM VTM1 VTM2 VTM3

TAS1 14 16 9

TAS2 13 19 18

TAS3 11 13 19

TAS4 13 8 17

TAS5 12 13 10

TAS6 13 16 9

TAS7 7 15 11

TAS8 5 11 14

TAS9 18 12 20

TAS10 21 7 16

Table 6. Schedule Obtained by EJA for Case 2

 VTM1 VTM2 VTM3

 Sta_Time Fts_Time Sta_Time Fts_Time Sta_Time Fts_Time

TAS1 - - - - 0 9

TAS2 - - - - 9 27

TAS3 21 32 - - - -

TAS4 - - 18 26 - -

TAS5 - - 26 39 - -

TAS6 - - - - 27 36

TAS7 32 39 - - - -

TAS8 - - 55 66 - -

www.scholink.org/ojs/index.php/asir Applied Science and Innovative Research Vol. 7, No. 2, 2023

40
Published by SCHOLINK INC.

TAS9 - - 43 55 - -

TAS10 - - 66 73 - -

Table 7. The Comparative Results for Case 2

Algorithm Makespan

CPOP 86

HEFT 80

ACO 78

EJA 73

Figure 5. Comparison of Makespan for Case 2

Figure 6. Comparison of Speedup for Case 2

Figure 7. Comparison of Efficiency for Case 2

65

70

75

80

85

90

CPOP HEFT ACO EJA

M
ak

es
p
an

1.3

1.4

1.5

1.6

1.7

1.8

CPOP HEFT ACO EJA

S
p
ee

d
u
p

0.45

0.5

0.55

0.6

CPOP HEFT ACO EJA

E
ff

ic
ie

n
cy

www.scholink.org/ojs/index.php/asir Applied Science and Innovative Research Vol. 7, No. 2, 2023

41
Published by SCHOLINK INC.

Figure 8. Comparison of Throughput for Case 2

7.3 Case 3

In this case, the tasks {TAS1, TAS2, TAS3, TAS4, TAS5, TAS6, TAS7, TAS8, TAS9, TAS10} are executed

on three heterogeneous virtual machines {VTM1, VTM2, VTM3}. The cost of executing each task on

different virtual machines is shown in Table 8 (Keshanchi, Souri, & Navimipour, 2017). The schedule

obtained by EJA is shown in Table 9. The results obtained by the EJA are compared with those obtained

by the Multiple Priority Queues and a Memetic Algorithm (MPQMA) (Keshanchi, Souri, & Navimipour,

2017), a New Genetic Algorithm (NGA) (Keshanchi, Souri, & Navimipour, 2017). The results obtained

by the EJA, MPQMA, and NGA are illustrated in Table 10. The task priority of EJA {TAS0, TAS2, TAS3,

TAS4, TAS1, TAS6, TAS8, TAS7, TAS5, TAS9, TAS10}. Figure 9, Figure 10, Figure 11, and Figure 12

represent the results obtained by the EJA, MPQMA, and NGA in terms of makespan, speedup, efficiency,

and throughput.

Table 8. Computation Cost for Case 3

TAS / VTM VTM1 VTM2 VTM3

TAS0 10 11 12

TAS1 11 12 13

TAS2 12 8 13

TAS3 14 10 18

TAS4 27 20 19

TAS5 15 12 18

TAS6 9 14 19

TAS7 19 12 14

TAS8 14 10 15

TAS9 15 12 15

TAS10 18 10 17

0

0.05

0.1

0.15

CPOP HEFT ACO EJA

T
h
ro

u
g
h
p
u
t

www.scholink.org/ojs/index.php/asir Applied Science and Innovative Research Vol. 7, No. 2, 2023

42
Published by SCHOLINK INC.

Table 9. Schedule OBTained by EJA for CAse 3

 VTM1 VTM2 VTM3

 Sta_Time Fts_Time Sta_Time Fts_Time Sta_Time Fts_Time

TAS0 - - 0 11 - -

TAS1 36 47 - - - -

TAS2 - - 11 19 - -

TAS3 - - 19 29 - -

TAS4 - - 29 49 - -

TAS5 47 62 - - - -

TAS6 - - - - 29 48

TAS7 - - 59 71 - -

TAS8 - - 49 59 - -

TAS9 - - 71 83 - -

TAS10 - - 83 93 - -

Table 10. The Comparative Results for Case 3

Algorithm Makespan

MPQMA 101

NGA 101

EJA 93

Figure 9. Comparison of Makespan for Case 3

Figure 10. Comparison of Speedup for Case 3

85

90

95

100

105

MPQMA NGA EJA

M
ak

es
p
an

1.2

1.25

1.3

1.35

1.4

1.45

MPQMA NGA EJA

S
p
ee

d
u
p

www.scholink.org/ojs/index.php/asir Applied Science and Innovative Research Vol. 7, No. 2, 2023

43
Published by SCHOLINK INC.

Figure 11. Comparison of Efficiency for Case 3

Figure 12. Comparison of Throughput for Case 3

8. Conclusion and Future Work

The suggested efficient Jaya algorithm allocates or schedules subtasks to available virtual machines in a

cloud computing context. According to the findings obtained on DAGs of various situations, the efficient

Jaya algorithm outperforms other algorithms in terms of makespan, speedup, efficiency, and throughput.

In the future, we will create an algorithm based on DAGs that will consider resource load balancing.

References

Alkayal, E. S., Jennings, N. R., & Abulkhair, M. F. (2016). Efficient Task Scheduling Multi-Objective

Particle Swarm Optimization in Cloud Computing. Proc. - Conf. Local Comput. Networks, LCN.

(2016), 17-24. https://doi.org/10.1109/LCN.2016.024

Biswas, T., Kuila, P., Ray, A. K., & Sarkar, M. (2019). Gravitational search algorithm based novel

workflow scheduling for heterogeneous computing systems. Simul. Model. Pract. Theory.

96(2019), 101932. https://doi.org/10.1016/j.simpat.2019.101932

Dordaie, N., & Navimipour, N. J. (2018). A hybrid particle swarm optimization and hill climbing

algorithm for task scheduling in the cloud environments. ICT Express, 4(2018), 199-202.

https://doi.org/10.1016/j.icte.2017.08.001

Dubey, I., & Gupta, M. (2017). Uniform mutation and SPV rule based optimized PSO algorithm for

TSP problem. Proc. 2017 4th Int. Conf. Electron. Commun. Syst. ICECS 2017, 17(2017), 168-172.

https://doi.org/10.1109/ECS.2017.8067862

0.41

0.42

0.43

0.44

0.45

0.46

0.47

MPQMA NGA EJA

E
ff

ic
ie

n
cy

0.095

0.1

0.105

0.11

0.115

MPQMA NGA EJA

T
h
ro

u
g
h
p
u
t

www.scholink.org/ojs/index.php/asir Applied Science and Innovative Research Vol. 7, No. 2, 2023

44
Published by SCHOLINK INC.

Hamed, A. Y., & Alkinani, M. H. (2021). Task scheduling optimization in cloud computing based on

genetic algorithms, Comput. Mater. Contin, 69(2021), 3289-3301.

https://doi.org/10.32604/cmc.2021.018658

June, A. (2014). Research Paper on Optimized Utilization of Resources Using PSO and Improved

Particle Swarm Optimization (IPSO). Algorithms in Cloud Computing, 2(2014), 499-505.

Kaur, S., & Verma, A. (2012). An Efficient Approach to Genetic Algorithm for Task Scheduling in

Cloud Computing Environment. Int. J. Inf. Technol. Comput. Sci. 4(2012), 74-79.

https://doi.org/10.5815/ijitcs.2012.10.09

Keshanchi, B., Souri, A., & Navimipour, N. J. (2017). An improved genetic algorithm for task

scheduling in the cloud environments using the priority queues: Formal verification, simulation,

and statistical testing. J. Syst. Softw. 124(2017), 1-21. https://doi.org/10.1016/j.jss.2016.07.006

Sulaiman, M., Halim, Z., Lebbah, M., Waqas, M., & Tu, S. (2021). An Evolutionary Computing-Based

Efficient Hybrid Task Scheduling Approach for Heterogeneous Computing Environment. J. Grid

Comput. 19(2021). https://doi.org/10.1007/s10723-021-09552-4

Tawfeek, M., El-Sisi, A., Keshk, A., & Torkey, F. (2015). Cloud task scheduling based on ant colony

optimization. Int. Arab J. Inf. Technol. 12(2015), 129-137.

Thennarasu, S. R., Selvam, M., & Srihari, K. (2021). A new whale optimizer for workflow scheduling

in cloud computing environment. J. Ambient Intell. Humaniz. Comput. 12(2021), 3807-3814.

https://doi.org/10.1007/s12652-020-01678-9

Topcuoglu, H., Hariri, S., & Wu, M. Y. (2002). Performance-effective and low-complexity task

scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13(2002), 260-274.

https://doi.org/10.1109/71.993206

Venkata Rao, R. (2016). Jaya: A simple and new optimization algorithm for solving constrained and

unconstrained optimization problems. Int. J. Ind. Eng. Comput. 7(2016), 19-34.

https://doi.org/10.5267/j.ijiec.2015.8.004

Wang, L., Pan, Q. K., & Tasgetiren, M. F. (2011). A hybrid harmony search algorithm for the blocking

permutation flow shop scheduling problem. Comput. Ind. Eng. 61(2011), 76-83.

https://doi.org/10.1016/j.cie.2011.02.013

Xu, Y., Li, K., Hu, J., & Li, K. (2014). A genetic algorithm for task scheduling on heterogeneous

computing systems using multiple priority queues. Inf. Sci. (Ny). 270(2014), 255-287.

https://doi.org/10.1016/j.ins.2014.02.122

Younes, A., Ben Salah, A., Farag, T., Alghamdi, F. A., & Badawi, U. A. (2019). Task scheduling

algorithm for heterogeneous multi processing computing systems. J. Theor. Appl. Inf. Technol.

97(2019), 3477-3487.

