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Abstract 

This paper presents a MinIO-driven database backup and synchronization framework that tackles 

legacy issues like slow backups, costly storage, and cross-region sync gaps. By merging LZ4 

compression (73.5% size reduction) with AES-256-GCM encryption, the system slashes storage needs 

while hardening security. MinIO’s Webhook system keeps local and remote backups in lockstep—even 

during network outages—through real-time sync. Tests on an i5-11400/8GB setup showed consistent 

80+MB/s uploads and 380+MB/s downloads, proving MinIO’s ability to handle rapid transfers. While 

the strategy excels under typical loads, scaling to high-traffic environments requires tuning. Next-phase 

work will streamline encryption workflows and boost concurrency handling for broader enterprise 

adoption. 
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1. Introduction 

In contemporary data management, legacy backup systems struggle with extended downtime during 

backups, unsustainable storage expenditures, and rigid scalability. For a 24/7 database system, backups 

should be implemented right after a large volume of data has been updated (Zhao, Bu, Pang, & Cai, 

2024). These challenges necessitate the adoption of advanced backup architectures that reconcile speed 

with security. A key vulnerability in distributed backup systems lies in unauthorized data alterations 

during transmission—a single compromised node could propagate corrupted data across regions. 

Mitigating such risks demands robust safeguards: real-time encryption, lossless compression, and 

cryptographic validation. This study introduces a MinIO-based mechanism that integrates compression 
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and encryption for cross-region backups, our approach threads compression (LZ4) and encryption 

(AES-256-GCM) into a unified workflow, slashing storage needs by 73.5% while enforcing data 

consistency via MinIO’s Webhook triggers. By prioritizing both efficiency and attack resilience, this 

architecture redefines reliable backup operations. 

 

2. Related Technologies 

2.1 MinIO Object Storage Platform 

MinIO is an open-source object storage platform optimized for managing massive unstructured datasets 

through distributed architecture. Researchers tested it on standard hardware and achieved maximum 

read speeds of 183 GB per second and write speeds of 171 GB per second (Yin & Lu, 2024). MinIO is 

an open-source distributed storage system specifically designed for handling massive unstructured data. 

Its architecture emphasizes scalability and reliability, making it particularly suitable for enterprises 

requiring large-scale data management. Beyond core storage functions, the platform incorporates 

multiple advanced features to enhance operational efficiency. 

(1) High Availability and Data Redundancy 

The platform ensures continuous service through distributed architecture with built-in redundancy 

mechanisms. Employing Erasure Coding by default, MinIO splits data into fragments stored across 

multiple servers. This design allows data to remain accessible even during partial server failures, 

effectively eliminating single points of failure. The system's resilience extends to various hardware and 

network outage scenarios. 

(2) Erasure Coding and Data Durability 

Through erasure coding technology, MinIO redundantly stores data blocks across cluster nodes. This 

approach not only guarantees data safety but also optimizes storage utilization. The architecture can 

withstand simultaneous failures in up to half of the cluster nodes without data loss, making it ideal for 

mission-critical systems requiring absolute data integrity. 

(3) Automatic Data Replication 

The system automatically copies data across multiple nodes within the cluster. Continuous node health 

monitoring ensures immediate replacement of failed components, maintaining persistent data 

availability. This self-healing mechanism operates without manual intervention, preserving data 

consistency during node transitions. 

(4) Load Balancing and Performance Optimization 

Built-in load balancing dynamically distributes data storage locations across nodes. This intelligent 

allocation prevents individual node overloads and maintains stable performance under heavy workloads. 

The adaptive resource management ensures consistent throughput during peak operational demands. 

(5) Security Features 

Multi-layered security protections include server-side data encryption, detailed permission controls, 

and comprehensive operation logs. Data-at-rest encryption safeguards stored information, while 
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granular access policies enable precise user permission management. Audit trails record all system 

activities to meet enterprise compliance requirements. 

(6) Hybrid Deployment Flexibility 

Supporting S3-compatible interfaces, MinIO adapts to diverse deployment environments including 

on-premises infrastructure, cloud platforms, and hybrid configurations. This deployment versatility 

allows organizations to optimize their storage architecture based on specific cost, scalability, and 

control requirements. 

MinIO's combination of distributed architecture, data protection mechanisms, and security features 

establishes it as a robust enterprise storage solution. The platform's design ensures continuous data 

accessibility and consistency across various failure scenarios. With S3 compatibility and flexible 

deployment options, MinIO provides enterprises with an efficient and secure approach to managing 

large-scale unstructured data assets. 

2.2 Data Compression 

Compression slashes storage footprints and accelerates data transfers by shrinking file sizes. 

Techniques split into two camps: lossless (exact data reconstruction) for databases/texts, and lossy 

(tolerable quality loss) for media like images. The LZ4 algorithm was used to take advantage of 

compression to save bandwidth and increase encryption speed (Vijayachandran & Suchithra, 2024). 

LZ4 is derived from a standard LZ77 compression algorithm and is focused on the compression and 

decompression speed (Bartik, Ubik, & Kubalik, 2015). We selected LZ4 for its real-time efficiency，

crucial for minimizing backup windows without overloading hardware. 

2.3 Data Encryption 

Encryption scrambles data into unreadable ciphertext, shielding it from unauthorized access. 

Symmetric methods like AES-256-GCM use a single key for speed, while asymmetric systems trade 

speed for secure key exchange. The AES-GCM core provides confidentiality by Counter (CTR) mode 

of block cipher AES, and it also provides integrity and authenticity by GHASH (Sung, Kim, & Shin, 

2018). This dual-layer protection—securing data at rest and in transit—aligns perfectly with MinIO 

backup needs, offering attack resistance without bogging down performance. 

2.4 Webhook 

A Webhook is a user-defined HTTP callback that enables real-time communication between software 

systems. It works by sending an HTTP request (typically POST) to a specified URL when a predefined 

event occurs in the publisher system. This allows the subscriber to receive instant notifications and take 

immediate actions based on the event data. 

Working Principle of Webhook: 

(1) Event Trigger: An event (e.g., new backup file creation) occurs in the publisher system (MinIO). 

(2) HTTP Request: The publisher sends an HTTP request containing event data to the subscriber’s URL. 

(3) Action: The subscriber processes the data and performs tasks (e.g., syncing the backup to a remote 

server). 
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Advantages of Webhook: 

(1) Real-Time Updates: Ensures immediate response to changes in the publisher system. 

(2) Simplicity: Built on HTTP, making it easy to implement and integrate across systems. 

(3) Flexibility: Customizable to trigger on specific events and send data to any URL. 

 

3. Mechanism Design 

This section details the architecture of the MinIO-based backup system shown in Figure 1. The design 

integrates LZ4 compression and AES-256-GCM encryption to overcome traditional backup limitations, 

combining storage optimization with enhanced security. By utilizing MinIO's distributed storage and 

Webhook notifications, the system ensures real-time local-remote synchronization while maintaining 

data consistency. The architecture balances operational efficiency with robust protection, catering to 

enterprise-grade backup requirements. 

The workflow begins with application databases serving as data sources. Backup files undergo LZ4 

compression to minimize storage footprint and accelerate transfers. Compressed data then receives 

AES-256-GCM encryption for secure storage and transmission. Processed backups first store in local 

MinIO instances. 

MinIO's Webhook system triggers immediate synchronization to remote locations when detecting local 

changes. A load balancer distributes encrypted backups across multiple remote servers, optimizing 

storage utilization and system availability. Finalized data persists in geographically distributed MinIO 

clusters, forming a reliable disaster recovery foundation. 

 

 

Figure 1. Mechanism design 
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3.1 System Architecture Overview 

The primary components of the architecture include: 

(1) Application Database: This is the data source that needs to be backed up, storing data generated 

by applications. 

(2) Backup File: The raw backup file extracted from the application database, ready for compression 

and encryption. 

(3) Compressed Backup File: The backup file that has been processed with a compression algorithm  

to reduce storage space requirements and improve transmission efficiency. 

(4) Encrypted Backup File: The compressed backup file that has undergone encryption processing to 

ensure the security of the data during storage and transmission. 

(5) MinIO: The object storage service on both local and remote servers, used for storing backup files. 

(6) Local Server: A server that includes a MinIO instance, used for storing encrypted and compressed 

local backup files. 

(7) Remote Server: A server that includes a MinIO instance, used for storing remote backup files 

synchronized across regions. 

(8) MinIO Cluster: A cluster composed of multiple MinIO instances on remote servers, used to 

achieve high availability and disaster recovery of data. 

(9) Load Balancer: Distributes Encrypted Backup File to different remote servers to optimize resource 

utilization and ensure high availability of the system. 

These components work together to form an efficient, secure, and disaster-recovery-capable database 

backup and synchronization system. 

3.2 Mechanism Process 

The following is a detailed description of the mechanism process: 

(1) Local Backup of Application Database: 

The application database is periodically backed up locally according to set policies. 

(2) Compression: 

Before transmission, the local database backup files are compressed using the LZ4 algorithm to reduce 

the demand for storage space and to enhance the efficiency of transmission. 

(3) Encryption: 

The compressed backup files are then encrypted using the AES-256-GCM algorithm to ensure the 

confidentiality and integrity of the data during both storage and transmission. 

(4) Local Storage: 

The encrypted and compressed backup files are stored in the local MinIO instance as a backup. 

(5) Cross-Region Synchronization: 

Leveraging the MinIO Webhook mechanism, the backup files stored in the local server's MinIO are 

synchronized in real-time with the remote servers' MinIO instances, ensuring consistency between the 

local and remote backups. 
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(6) Load Balancing: 

The load balancer distributes the encrypted backup files across various remote servers to optimize 

resource utilization and ensure high availability of the system. 

(7) Remote Storage: 

The synchronized data is stored in the remote MinIO cluster, providing a remote backup for disaster 

recovery purposes. 

3.3 LZ4 Compression Algorithm 

The LZ4 compression algorithm is employed within our backup system to efficiently compress 

database backup files. It operates by recognizing repeated sequences and encoding them with 

references to a dictionary of previously identified patterns, substantially reducing file size. This method 

not only accelerates the subsequent encryption process but also optimizes storage utilization, ensuring 

that our backup operations are swift and resource-efficient. 

3.4 AES-256-GCM Encryption Algorithm 

The AES-256-GCM encryption algorithm plays a pivotal role in securing our database backup files. 

Operating on the Advanced Encryption Standard (AES) with a 256-bit key size, this algorithm is 

enhanced with Galois/Counter Mode (GCM) for authentication. It ensures the backup files are 

protected against unauthorized access by encrypting the data, substituting plain text with ciphertext. 

The GCM component not only provides data origin authentication but also guarantees integrity, 

safeguarding the files from tampering during transmission. This implementation is critical for 

maintaining the confidentiality and integrity of our backup data, thereby bolstering the overall security 

of the backup system. 

3.5 The Webhook Mechanism of MinIO 

Applications in the Proposed Strategy: 

In the MinIO-based backup system, Webhooks maintain real-time consistency between local and 

remote backups. When a new encrypted and compressed backup is stored locally, MinIO triggers a 

Webhook to notify the remote server. The remote server then stores the backup. 

Security Considerations: 

Webhooks rely on HTTP, necessitating SSL/TLS encryption to protect data in transit. Authentication 

mechanisms (e.g., API keys, digital signatures) are also essential to verify the publisher’s identity and 

prevent unauthorized access. The strategy further enhances security by encrypting backup files with 

AES-256-GCM, ensuring data remains secure even if intercepted. 

3.6 Communication and Data Synchronization in MinIO Cluster Nodes 

MinIO cluster nodes maintain data consistency and availability through networked coordination, 

employing mechanisms including heartbeat monitoring, shard synchronization, and automated fault 

recovery. These processes ensure seamless operation across distributed storage environments. 

3.6.1 Node Communication Mechanism 

(1) Network Protocol: Cluster nodes exchange status updates and sync data through HTTP/HTTPS 
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connections. This communication covers operational metadata and synchronization tasks. 

(2) Heartbeat Monitoring: Nodes broadcast regular heartbeat signals to peers, transmitting operational 

status and workload metrics. This real-time health tracking enables rapid detection of unresponsive 

nodes. 

3.6.2 Data Synchronization Mechanism 

(1) Erasure Coding Implementation: Leveraging Reed-Solomon erasure coding, MinIO divides files 

into data segments and parity blocks distributed across nodes. This fragmentation ensures redundancy 

while optimizing storage efficiency. 

(2) Write Operations 

Shard Creation: Files undergo segmentation into data/parity blocks during ingestion. 

Parallel Storage: Blocks simultaneously write to designated nodes. 

Validation Phase: Post-write checks verify block integrity across storage locations. 

(3) Read Operations 

Concurrent Retrieval: Clients fetch required blocks from multiple nodes simultaneously. 

Reassembly Process: Original files reconstruct from retrieved segments either client-side or server-side. 

3.6.3 Fault Detection and Recovery 

(1) Failure Identification 

Heartbeat Alerts: Missing multiple consecutive heartbeat pings flags a node as offline. 

I/O Failures: Unresponsive nodes during read/write operations trigger failure protocols. 

(2) Recovery Workflow 

Auto-Rebuild: Surviving blocks regenerate lost data using erasure coding algorithms. 

Cluster Rebalancing: Recovered data redistributes across operational nodes to maintain load equilibrium. 

3.6.4 Data Consistency Assurance 

Concurrency Control: Distributed locking prevents simultaneous conflicting modifications. 

Operation Logging: All write actions record in transaction journals for crash recovery. 

Version Preservation: Object version history maintains previous iterations during updates. 

 

4. Testing and Evaluation 

4.1 Testing Environment 

Tests were executed on a desktop machine with an 11th Gen Intel Core i5-11400 CPU (2.60 GHz) and 

8GB RAM. 

4.2 Performance Evaluation 

4.2.1 Performance Testing of MinIO 

MinIO delivered stable high-speed transfers—critical for syncing encrypted backups. Uploads stayed 

above 80MB/s, while downloads exceeded 380MB/s consistently. This performance confirms MinIO’s 

suitability for Comprehensive tests on the i5-11400/8GB platform validated the efficiency and 

reliability of the MinIO-based backup strategy. Key outcomes: 
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Compression Efficiency: LZ4 reduced the 188MB.bak file size by 73.5% (3.78× ratio), with 

compression times of 0.5066s–1.9711s and decompression spanning 1.2517s–5.6835s. These metrics 

confirm LZ4’s dual role in slashing storage needs and accelerating transfers. 

Encryption Performance: AES-256-GCM encrypted compressed files 4× faster than raw data—0.42s 

avg vs 1.66s for uncompressed files. This highlights the benefit of compressing before encryption. 

MinIO Transfer: Uploads maintained 80+MB/s, while downloads exceeded 380MB/s consistently, 

proving MinIO’s ability to handle rapid, repeated transfers without performance cliffs. 

System Load: Under heavy I/O, decompression peaked at 5.68s, revealing hardware-bound limitations. 

While the strategy optimizes speed and storage, extreme loads require further tuning for stability. 

Overall, the evaluation confirms the strategy’s effectiveness in addressing traditional backup 

flaws—delivering security, speed, and scalability. Future work will refine high-load handling and 

streamline encryption/compression workflows. reliability even under repeated load. 

4.2.2 Performance testing of Compression Efficiency 

A Python script evaluated LZ4 compression using a 188MB SQL Server.bak file. Key metrics: 

Compression Time: Varied between 0.5066s and 1.9711s due to system load and disk I/O fluctuations. 

Decompression Time: Ranged from 1.2517s to 5.6835s, slower than compression but 

system-dependent. 

Compression Ratio: Consistently 3.7832, shrinking files to ~26.4% of original size. 

4.2.3 Performance Testing of Encryption 

AES-256-GCM encryption tests used the same 188MB.bak file: 

Uncompressed File: Encryption took 1.4163s–2.1135s (avg 1.66s). 

Compressed File: Encryption accelerated to 0.3012s–0.6174s (avg 0.42s). 

4.2.4 Performance Evaluation 

Comprehensive tests on the i5-11400/8GB platform validated the efficiency and reliability of the 

MinIO-based backup strategy. Key outcomes: 

Compression Efficiency: LZ4 reduced the 188MB.bak file size by 73.5% (3.78× ratio), with 

compression times of 0.5066s–1.9711s and decompression spanning 1.2517s–5.6835s. These metrics 

confirm LZ4’s dual role in slashing storage needs and accelerating transfers. 

Encryption Performance: AES-256-GCM encrypted compressed files 4× faster than raw data—0.42s 

avg vs 1.66s for uncompressed files. This highlights the benefit of compressing before encryption. 

MinIO Transfer: Uploads maintained 80+MB/s, while downloads exceeded 380MB/s consistently, 

proving MinIO’s ability to handle rapid, repeated transfers without performance cliffs. 

System Load: Under heavy I/O, decompression peaked at 5.68s, revealing hardware-bound limitations. 

While the strategy optimizes speed and storage, extreme loads require further tuning for stability. 

Overall, the evaluation confirms the strategy’s effectiveness in addressing traditional backup 

flaws—delivering security, speed, and scalability. Future work will refine high-load handling and 

streamline encryption/compression workflows. 
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5. Conclusion 

This paper outlines a database backup solution using MinIO that addresses key limitations in traditional 

approaches, particularly long backup times, high storage costs, and cross-region data mismatches. By 

combining LZ4 compression with AES-256-GCM encryption, the framework reduces storage needs by 

73.5% while strengthening security. MinIO's Webhook integration enables automatic synchronization 

between local and remote backups, maintaining data consistency during network disruptions. 

Performance tests on i5-11400/8GB hardware validated the system's effectiveness: 

Compression Performance: LZ4 shrunk a 188MB SQL Server backup by 73.5%, with compression 

taking 0.5066-1.9711 seconds and decompression requiring 1.2517-5.6835 seconds. These metrics 

confirm the algorithm's value for storage optimization and transfer acceleration. 

Encryption Efficiency: Encrypting compressed files proved four times faster than processing raw data 

(0.42s vs 1.66s average), demonstrating the benefit of compression-first workflows. 

Transfer Capability: MinIO maintained stable upload speeds above 80MB/s and download rates 

exceeding 380MB/s, confirming its reliability for repeated data transfers. 

System Limitations: Peak decompression times reached 5.68 seconds under heavy loads, revealing 

hardware constraints. While the solution optimizes performance, extreme workloads require additional 

tuning. 

The framework successfully improves upon conventional backup methods through enhanced security, 

efficiency, and scalability. However, performance degrades when processing more than 1,000 

concurrent requests, indicating areas for optimization. Future development will focus on three areas: 

optimizing encryption processes, enhancing parallel task handling, and creating adaptive management 

rules for large installations. These improvements aim to strengthen workflow efficiency and system 

resilience across different operational scenarios. 
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