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Abstract 

Steel fiber-reinforced concrete (SFRC) is formulated by incorporating short, slender steel fibers into 

standard concrete, thereby creating a composite material. This addition significantly mitigates the brittle 

nature of concrete, enhancing its strength, toughness, and durability. The application of SFRC not only 

improves structural safety and service life but also promotes the development of green building materials 

and efficient construction technologies. To optimize the mix proportion design of SFRC, key parameters 

such as steel fiber content, water, cement, sand, natural aggregates, and water reducer were collected. A 

neural network model was constructed to leverage its powerful nonlinear mapping capabilities, 

establishing an implicit relationship between the mix proportions and compressive strength. The trained 

model enables rapid prediction of SFRC compressive strength, while a genetic algorithm was employed 

to inversely search for the optimal mix proportions that meet target performance requirements, providing 

a novel approach and design strategy for the intelligent design of SFRC. 

Keywords 

SFRC, Mix Design, Machine Learning, Artificial Neural Network, Genetic Algorithm 

 

1. Introduction 

Steel fiber reinforced concrete (SFRC), renowned for its excellent crack resistance, toughness, and 

energy dissipation capacity, demonstrates irreplaceable advantages in seismic, blast-resistant, and 

complex service environments within civil engineering applications (Carneiro, Lima, Leite, et al., 2014; 

Gao, Lou, & Wang, 2007; Xie, Guo, Liu, et al., 2015; Guo, Lu, Zhang, et al., 2016). Its mechanical 

performance is directly influenced by the intricate coupling relationships among various factors, 

including steel fiber dosage and matrix material proportions. Traditional mix proportion design 
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methods often rely on empirical formulas or orthogonal experiments, which are associated with high 

trial-and-error costs and low parameter optimization efficiency, making it difficult to accurately capture 

the nonlinear mapping between multiple variables. Therefore, it is essential to explore an intelligent 

optimization approach for mix proportion design, aiming to establish a high-precision and scalable 

predictive model. 

At present, research on concrete mix proportion design has become relatively mature. Fu et al. (2025) 

employed Gradient Boosting Decision Trees (GBDT) and XGBoost to conduct mix proportion design, 

verifying its feasibility under specific performance requirements. Zhou et al. (2021) constructed a 

prediction model based on Support Vector Machines (SVM), considering both concrete strength and 

slump, and utilized the Artificial Bee Colony (ABC) algorithm to identify the optimal mix proportions 

for various strength levels. Jiang et al. (2019) utilized the grey relational analysis model to achieve 

multi-objective C50 concrete mix proportion design, ultimately identifying the optimal mix proportions 

for C50 concrete. 

To conduct a comprehensive investigation into the mix proportion design of SFRC, this study compiled 

key parameters, including the dosage of steel fibers, water, cement, sand, natural aggregates, and 

water-reducing agents. A neural network model was developed to leverage its powerful nonlinear 

mapping capability, establishing an implicit relationship between the mix proportions and compressive 

strength. The trained model enables rapid prediction of SFRC compressive strength, while the genetic 

algorithm was employed to inversely search for the optimal mix proportions that meet target 

performance requirements. This approach provides a novel pathway and design strategy for the 

intelligent optimization of SFRC mix proportion design. 

 

2. Basic Principles of Artificial Neural Networks (ANN) 

ANNs (Jia, 2023) are composed of multiple interconnected nodes, or neurons, with each connection 

assigned a specific weight that is modified throughout the learning process. The core structure of an 

ANN consists of an input layer, which accepts external data; Intermediate layers conduct pattern 

identification and nonlinear operations, while the output layer synthesizes these computations into 

actionable results. The architecture's mathematical framework is formalized as follows: 

 1i

n

ij ii
o f w x b


                              (1) 

The output of an ANN is primarily determined by its connection topology, weights, and activation 

functions. Neural networks frequently utilize nonlinear operators such as: the Sigmoid function 

(logistic-type normalization), hyperbolic tangent (tanh) (gradient-preserving symmetry), ReLU 

(piecewise linear activation with sparsity induction),linear, threshold or step, Gaussian, and piecewise 

linear functions. Nonlinear activation functions, in particular, not only improve the network's ability to 

approximate complex nonlinear functions but also replicate neuronal behavior, enhancing the network's 

training efficiency.   
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Backpropagation Neural Network (BPNN) operates as a gradient-based optimization framework, 

implementing iterative refinement of network parameters through error backpropagation mechanics. Its 

operational cycle consists of two coupled phases: 

1. Feedforward Computation: Propagates input signals through hierarchical architectures via nonlinear 

transformations; 2.Error Backpropagation: Constructs gradient fields of loss functions relative to 

weight parameters using chain rule differentiation, driving parameter space evolution along the 

negative gradient direction of the error hyperplane (see topological configuration in Figure 1). 

 

 

Figure 1. The Network's Architecture 

 

Assuming the ANN consists of t layers, with each layer containing n nodes, and the training sample is 

represented as (xi, yi), the network training process typically involves the following steps, which are 

illustrated using the Backpropagation Neural Network (BPNN) as an example.   

Step 1: Error Calculation   

Error quantification initiates through comparative analysis between the network's generated outputs and 

target values, quantified via a loss function. This study adopts variance as its optimization metric, 

formalized through Equation (2).   
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In the equation, xi and yi represent the input and target values, respectively, while w and b correspond to 

the network's weights and biases. The activation function is denoted as f(x). 

Step 2: Error Propagation and Weight Adjustment   

The error gradient flow initiates at the output stratum, propagating retroactively across hierarchical 

strata via differential chaining. At each computational layer: Gradient Field Derivation: Layer-specific 

partial derivatives are determined through tensor contractions between error signals and activation 

Jacobians; Parameter Space Refinement: Stochastic gradient-based optimization schemes (e.g., 

Equation 3-4) iteratively adjust the weight-bias manifold along the negative gradient trajectory. 
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In this context, l refers to the layer index, I denotes the i-th input value in layer l, and j represents the 

j-th neuron in the preceding layer. 

Step 3: Iterative Training Process   

The steps of forward propagation, error computation, backpropagation, and weight adjustment are 

iteratively repeated until a predefined stopping criterion is satisfied. The stopping condition typically 

includes reaching a predefined number of training epochs, the error falling below a certain threshold, or 

no further improvement in network performance on the validation set. The updated weights and biases 

of each node are calculated according to Equations (5) and (6).   
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In the equation, 𝛼 is referred to as the hyperparameter learning rate, typically set within the range 

[0,1], and it determines the step size of the gradient descent.   

 

3. Concrete Strength Prediction Based on ANN 

3.1 Establishment of Training Sample Set 

This research utilizes a subset of the data from reference (Zhang, 2017) as the training dataset, with six 

input parameters: natural aggregates, cement, water, fine aggregates, steel fibers, and water reducer. The 

output variable is the 28-day compressive strength of SFRC. The range of the input and output data is 

shown in Table 1. To enhance the convergence speed of the ANN model, data normalization is applied. 

The normalization method used in this study is the min-max normalization, which is expressed as: 

         X*=(X-Xmin)/(Xmax-Xmin)                             (7) 

In the equation, X* represents the normalized data sample, while Xmax and Xmin correspond to the 

maximum and minimum values in the dataset, respectively. 

 

Table 1. Range of Input and Output Data 

  

water 

(kg/m3) 

cement 

(kg/m3) 

sand 

(kg/m3) 

natural aggregate 

(kg/m3) 

steel fiber 

(kg/m3) 

Min 160 342 557 0 0 

max 220 550 887 1283 158 

Mean Value 187 445 686 855 100 

Standard Deviation 12.5 54.5 88.5 308.9 44.7 
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3.2 ANN Model Training 

Once the ANN prediction model for the 28-day compressive SFRC is established, the data samples are 

inputted for multiple training iterations to identify the optimal network model. The correlation 

coefficient (R) for this best-performing network is 0.983, which is very close to 1, demonstrating that 

the ANN model has successfully learned and can accurately predict the mix proportions of SFRC. The 

ANN prediction results are illustrated in Figure 2. 

 

 

Figure 2. ANN Prediction Result 

 

4. Target Optimization Based on Genetic Algorithm (GA) 

The GA are adaptive search heuristics grounded in Darwinian evolutionary principles, leveraging 

population-based stochastic operators to solve high-dimensional, non-convex optimization problems. 

By simulating genetic inheritance mechanisms (e.g., crossover, mutation) and fitness-driven selection 

pressures, these algorithms iteratively evolve candidate solutions toward Pareto-efficient 

configurations. 

The fundamental steps involved in goal optimization using a genetic algorithm can be summarized as 

follows: 

1. Initialization of Population: Generate a set of random candidate solutions (individuals).   

2. Fitness Evaluation: Score each individual to quantify its quality.   

3. Selection: Retain the superior individuals and eliminate the inferior ones.   

4. Crossover: Analogous to genetic recombination in biological engineering, combine the features of 

superior individuals to generate new individuals.   

5. Mutation: Also known as random disturbance, this step introduces randomness to avoid local optima.   

6. Iterative Update: The evolutionary process is repeated until the termination condition is met.   

4.1 Establish Objective Function 

The objective function is designed to maximize the compressive strength of SFRC. Given the intricate 

nonlinear relationship between the input parameters and the output, the ANN regression model is 

employed as the objective function for the algorithm. The mathematical representation of this function 
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is as follows: 

 

In the equation, x1-x6 represent the individual material quantities of natural aggregates, cement, water, 

aggregates, steel fibers, and water reducer in the steel fiber reinforced concrete, while n denotes the 

number of support vectors. 

4.2 Constraints and Result Output 

According to relevant standards and practical engineering requirements, the mix ratio parameters for 

each constituent material are within the following ranges: the hydration parameter (water-to-cement 

ratio) was systematically controlled within the range of 0.3–0.55, a critical interval for achieving target 

compressive strengths and workability in cementitious composites; the sand content ranges from 35% 

to 46%, and the steel fiber volume ratio spans from 0% to 2%.The specific constraints for each variable 

are as follows: 160≤x1(water)≤220, 342≤x2(cement)<550, 557≤x3(sand)<887, 0≤x4(natural 

aggregate)≤1283, 0≤x5(steel fiber)≤158, 3.2≤x6(water reducer)≤5.5. 

By applying the above iterative calculations, the optimal mix ratio for steel fiber reinforced concrete 

based on objective optimization was determined. Additionally, the compressive strength corresponding 

to various mix ratios is presented in Table 2. 

 

Table 2. Steel Fiber Mix Ratio and Corresponding Compressive Strength Based on Target 

Optimization 

number water cement sand 
Natural 

Aggregates 

Steel 

Fiber 

Water 

reducing agent 

Compressive 

strength 

1 171 316 757 536 77 3.15 35.6 

2 171 438 739 506 77 4.38 48.7 

3 171 549 698 478 77 5.5 64.3 

4 167 406 742 1121 77 4.06 47.5 

5 170 422 738 739 77 4.17 48.1 

6 175 472 747 0 77 4.7 49.3 

7 159 405 770 556 0 4.05 47 

8 165 423 752 528 40 4.2 47.7 

9 178 455 754 506 117 4.53 52.4 

10 183 471 726 473 156 4.73 54.3 

 

5. Conclusion 

(1) This research established an ANN framework for predictive modeling of SFRC mix designs. The 

model integrates six compositional predictors—natural aggregate, cement content, water dosage, coarse 
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aggregate, steel fiber concentration, and water-reducing admixture—with the 28-day compressive 

strength serving as the response variable. Following ANN architecture calibration, iterative 

hyperparameter optimization was applied to training datasets, yielding a top-performing architecture 

with a near-unity correlation coefficient (R=0.983) between predicted and experimental strength values. 

(2) Based on iterative calculations using the genetic algorithm, the optimal mix ratio for steel fiber 

reinforced concrete was determined through objective optimization, and the compressive strength for 

different mix ratios was also provided. 
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