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Abstract 

While solving difficult stochastic engineering problems, it is often desirable to generate several 

quantifiably good options that provide contrasting perspectives. These alternatives should satisfy all of 

the stated system conditions, but be maximally different from each other in the requisite decision space. 

The process of creating maximally different solution sets has been referred to as 

modelling-to-generate-alternatives (MGA). Simulation-optimization has frequently been used to solve 

computationally difficult, stochastic problems. This paper applies an MGA method that can create sets 

of maximally different alternatives for any simulation-optimization approach that employs a 

population-based algorithm. This algorithmic approach is both computationally efficient and 

simultaneously produces the prescribed number of maximally different solution alternatives in a single 

computational run of the procedure. The efficacy of this stochastic MGA method is demonstrated on a 

waste management facility expansion case. 
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1. Introduction 

Stochastic decision-making typically contains complex design aspects that can be problematic to 

integrate into mathematical formulations and can frequently be inundated by unquantifiable 

specifications (Brugnach et al., 2007; Janssen et al., 2010; Matthies et al., 2007; Mowrer, 2000; Walker 

et al., 2003). Although “optimal” solutions to the modelled constructions can be determined, these do 

not usually deliver the best solution to the “real” problem as there are generally unmodeled components 
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not apparent when the mathematical models are created (Brugnach et al., 2007; Janssen et al., 2010; 

Loughlin et al., 2001). As a result, it is more desirable to construct a small number of dissimilar 

alternatives that permit opposing perspectives to the stated problem (Matthies et al., 2007; Yeomans & 

Gunalay, 2011). These options should be close-to-optimal with respect to all specified objective(s), but 

be maximally different from each other in the decision region. The formal process for creating such 

maximally different solution sets is usually denoted as modelling-to-generate-alternatives (MGA) 

(Brill et al., 1982; Loughlin et al., 2001; Yeomans & Gunalay, 2011). 

MGA techniques dictate an orderly examination of the solution space in order to produce a set of 

alternatives that are considered good when measured by the objective space but as different as possible 

from each other in the modelled decision space. The ensuing solution set should provide alternative 

viewpoints that perform similarly with respect to the modelled objectives, yet very differently with 

respect to any potentially unmodelled features (Walker et al., 2003). Subsequently, the decision-makers 

must perform a comparison of the alternatives to determine which alternative(s) most closely achieve 

their specific requirements. In comparison to the more straightforward solution determination 

approaches inherent in most “hard” optimization methods, MGA approaches are necessarily classified 

into the decision support realm. 

Early MGA algorithms employed direct, incremental approaches for constructing their alternatives by 

iteratively re-running their procedures whenever new solutions needed to be generated (Baugh et al., 

1997; Brill et al., 1982; Loughlin et al., 2001; Yeomans & Gunalay, 2011; Zechman & Ranjithan, 2007). 

These iterative approaches replicated the seminal MGA technique of Brill et al. (1982) where, once the 

initial mathematical formulation has been optimized, all supplementary alternatives are produced 

one-at-a-time. These approaches all required n+1 iterations of their algorithms—to optimize the 

original problem in the first step, followed by the construction of each of the n subsequent alternatives 

(Gunalay et al., 2012; Imanirad & Yeomans, 2013; Imanirad et al., 2012a; Yeomans & Gunalay, 2011). 

In this paper, it is shown how the set of maximally different options can be created by extending 

several earlier deterministic MGA approaches to stochastic optimization (Imanirad & Yeomans, 2013; 

Imanirad et al., 2012a; Imanirad et al., 2012b; Imanirad et al., 2013a; Imanirad et al., 2013b; Imanirad 

et al., 2013c; Yeomans, 2018a). In this study, a stochastic algorithm provides an MGA process that can 

be accomplished by any population-based mechanism. This new algorithm extends earlier procedures 

(Imanirad et al., 2012a; Imanirad et al., 2012b; Imanirad et al., 2013a; Imanirad et al., 2013b; Imanirad 

et al., 2013c) to permit the generation of n distinct alternatives simultaneously in a single 

computational run. Namely, in order to generate n maximally different alternatives, the algorithm runs 

exactly the same number of times that a function optimization procedure needs to run (i.e., once) 

irrespective of the value of n (Yeomans, 2017a; Yeomans, 2017b; Yeomans, 2017c; Yeomans, 2018b; 

Yeomans, 2019a). Furthermore, a novel data structure is employed that permits simultaneous 

alternatives to be created in a computationally effective way. This data structure facilitates the 

above-mentioned solution generalization to all population-based methods. Consequently, this stochastic 
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MGA algorithmic approach proves to be very computationally efficient (Yeomans, 2019b). The 

procedure is demonstrated on a municipal waste management (MSW) facilities expansion case that had 

previously been considered in (Yeomans, 2012a; Yeomans, 2017d). 

 

2. Modelling to Generate Alternatives 

Mathematical programming has fixated almost exclusively on determining single optimal solutions for 

single-objective problems or constructing sets of noninferior solutions to multi-objective formulations 

(Brill et al., 1982; Janssen et al., 2010; Walker et al., 2003). While these approaches may provide 

solutions to the formal mathematical models, whether these outputs are truly the best solutions to the 

“real” problems remains can be debatable (Brill et al., 1982; Brugnach et al., 2007; Janssen et al., 2010; 

Loughlin et al., 2001). Within most “real world” decision-making environments, there are countless 

system requirements and objectives that will never be explicitly apparent or included in the model 

formulation stage (Brugnach et al., 2007; Walker et al., 2003). Furthermore, most subjective aspects 

remain unavoidably unmodelled and unquantified in the constructed decision models. This regularly 

occurs where final decisions are constructed based not only on modelled objectives, but also on more 

subjective stakeholder goals and socio-political-economic preferences (Yeomans & Gunalay, 2011). 

Several incongruent modelling dualities are discussed in (Baugh et al., 1997; Brill et al., 1982; 

Loughlin et al., 2001; Zechman & Ranjithan, 2007). 

When unmodelled issues and unquantified objectives exist, non-conventional methods are needed to 

not only search the decision region for noninferior sets of solutions, but to also explore the decision 

region for alternatives that are obviously sub-optimal for the problem modelled. Namely, any search for 

alternatives to problems known or suspected to contain unmodelled components must concentrate not 

only on a non-inferior set of solutions, but also necessarily on an explicit exploration of the problem’s 

inferior solution space. 

To demonstrate the consequences of an unmodelled objective in a decision search, assume that the 

quantifiably optimal solution for a single-objective, maximization problem is X* with a corresponding 

objective value Z1*. Now suppose that a second, unmodelled, maximization objective Z2 exists that 

subjectively incorporates some unquantifiable “politically acceptable” component. Now assume that 

some solution, Xa, belonging to the 2-objective noninferior set, exists that represents a potentially best 

compromise solution for the decision-maker if both objectives had somehow been simultaneously 

evaluated. While X
a could reasonably be considered as the best compromise solution for the real 

problem, in the quantified mathematical model it would appear inferior to solution X*, since it must be 

the case that Z1a  Z1*. Therefore, when unmodelled components are incorporated into a 

decision-making process, mathematically inferior options to the modelled problem could actually be 

optimal for the real underlying problem. Consequently, when unmodelled issues and unquantified 

objectives potentially exist, alternative solution procedures are needed to not only explore the decision 

region for noninferior sets of solutions, but also to concurrently search the decision region for inferior 
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solutions to the problem modelled. Population-based algorithms permit concurrent searches throughout 

a decision space and prove to be particularly proficient solution methods. 

The primary task of MGA is to create a workable set of options that are quantifiably good when 

measured by all objectives, yet as different as possible from each other within the solution domain. This 

resulting set of options should produce truly different perspectives that perform similarly with respect 

to the known modelled objective(s) yet very differently with respect to any unmodelled aspects. By 

creating these good-but-different solutions, the decision-makers can then examine potentially desirable 

qualities within the options that may be able to address potentially unmodelled objectives to varying 

degrees of stakeholder tolerability. 

To motivate the MGA process, it is necessary to more formally characterize the mathematical definition 

of its goals (Loughlin et al., 2001; Yeomans & Gunalay, 2011). Assume that the optimal solution to an 

original mathematical model is X* with corresponding objective value Z* = F(X*). The resultant 

difference model can then be solved to produce an alternative solution, X, that is maximally different 

from X*: 

 Maximize    (X, X*) = Min
i

 | Xi - Xi* |     (1) 

 Subject to:     X   D      (2) 

     | F(X) - Z* |   T    (3) 

where   represents an appropriate difference function (shown in (1) as an absolute difference) and T 

is a tolerance target relative to the original optimal objective value Z*. T is a user-specified limit that 

determines what proportion of the inferior region needs to be explored for acceptable alternatives. This 

difference function concept can be extended into a difference measure between any set of alternatives 

by replacing X* in the objective of the maximal difference model and calculating the overall minimum 

absolute difference (or some other function) of the pairwise comparisons between corresponding 

variables in each pair of alternatives—subject to the condition that each alternative is feasible and falls 

within the specified tolerance constraint. 

The population-based MGA procedure to be introduced is designed to generate a pre-determined small 

number of close-to-optimal, but maximally different alternatives, by adjusting the value of T and 

solving the corresponding maximal difference problem instance by exploiting the population structure 

of the metaheuristic. The survival of solutions depends upon how well the solutions perform with 

respect to the problem’s originally modelled objective(s) and simultaneously by how far away they are 

from all of the other alternatives generated in the decision space. 

 

3. Simulation-Optimization for Stochastic Optimization 

Finding optimal solutions to large stochastic problems proves complicated when numerous system 

uncertainties must be directly incorporated into the solution procedures (Fu, 2002, Imanirad et al., 2016; 

Kelly, 2002; Zou et al., 2010). Simulation-Optimization (SO) is a broadly defined family of stochastic 
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solution approaches that combines simulation with an underlying optimization component for 

optimization (Fu, 2002). In SO, all unknown objective functions, constraints, and parameters are 

replaced by simulation models in which the decision variables provide the settings under which 

simulation is performed. 

The general steps of SO can be summarized in the following fashion (Kelly, 2002; Yeomans, 2012b). 

Suppose the mathematical model of the optimization problem contains n decision variables, iX , 

represented in the vector X = [ 1X , 2X ,…, nX ]. If the objective function is expressed by F and the 

feasible region is designated by D, then the mathematical programming problem is to optimize F(X) 

subject to X   D. When stochastic conditions exist, values for the objective and constraints can be 

determined by simulation. Any solution comparison between two different solutions X1 and X2 

requires the evaluation of some statistic of F modelled with X1 compared to the same statistic modelled 

with X2 (Fu, 2002; Yeomans, 2008). These statistics are calculated by simulation, in which each X 

provides the decision variable settings employed in the simulation. While simulation provides a means 

for comparing results, it does not provide the mechanism for determining optimal solutions to problems. 

Hence, simulation cannot be used independently for stochastic optimization. 

Since all measures of system performance in SO are stochastic, every potential solution, X, must be 

calculated through simulation. Because simulation is computationally intensive, an optimization 

algorithm is employed to guide the search for solutions through the problem’s feasible domain in as 

few simulation runs as possible (Yeomans, 2008; Zou et al., 2010). As stochastic system problems 

frequently contain numerous potential solutions, the quality of the final solution could be highly 

variable unless an extensive search has been performed throughout the entire feasible region. A 

stochastic SO approach contains two alternating computational phases; (i) an “evolutionary” module 

directed by some optimization (frequently a metaheuristic) method and (ii) a simulation module 

(Yeomans & Yang, 2014). Because of the stochastic components, all performance measures are 

necessarily statistics calculated from the responses generated in the simulation module. The quality of 

each solution is found by having its performance criterion, F, evaluated in the simulation module. After 

simulating each candidate solution, their respective objective values are returned to the evolutionary 

module to be utilized in the creation of ensuing candidate solutions. Thus, the evolutionary module 

aims to advance the system toward improved solutions in subsequent generations and ensures that the 

solution search does not become trapped in some local optima. After generating new candidate 

solutions in the evolutionary module, the new solution set is returned to the simulation module for 

comparative evaluation. This alternating, two-phase search process terminates when an appropriately 

stable system state (i.e., an optimal solution) has been attained. The optimal solution produced by the 

procedure is the single best solution found throughout the course of the entire search process (Yeomans 

& Yang, 2014). 

Population-based algorithms are conducive to SO searches because the complete set of candidate 

solutions maintained in their populations permit searches to be undertaken throughout multiple sections 
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of the feasible region, concurrently. For population-based optimization methods, the evolutionary phase 

evaluates the entire current population of solutions during each generation of the search and evolves 

from a current population to a subsequent one. A primary characteristic of population-based procedures 

is that better solutions in a current population possess a greater likelihood for survival and progression 

into the subsequent population. 

It has been shown that SO can be used as a very computationally intensive, stochastic MGA technique 

(Linton et al., 2002; Yeomans, 2008). However, because of the very long computational runs, several 

approaches to accelerate the search times and solution quality of SO have been examined subsequently 

(Yeomans, 2012b). The next section provides an MGA algorithm that incorporates stochastic 

uncertainty using SO to much more efficiently generate sets of maximally different solution 

alternatives. 

 

4. Population-based Simultaneous MGA Computational Algorithm 

In this section, a novel data structure is employed that permits alternatives to be simultaneously 

constructed in a computationally efficient way that also enables an algorithmic generalization that 

permits solution by any population-based procedure. Suppose that it is desired to be able to produce P 

alternatives that each possess n decision variables and that the population algorithm is to possess K 

solutions in total. That is, each solution is to contain one possible set of P maximally different 

alternatives. In this representation, let Yk, k = 1,…, K, represent the kth solution which is made up of one 

complete set of P different alternatives. Namely, if Xkp is the pth alternative, p = 1,…, P, of solution k, k 

= 1,…, K, then Yk can be represented as 

     Yk = [Xk1, Xk2,…, XkP] .      (4) 

If Xkjq, q = 1,…, n, is the qth variable in the jth alternative of solution k, then 

     Xkj = (Xkj1, Xkj2,…, Xkjn) .      (5) 

Consequently, an entire population, Y, consisting of K different sets of P alternatives can be written in 

vectorized form as, 

      Y’ = [Y1, Y2,…, YK] .       (6) 

The following population-based MGA method produces a pre-determined number of close-to-optimal, 

but maximally different alternatives, by modifying the value of the bound T in the maximal difference 

model and using any population-based metaheuristic to solve the corresponding, maximal difference 

problem. Each solution within the population contains one potential set of p different alternatives. By 

exploiting the co-evolutionary solution structure within the metaheuristic, the algorithm collectively 

evolves each solution toward sets of different local optima within the solution space. In this process, 

each desired solution alternative undergoes the common search procedure of the metaheuristic. 

However, the survival of solutions depends both upon how well the solutions perform with respect to 

the modelled objective(s) and by how far away they are from all of the other alternatives generated in 

the decision space. 



www.scholink.org/ojs/index.php/asir             Applied Science and Innovative Research                  Vol. 3, No. 3, 2019 

98 
Published by SCHOLINK INC. 

A straightforward process for generating alternatives would be to iteratively solve the maximum 

difference model by incrementally updating the target T whenever a new alternative needs to be 

produced and then re-running the algorithm. This iterative approach would parallel the original Hop, 

Skip, and Jump (HSJ) MGA algorithm of Brill et al. (1982) in which, once an initial problem 

formulation has been optimized, supplementary alternatives are systematically created one-by-one 

through an incremental adjustment of the target constraint to force the sequential generation of the 

suboptimal solutions. While this approach is straightforward, it requires a repeated execution of the 

optimization algorithm (Imanirad et al., 2012a; Imanirad & Yeomans, 2013; Yeomans & Gunalay, 

2011). 

To improve upon the stepwise alternative approach of the HSJ algorithm, a concurrent MGA technique 

was subsequently designed based upon the concept of co-evolution (Imanirad et al., 2012a; Imanirad et 

al., 2012b; Imanirad et al., 2013b). In a co-evolutionary approach, pre-specified stratified 

subpopulation ranges within an algorithm’s overall population were established that collectively 

evolved the search toward the creation of the specified number of maximally different alternatives. 

Each desired solution alternative is represented by each respective subpopulation and each 

subpopulation undergoes the common processing operations of the procedure. The survival of solutions 

in each subpopulation depends simultaneously upon how well the solutions perform with respect to the 

modelled objective(s) and by how far away they are from all of the other alternatives. Consequently, 

the evolution of solutions in each subpopulation toward local optima is directly influenced by those 

solutions contained in all of the other subpopulations, which forces the concurrent co-evolution of each 

subpopulation towards good but maximally distant regions within the decision space according to the 

maximal difference model (Yeomans & Gunalay, 2011). Co-evolution is also much more efficient than 

a sequential HSJ-style approach in that it exploits the inherent population-based searches to 

concurrently generate the entire set of maximally different solutions using only a single population 

(Imanirad & Yeomans, 2013a; Imanirad et al., 2013b). 

While a concurrent approach can exploit population-based solution approaches, the co-evolution 

process can only occur within each of the stratified subpopulations. Consequently, the maximal 

differences between solutions in different subpopulations can only be based upon aggregate 

subpopulation measures. Conversely, in the following simultaneous MGA algorithm, each solution in 

the population contains exactly one entire set of alternatives and the maximal difference is calculated 

only for that particular solution (i.e., the specific alternative set contained within that solution in the 

population). Hence, by the evolutionary nature of the population-based search procedure, in the 

subsequent approach, the maximal difference is simultaneously calculated for the specific set of 

alternatives considered within each specific solution—and the need for concurrent subpopulation 

aggregation measures is circumvented. 

Using the terminology introduced above, the steps in the stochastic MGA procedure are as follows 

(Yeomans, 2017a; Yeomans, 2017b; Yeomans, 2017c; Yeomans, 2018a; Yeomans, 2018b; Yeomans, 
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2018c; Yeomans, 2019a; Yeomans, 2019b). It should be apparent that the stratification approach 

outlined in this algorithm can be easily modified to accommodate any population-based solution 

procedure. 

Preliminary Step. In this initialization step, solve the original optimization problem to determine the 

optimal solution, X*. As with prior solution approaches (Imanirad et al., 2012a; Imanirad et al., 2012b; 

Imanirad et al., 2013a; Imanirad et al., 2013b; Imanirad et al., 2013c) and without loss of generality, it 

is entirely possible to forego this step and construct the algorithm to find X* as part of its solution 

processing. However, such a requirement increases the number of computational iterations of the 

overall procedure and the initial stages of the processing focus upon finding X* while the other 

elements of each population solution remain essentially “computational overhead”. Based upon the 

objective value F(X*), establish P target values. P represents the desired number of maximally different 

alternatives to be generated within prescribed target deviations from the X*. Note: The value for P has 

to have been set a priori by the decision-maker. 

Step 1. Create the initial population of size K in which each solution is divided into P equally-sized 

partitions. The size of each partition corresponds to the number of variables for the original 

optimization problem. Xkp represents the pth alternative, p = 1,…,P, in solution Yk, k = 1,…,K. 

Step 2. In each of the K solutions, evaluate each Xkp, p = 1,…,P, using the simulation module with 

respect to the modelled objective. Alternatives meeting their target constraint and all other problem 

constraints are designated as feasible, while all other alternatives are designated as infeasible. A 

solution can only be designated as feasible if all of the alternatives contained within it are feasible. 

Step 3. Apply an appropriate elitism operator to each solution to rank order the best individuals in the 

population. The best solution is the feasible solution containing the most distant set of alternatives in 

the decision space (the distance measure is defined in Step 5). Note: Because the best solution to date is 

always retained in the population throughout each iteration, at least one solution will always be feasible. 

A feasible solution for the first step can always consists of P repetitions of X*. 

Step 4. Stop the algorithm if the termination criteria (such as maximum number of iterations or some 

measure of solution convergence) are met. Otherwise, proceed to Step 5. 

Step 5. For each solution Yk, k = 1,…, K, calculate Dk, a distance measure between all of the 

alternatives contained within the solution. 

As an illustrative example for determining a distance measure, calculate 

 Dk =  ( Xka, Xkb) = 
, ,

Min
a b q

 | Xkaq – Xkbq | ,  a = 1,…,P, b = 1,…,P, q = 1,…,n,  (7) 

This represents minimum absolute distance between all of the alternatives contained within solution k. 

Alternatively, the distance measure could be calculated by some other appropriately defined function. 

Step 6. Rank the solutions according to the distance measure Dk objective—appropriately adjusted to 

incorporate any constraint violation penalties for infeasible solutions. The goal of maximal difference is 

to force alternatives to be as far apart as possible in the decision space from the alternatives of each of 
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the partitions within each solution. This step orders the specific solutions by those solutions which 

contain the set of alternatives which are most distant from each other. 

Step 7. Apply appropriate metaheuristic “change operations” to each of the solutions within the 

population and return to Step 2. 

 

5. Case Study of Stochastic MGA for the Expansion of Waste Management Facilities 

As mentioned earlier, “real world” decision-makers often prefer to choose from a set of 

“close-to-optimal” options that differ significantly from each other in terms of the structures 

represented in their decision variables. The capacity of the stochastic MGA procedure to produce a set 

of maximally different alternatives concurrently will be demonstrated using the MSW expansion 

planning case previously considered in (Yeomans, 2012a; Yeomans, 2017d). 

The region in this facility expansion problem contains three separate municipalities whose MSW 

disposal needs are collectively met by a landfill and two waste-to-energy (WTE) incinerators. The 

planning horizon consists of three separate time periods with each of the periods covering an interval of 

five years. The landfill capacity can only be expanded once throughout the 15-year planning horizon. 

Each WTE facility can be expanded by any one of four possible options in each of the three time 

periods. The expansion costs escalate over time to reflect anticipated future conditions and have been 

discounted to present values for use in the objective function. The MSW waste generation rates and the 

costs for waste transportation and treatment vary both spatially and temporally. The case requires the 

construction of the preferred facility expansion alternatives during the different time periods and the 

effective allocation of the relevant waste flows in order to minimize the total system costs over the 

planning horizon. 

A single best solution to the expansion problem costing $600.2 million was determined in Yeomans 

(2012a). However, as discussed, planners generally prefer to be able to select from a set of 

close-to-optimal alternatives that differ significantly from each other in terms of the system structures 

characterized by their decision variables. In order to create three alternative planning options, it would 

be possible to place extra target constraints into the maximal difference model which would force the 

generation of solutions that were different from this newly determined, optimal solution by target 

values of, for example, 2.5%, 5%, and 7.5%, respectively. By adding these specific target constraints to 

the original model, the problem would need to be resolved an additional three times. However, to 

improve upon the process of running four separate instances of the SO algorithm to determine these 

solutions, the stochastic population-based MGA procedure described in the previous section was run 

once to produce the objectives for the 4 alternatives shown in Table 1. 
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Table 1. System Expansion Costs ($ Millions) for the 4 Alternatives 

 Overall “Optimal” 

Solution 

Best 2.5% 

Solution 

Best 5% 

Solution 

Best 7.5% 

Solution 

System Expansion Costs 600.20 603.39 611.22 614.62 

 

This example has demonstrated how the stochastic population-based MGA approach could be used to 

efficiently generate a good set of policy alternatives that satisfy required system performance criteria 

according to prespecified bounds within stochastic environments and yet remain as maximally different 

from each other as possible in the decision space. Given the performance bounds established for the 

objective in each problem instance, decision-makers would be reassured by the stated performance 

bounds for each of these options while also being aware that the perspectives provided by the set of 

dissimilar decision variable structures are as maximally different from each other as is feasibly possible. 

Hence, if there are stakeholders with incompatible standpoints holding diametrically opposing 

viewpoints, the policy-makers could conduct an assessment of these different options without being 

myopically constrained by a single overriding perspective based solely upon the objective value. In 

addition to its alternative generating capabilities, the FA component within the MGA algorithm 

simultaneously performs extremely well with respect to its role in function optimization. It should be 

explicitly noted that the overall best solution produced by the MGA algorithm for the case is 

indistinguishable from the optimal solution determined in Yeomans (2012a). 

 

6. Conclusions 

“Real world” decision-making situations inherently involve complicated performance components that 

are further confounded by incongruent requirements and unquantifiable performance objectives. These 

decision environments frequently contain incompatible design specifications that are problematic—if 

not impossible—to incorporate when ancillary decision support models are constructed. Invariably, 

there are unmodelled elements, not apparent during model formulation, that can significantly affect the 

adequacy of its solutions. These confounding features require the decision-makers to integrate 

numerous uncertainties into their solution process before an ultimate solution can be determined. Faced 

with such inconsistencies, it is unlikely that any single solution can simultaneously satisfy all 

ambiguous system requirements without significant compromises. Therefore, any decision support 

approach must somehow address these complicating facets in some way, while simultaneously being 

flexible enough to condense the potential effects within the intrinsic planning incongruities. 

In the computational testing, the results highlight several important characteristics with respect to the 

stochastic population-based MGA method: (i) Any population-based metaheuristic can be used to direct 

the fundamental search process for optimization in SO; (ii) Due to the nature of the MGA algorithm, 

the alternatives created are good for planning purposes since all of their structures will be as mutually 
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and maximally different from each other as possible (i.e. these differences are not just simply different 

from the overall optimal solution as in the HSJ-style approach to MGA); (iii) The co-evolutionary 

capabilities within population-based metaheuristics can be exploited to generate more good alternatives 

than planners would be able to create using other MGA approaches because of the evolving nature of 

its population-based solution searches; (iv) The approach is very computationally efficient since it need 

only be run once to generate its entire set of multiple, good solution alternatives (i.e., to generate n 

solution alternatives, the MGA algorithm needs to run exactly the same number of times that the 

population-based metaheuristic would need to be run for function optimization purposes 

alone—namely once—irrespective of the value of n); and, (v) The best overall solutions produced by 

the stochastic MGA procedure will be very similar, if not identical, to the best overall solutions that 

would be produced by the population-based metaheuristic for function optimization alone. 

This paper has provided an updated stochastic MGA algorithm that directs stochastic SO search 

processes using any population-based metaheuristic. This new computationally efficient approach 

establishes how population-based algorithms can simultaneously construct entire sets of 

close-to-optimal, maximally different alternatives by exploiting the evolutionary characteristics of any 

population-based solution method. This MGA approach simultaneously creates several solutions 

containing the requisite problem features, with each alternative generated providing a very different 

perspective to the problem considered. The practicality of this stochastic MGA approach can be readily 

extended into numerous disparate applications and can be clearly modified to suit many “real world” 

planning situations. Such extensions will be explored in future research. 
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