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Abstract 

Fires are one of the common disasters. If a fire occurs in a place with dense personnel and 

concentrated property, it will cause a large number of casualties and significant economic losses. 

Different types of objects can cause different fires, each requiring different extinguishing methods. This 

article aims to investigate the possibility of using flame spectroscopy to classify combustibles. Firstly, 

flame spectroscopy data of different combustibles are collected through experiments, with SG 

smoothing and Principal Component Analysis (PCA) selected as preprocessing methods. Subsequently, 

five machine learning algorithms are used for in-depth analysis and modeling, comparing the 

classification results of these five models to identify the model with the best classification performance. 

This study achieves the goal of classifying combustibles in fires using flame spectroscopy information. 
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1. Introduction 

Fires, as a type of sudden disaster, come in various forms and are typically classified based on the 

nature of the burning material. According to current national standards (GB/T 4968-2008, Fire 

Classification), fires are categorized into six classes: A, B, C, D, E, and F, each of which requires 

different response measures and extinguishing agents. Rapid and accurate identification of fire types 

during the initial stages is crucial for devising effective firefighting strategies. Presently, fire detection 

technologies mainly include optical remote sensing techniques (Chen, Zhang, Xin, et al., 2018; Jia, 

Duan, & Wang, 2024), multi-sensor information fusion technologies (Wang, Li, Yu, et al., 2014; Su, Hu, 

& Liu, 2024; Liu, Liu, Zeng, et al., 2024), and image and video technologies (Zheng, Luo, Hui, et al., 
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2024; Li, 2023; Shenyuan, Guozhong, Xiaolong, et al., 2024), offering features such as broad 

monitoring ranges and fast response times. 

Current fire detection methods primarily focus on determining the occurrence of fires rather than 

identifying the types of burning materials. For instance, Zhang Zhiyi (2011) proposed a fire 

combustible recognition method based on image processing, utilizing infrared images to extract 

temperature and shape features of flames for identifying combustible types. However, smoke generated 

during combustion interferes with the extraction of flame features. Jiang Jingxue (2012) used 

combustion sound as a criterion for fire detection; different materials produce combustion sounds with 

varying frequencies and amplitudes, enabling the differentiation of fire combustible categories. 

Nevertheless, this method was tested in a combustion chamber, where real-life noise could hinder 

combustion sound recognition. Liu Kai et al. (2019) utilized the distinct characteristics of fire smoke 

particles from different combustibles as a basis for identifying various burning materials, achieving a 

high accuracy rate in combustible identification. However, this method may face sensor recognition 

challenges in more complex scenarios such as windy conditions. Li Peng et al. (2021) established a 

spectral curve database for burning sulfur (nitrogen) substances, comparing collected fire flame 

spectral curves with the database to identify the presence of sulfur (nitrogen) substances in fire 

combustibles. This method offers advantages such as quick response, non-destructive testing, and high 

accuracy. Flames from different combustibles emit unique radiation spectra, containing abundant 

information. Hence, the author used an optical fiber spectrometer to measure the radiation spectra of 

flames under different conditions in the laboratory to investigate the potential use of flame 

spectroscopy in classifying fire combustible types. 

 

2. Experimental Materials and Instruments 

2.1 Experimental Materials  

The experiment is divided into two groups of combustible materials. The first group consists of solid 

combustibles including wood and paper, while the second group comprises liquid combustibles such as 

candles, butter, alcohol, and olive oil. For each type of combustible material, there are 40 sets of flame 

spectral data. In total, there are 6 sets of spectral data, amounting to 240 sets. Using the SPXY method, 

the different types of combustible materials are divided into training and prediction sets in a 3:1 ratio. 

2.2 Experimental Instruments 

The working principle of the spectral acquisition system is illustrated in Figure 1. The primary 

instrument used in this experiment is the Aurora 4000 spectrometer. This spectrometer operates within 

a wavelength range of 200-1100nm. In this experiment, the optical imaging principle is employed. The 

flame of combustion is passed through a convex lens, creating an inverted real image on a screen on the 

other side of the lens. By placing the probe of the fiber optic outside the screen and aligning it with the 

flame through a small hole, flame spectra from different parts of the flame can be collected. A total of 

40 data points are collected by the spectrometer at different positions within the flame of each 
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combustible material. 

 

 

Figure 1. Experimental Principle Diagram 

 

3. Data Processing and Analysis Methods 

3.1 Spectral Data Preprocessing 

The obtained spectral data contains additional irrelevant information, such as interference from natural 

light, noise possibly generated by the camera or instrument, or spectral variations. Therefore, 

preprocessing is essential before conducting classification modeling to eliminate this extraneous 

information, reduce model complexity, and enhance the robustness and accuracy of both the spectral 

data and the classification model. In essence, preprocessing of spectral data is an indispensable step in 

establishing a combustible material classification model. Different preprocessing methods are needed 

for varying analysis systems and issues at hand; thus, a single preprocessing method is insufficient. In 

this experiment, SG smoothing and Principal Component Analysis (PCA) preprocessing methods are 

employed to preprocess the flame spectra with the aim of reducing noise interference and improving 

the signal-to-noise ratio. 

3.2 Data Processing and Analysis Methods 

In this study, the sample set is divided into training and prediction sets in a 3:1 ratio using the SPXY 

splitting method. Based on the training set, combustible material classification models are established 

using five algorithms: AdaBoost, Random Forest, Gradient Boosting, Decision Tree, and SVM. 

Subsequently, these models are used to classify the prediction set, and the model performance is 

evaluated and compared based on model reports to identify the optimal data modeling approach. 

3.3 Model Evaluation Methods 

Accuracy: Measures the proportion of correct predictions out of the total predictions made. 

Precision: Indicates the proportion of true positive predictions out of all positive predictions made. 

Recall (Sensitivity): Calculates the proportion of true positives identified correctly out of all actual 

positives. 

F1 Score: Harmonic mean of precision and recall, providing a balance between the two metrics. 

 

4. Experimental Results 

4.1 Savitzky-Golay Smoothing 
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During the spectral data collection process, the probe occasionally moves slightly to capture data from 

different positions within the flame. The average value of these data points is taken as the spectral value 

for that sample. By averaging the spectral data for each sample, the original spectral curves for wood, 

paper, candle, butter, alcohol, and olive oil are obtained, as shown in Figure 2(a). The spectral curves 

after Savitzky-Golay smoothing are depicted in Figure 2(b).From the figures, it can be observed that 

within the wavelength range of 400-1100nm, the spectral curves of various combustible samples 

exhibit similar shapes, making it challenging to directly classify the different combustible materials. 

Therefore, modeling and classification are necessary to distinguish between them. 

 

 

(a) Original Spectra 

 

(b) Spectra After SG Smoothing 

Figure 2. Combustible Material Spectra 
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4.2 PCA Feature Band Extraction 

Using PCA for principal component analysis, the spatial distribution scatter plot of the first three 

principal components (PC1-PC3) for the six combustible material samples—wood, paper, candle, 

butter, alcohol, and olive oil—is shown in Figure 3(a). It can be observed that there is a certain degree 

of overlap in the spatial distribution of samples from adjacent classes, making direct classification of 

combustible materials very challenging. Figure 3(b) displays the cumulative variance contribution rate 

of the first 10 principal components. It is evident that the first principal component contributes to over 

85% of the variance, summarizing the main characteristic information of the original spectra to a 

significant extent. To minimize the loss of effective spectral information and ensure computational 

efficiency, the study ultimately selects the first 10 principal components as feature variables for the 

subsequent combustible material classification task. 

 

 

(a) Score Plot of the First Three Principal Components 

 

 

(b) Cumulative Contribution Rate of the First 10 Principal Components 

Figure 3. Feature Band Extraction Using PCA 



www.scholink.org/ojs/index.php/asir             Applied Science and Innovative Research                  Vol. 8, No. 4, 2024 

41 
Published by SCHOLINK INC. 

4.3 Classification Results 

After standardizing the data processed through PCA, the classification is performed. Utilizing the 

selected principal components as inputs, the classification results report the outputs. Following the 

training steps with five different classifiers, the classification results of each classifier are as follows. 

 

Table 1. Classification Results of AdaBoost 

 Classification Report for AdaBoost Classifier  

 precision recall f1-score support 

Wood 0.73                                       0.67 0.70  12 

Olive oil                          0.69                        0.92 0.79 12 

Paper                          1.00                                     0.92 0.96 12 

Candle                            1.00                                       0.83 0.91  12 

Wine                            0.92                                 1.00 0.96 12  

Su Oil                            0.64            0.58    0.61 12 

accuracy   0.61        72 

macro avg                          0.60 0.61 0.59 72 

weighted avg                           0.60 0.61 0.59 72 

 

Table 2. Classification Results of Random Forest 

 Classification Report for Random Forest Classifier  

 precision recall f1-score support 

Wood 1.00                                                 0.75 0.86  12 

Olive oil                          0.73                                   0.67 0.70 12 

Paper                          1.00                                                0.75 0.86 12 

Candle                            0.69                                                   0.75 0.72  12 

Wine                            0.80                                             1.00 0.89 12  

Su Oil                            0.60                        0.75    0.67 12 

accuracy   0.78        72 

macro avg                          0.80 0.78 0.78 72 

weighted avg                           0.80 0.78 0.78 72 
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Table 3. Classification Results of Gradient Boosting 

 Classification Report for Gradient Boosting Classifier  

 precision recall f1-score support 

Wood 1.00                                                   0.75 0.86  12 

Olive oil                          0.67                     0.50 0.57 12 

Paper                          1.00                                     0.83 0.91 12 

Candle                            0.71                                                   0.83 0.77  12 

Wine                            0.86                                             1.00 0.92 12  

Su Oil                            0.56                      0.75    0.64 12 

accuracy   0.78        72 

macro avg                          0.80 0.78 0.78 72 

weighted avg                           0.80 0.78 0.78 72 

 

Table 4. Classification Results of Decision Tree 

 Classification Report for Decision Tree Classifier  

 precision recall f1-score support 

Wood 0.54                                                  0.58 0.56  12 

Olive oil                          0.46                                            0.50 0.48 12 

Paper                          1.00                                                            0.83 0.91 12 

Candle                            0.57                                                              0.67 0.62  12 

Wine                            0.86                                                         1.00 0.92 12  

Su Oil                            0.50                                 0.33    0.40 12 

accuracy   0.65         72 

macro avg                          0.65 0.65 0.65 72 

weighted avg                           0.65 0.65 0.65 72 

 

Table 5. Classification Results of SVM 

 Classification Report for SVM Classifier  

 precision recall f1-score support 

Wood 0.73                                       0.67 0.70  12 

Olive oil                          0.69                        0.92 0.79 12 

Paper                          1.00                                     0.92 0.96 12 

Candle                            1.00                                       0.83 0.91  12 

Wine                            0.92                                 1.00 0.96 12  

Su Oil                         0.64            0.58    0.61 12 

accuracy   0.82        72 
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macro avg                          0.83 0.82 0.82 72 

weighted avg                           0.83 0.82 0.82 72 

 

As shown in the table, among these five classifiers, SVM exhibits the highest classification accuracy. 

The lowest classification accuracy is observed for oils, specifically olive oil and butter, representing 

substances with similar properties. 

4.4 Confusion Matrix Heatmap 

A confusion matrix is a matrix representation method used to evaluate the performance of a 

classification model, comparing the differences between the model's predicted results and the actual 

class labels. A heatmap is a data visualization technique that represents data using colored squares or 

matrices to display data distribution and relationships. Combining the confusion matrix and heatmap 

allows for a more comprehensive evaluation of the classification model's performance. 

 

 

(a) AdaBoost 
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(b) Random Forest 

 

 

(c) Gradient Boosting 
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(d) Decision Tree 

 

(e) SVM 

Figure 4. Feature Band Extraction Using PCA 

 

5. Conclusion 

The study focuses on combustible materials, utilizing a fiber optic spectrometer system to acquire 

flame spectral data from six combustible material samples. The data is preprocessed with SG 

smoothing and subjected to Principal Component Analysis (PCA). Five classification 
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algorithms—AdaBoost, Random Forest, Gradient Boosting, Decision Tree, and SVM—are employed 

to build combustible material classification models for training and classification. The final output 

includes the classification results and their corresponding confusion matrix heatmaps. Results indicate 

that among the five classification algorithms, SVM achieves the highest classification accuracy and 

demonstrates the best performance. 

The research findings suggest that based on fiber optic spectrometer technology and appropriate 

machine learning algorithms, it is possible to effectively classify different types of combustible 

materials. These six combustible materials can be categorized into two groups: solid combustibles 

(wood chips, paper) and liquid combustibles (olive oil, candle, alcohol, butter). The confusion matrix 

heatmap reveals a higher probability of misidentification among combustible materials of the same 

type. Different types of combustible materials possess distinct combustion properties, while 

combustibles of the same type exhibit similar combustion attributes. The study demonstrates that flame 

spectra can serve as a basis for combustible material classification, and the results can further 

contribute to combustible material classification and flame spectral analysis. 
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