Original Paper

Reducible Relationships between Generalized Syllogisms with

the Quantifiers in Square {at least half of the}

Haowei Shi

Institute of Logic and Information Technology, Sichuan Normal University, Chengdu, China

Abstract

The main conclusions of this paper are as follows: Theorem 1 proves the validity of the generalized syllogism SAI-3. Theorem 2 takes the syllogism SAI-3 as the fundamental axiom, and then deduces the other 14 non-trivial valid generalized syllogisms with the quantifiers in Square{at least half of the}. It means that there are reducible relationships between these 15 syllogisms, and that the above knowledge mining processes are consistent. This innovative achievement can promote in-depth research on generalized syllogistic and provide methodological inspiration for knowledge mining in artificial intelligence.

Keywords

generalized syllogisms, validity, reducible relationships, knowledge mining

1. Introduction

In natural language reasoning, in addition to common classical syllogism reasoning (Łukasiewicz, 1957), there is generalized syllogism reasoning (Hao, 2024a-b). A non-trivial generalized syllogism contains at least one non-trivial generalized quantifier (Peters & Westerståhl, 2006; Xu & Yu, 2024). There are only four classical quantifiers as follows: *some*, *no*, *not all*, and *all*, and they form Square {*some*} (Wang & Yuan, 2024). Non-trivial generalized quantifiers are non-classical ones, such as *at least half of the*, *fewer than half of the*, *at most half of the*, *most*. They form Square {*at least half of the*} (Ma & Cao, 2024). Although there has been some works about generalized syllogisms (Moss, 2010; Endrullis & Moss, 2015; Cao & Li, 2024), there are still many interesting questions to be studied. This paper only studies the validity and reducibility of the generalized syllogisms involving the eight quantifiers from Square {*some*} and Square {*at least half of the*}.

2. Preliminaries

In this paper, let *p*, *t*, and *n* be variables, and *P*, *T*, and *N* be the sets that composed of *p*, *t*, *n*, respectively. *D* be the domain of variables. Let λ , ω , ψ , and δ be well-formed formulas (shorted as wff). ' $|P \cap N|$ ' represents the cardinality of the intersection of the set *P* and *N*, ' $\vdash \omega$ ' says that ω is provable, and ' $\omega =_{def}$ δ ' that ω can be defined by δ . The operators (such as \neg , \rightarrow , \land , \leftrightarrow) are basic ones in set theory (Halmos, 1974).

Let *Q* is a quantifier, $\neg Q$, $Q \neg$, and $\neg Q \neg$ are respectively its outer, inner, dual negative quantifier. These four quantifiers form a modern Square $\{Q\}=\{Q, \neg Q, Q \neg, \neg Q \neg\}$ (Hao, 2024b). For example, Square $\{some\}=\{some, no, not all, all\}$, and Square $\{at \ least \ half \ of \ the\}=\{at \ least \ half \ of \ the, fewer \ than half \ of \ the, at most \ half \ of \ the, most\}$. The propositions containing these 8 quantifiers from Square $\{some\}$ and Square $\{at \ least \ half \ of \ the\}$ are respectively called Proposition *I*, *E*, *O*, *A*, *S*, *F*, *H*, and *M* (Ma & Cao, 2024). This paper only studies the non-trivial generalized syllogisms composed of these 8 propositions, and these syllogisms include at least one of the last four propositions. Thus, 'at least half of the(t, n) \land all(t, p) \rightarrow some(p, n)' is a third figure syllogism, which can be abbreviated as *SAI-3*.

Example 1:

Major premise: At least half of my flowers are roses.

Minor premise: All flowers are plants.

Conclusion: Some plants are roses.

Let *t*, *n*, and *p* be variables that represent a flower, a rose, and a plant, respectively, then this syllogism can be symbolized as 'at least half of the(*t*, *n*) \land all(*t*, *p*) \rightarrow some(*p*, *n*)'.

Special note: It was assumed that the set composed of the subject variable for a categorical proposition containing one of the four quantifiers (*all, not all, most, and at most half of the*) is not an empty set.

3. Generalized Syllogism System with the quantifiers 'at least half of the'

This system consists of the following parts:

- 3.1 Primitive Symbols
- (1) variables: p, t, n
- (2) quantifiers: some, at least half of the
- (3) operators: \neg, \rightarrow
- (4) brackets: (,)
- 3.2 Formation Rules
- (1) If Q is a quantifier, p and n are variables, then Q(p, n) is a wff.
- (2) If λ and ω are wffs, then so are $\neg \lambda$ and $\lambda \rightarrow \omega$.
- (3) Only the sentences formed on the basis of the above two rules are wffs.
- 3.3 Basic Axioms
- A1: If λ is a valid proposition in classical logic, then $\vdash \lambda$.

A2: \vdash at least half of the(t, n) \land all(t, p) \rightarrow some(p, n) (i.e. the syllogism SAI-3).

3.4 Rules of Deduction

Rule 1 (Antecedent strengthening): If $\vdash (\lambda \land \omega \rightarrow \psi)$ and $\vdash (\delta \rightarrow \lambda)$, then $\vdash (\delta \land \omega \rightarrow \psi)$.

Rule 2 (subsequent weakening): If $\vdash (\lambda \land \omega \rightarrow \psi)$ and $\vdash (\psi \rightarrow \delta)$, then $\vdash (\lambda \land \omega \rightarrow \delta)$.

Rule 3 (anti-syllogism): If $\vdash (\lambda \land \omega \rightarrow \psi)$, then $\vdash (\neg \psi \land \lambda \rightarrow \neg \omega)$.

Published by SCHOLINK INC.

- 3.5 Relevant Definitions
- D1: $(\omega \land \delta) =_{def} (\omega \rightarrow \neg \delta);$
- D2: $(\omega \leftrightarrow \delta) =_{def} (\omega \rightarrow \delta) \land (\delta \rightarrow \omega);$
- D3: $(Q \neg)(p, n) =_{def} Q(p, D n);$
- D4: $(\neg Q)(p, n) =_{def} It$ is not the case that Q(p, n);
- D5: *some*(*p*, *n*) is true iff $P \cap N \neq \emptyset$ is true;
- D6: no(p, n) is true iff $P \cap N = \emptyset$ is true;
- D7: *not all(p, n)* is true iff $P \subseteq N$ is true;
- D8: all(p, n) is true iff $P \subseteq N$ is true;
- D9: at least half of the(p, n) is true iff $|P \cap N| \ge 0.5 |P|$ is true;
- D10: *fewer than half of the*(p, n) is true iff $|P \cap N| < 0.5 |P|$ is true;
- D11: at most half of the(p, n) is true iff $|P \cap N| \le 0.5 |P|$;
- D12: most(p, n) is true iff $|P \cap N| > 0.5 |P|$ is true.

3.6 Relevant Facts

Fact 1 (inner negation):

- (1.1) $\vdash all(p, n) \leftrightarrow no \neg (p, n);$
- (1.2) \vdash *no*(*p*, *n*) \leftrightarrow *all* \neg (*p*, *n*);
- (1.3) \vdash some(p, n) \leftrightarrow not all \neg (p, n);
- (1.4) \vdash not all(p, n) \leftrightarrow some $\neg(p, n)$;
- (1.5) $\vdash most(p, n) \leftrightarrow fewer than half of the \neg (p, n);$
- (1.6) \vdash fewer than half of the(p, n) \leftrightarrow most \neg (p, n);
- (1.7) \vdash at least half of the(p, n) \leftrightarrow at most half of the \neg (p, n);
- (1.8) \vdash at most half of the(p, n) \leftrightarrow at least half of the \neg (p, n).

Fact 2 (outer negation):

- (2.1) $\vdash \neg all(p, n) \leftrightarrow not all(p, n);$
- (2.2) $\vdash \neg not all(p, n) \leftrightarrow all(p, n);$
- (2.3) $\vdash \neg no(p, n) \leftrightarrow some(p, n);$
- (2.4) $\vdash \neg some(p, n) \leftrightarrow no(p, n);$
- (2.5) $\vdash \neg most(p, n) \leftrightarrow at most half of the(p, n);$
- (2.6) $\vdash \neg at most half of the(p, n) \leftrightarrow most(p, n);$
- (2.7) \vdash *fewer than half of the(p, n)* \leftrightarrow *at least half of the(p, n)*;
- (2.8) $\vdash \neg at \ least \ half \ of \ the(p, n) \leftrightarrow fewer \ than \ half \ of \ the(p, n).$

Fact 3 (symmetry):

- (3.1) \vdash some(p, n) \leftrightarrow some(n, p);
- (3.2) \vdash no(p, n) \leftrightarrow no(n, p).

Fact 4 (subordination) :

(4.1) $\vdash all(p, n) \rightarrow some(p, n);$

Published by SCHOLINK INC.

- (4.2) \vdash no(p, n) \rightarrow not all(p, n);
- (4.3) $\vdash all(p, n) \rightarrow most(p, n);$
- (4.4) $\vdash most(p, n) \rightarrow some(p, n);$
- (4.5) \vdash all(p, n) \rightarrow at least half of the(p, n);
- (4.6) \vdash at least half of the(p, n) \rightarrow some(p, n);
- (4.7) \vdash at least half of the(p, n) \rightarrow most(p, n);
- (4.8) \vdash at most half of the(p, n) \rightarrow fewer than half of the(p, n);
- (4.9) \vdash fewer than half of the(p, n) \rightarrow not all(p, n);
- (4.10) \vdash at most half of the(p, n) \rightarrow not all(p, n);
- (4.11) \vdash no(p, n) \rightarrow fewer than half of the(p, n);
- (4.12) \vdash no(p, n) \rightarrow at most half of the(p, n).

The above facts are the basis facts in generalized quantifier theory (Peters & Westerståhl, 2006).

4. Knowledge Mining about Valid Generalized Syllogisms

The following Theorem 1 proves the validity of the generalized syllogism *SAI-3*. Taking the syllogism *SAI-3* as the fundamental axiom in Theorem 2, the other 14 valid generalized syllogisms can be derived by the above facts and definitions.

Theorem 1 (*SAI-3*): The generalized syllogism *at least half of the*(*t*, *n*) \land *all*(*t*, *p*) \rightarrow *some*(*p*, *n*) is valid. Proof: Suppose that *at least half of the*(*t*, *n*) and *all*(*t*, *p*) are true, thus $|T \cap N| \ge 0.5 |T|$ is true according to Definition D9, and $T \subseteq P$ is true with the help of Definition D8. It follows that $P \cap N \neq \emptyset$. This can be proven using the method of contradiction. Suppose that $P \cap N = \emptyset$, thus $T \cap N = \emptyset$ in line with $T \subseteq P$. This contradicts $|T \cap N| \ge 0.5 |T|$. Therefore, $P \cap N \neq \emptyset$ holds. It can be concluded that *some*(*p*, *n*) is true in the light of Definition D5, just as desired.

Theorem 2: There are 14 valid generalized syllogisms inferred from SAI-3:

- (1) $\vdash SAI-3 \rightarrow ASI-3$
- (2) $\vdash SAI-3 \rightarrow HAO-3$
- (3) $\vdash SAI-3 \rightarrow EAF-1$
- (4) $\vdash SAI-3 \rightarrow EAF-1 \rightarrow EAF-2$
- (5) $\vdash SAI-3 \rightarrow ESO-2$
- (6) $\vdash SAI-3 \rightarrow ESO-2 \rightarrow ESO-1$
- (7) $\vdash SAI-3 \rightarrow ASI-3 \rightarrow ESO-3$
- (8) $\vdash SAI-3 \rightarrow ASI-3 \rightarrow ESO-3 \rightarrow ESO-4$
- (9) $\vdash SAI-3 \rightarrow EAF-1 \rightarrow AAM-1$
- (10) $\vdash SAI-3 \rightarrow EAF-1 \rightarrow EAF-2 \rightarrow AEF-2$
- (11) $\vdash SAI-3 \rightarrow EAF-1 \rightarrow EAF-2 \rightarrow AEF-2 \rightarrow AEF-4$
- (12) $\vdash SAI-3 \rightarrow ESO-2 \rightarrow AHO-2$
- (13) $\vdash SAI-3 \rightarrow ESO-2 \rightarrow ESO-1 \rightarrow ASI-1$

Published by SCHOLINK INC.

(14) $\vdash SAI-3 \rightarrow ESO-2 \rightarrow ESO-1 \rightarrow ASI-1 \rightarrow SAI-4$	
Proof:	
[1] \vdash at least half of the(t, n) \land all(t, p) \rightarrow some(p, n)	(i.e. <i>SAI-3</i> , basic axiom A2)
[2] \vdash at least half of the(t, n) \land all(t, p) \rightarrow some(n, p)	(i.e. ASI-3, by [1] and Fact (3.1))
[3] \vdash at most half of the $(t, n) \land all(t, p) \rightarrow not all \neg (p, n)$	(by [1], Fact (1.7) and (1.3))
[4] \vdash at most half of the(t, D-n) \land all(t, p) \rightarrow not all(p, D-n)	(i.e. <i>HAO-3</i> , by [1] and Definition D3)
[5] $\vdash \neg some(p, n) \land all(t, p) \rightarrow \neg at least half of the(t, n)$	(by [1] and Rule 3)
[6] $\vdash no(p, n) \land all(t, p) \rightarrow fewer than half of the(t, n)$	(i.e. <i>EAF-1</i> , by [5], Fact (2.4) and (2.8))
[7] $\vdash no(n, p) \land all(t, p) \rightarrow fewer than half of the(t, n)$	(i.e. <i>EAF-2</i> , by [6] and Fact (3.2))
[8] $\vdash \neg some(p, n) \land at \ least \ half \ of \ the(t, n) \rightarrow \neg all(t, p)$	(by [1] and Rule 3)
[9] \vdash no(p, n) \land at least half of the(t, n) \rightarrow not all(t, p)	(i.e. ESO-2, by [8], Fact (2.4) and (2.1))
[10] $\vdash no(n, p) \land at \ least \ half \ of \ the(t, n) \rightarrow not \ all(t, p)$	(i.e. <i>ESO-1</i> , by [9] and Fact (3.2))
[11] \vdash at least half of the(t, n) \land no \neg (t, p) \rightarrow not all \neg (n, p)	(by [2], Fact (1.1) and (1.3))
[12] \vdash at least half of the(t, n) \land no(t, D-p) \rightarrow not all(n, D-p)	(i.e. ESO-3, by [11] and Definition D3)
[13] \vdash at least half of the(t, n) \land no(D-p, t) \rightarrow not all(n, D-p)	(i.e. ESO-4, by [12] and Fact (3.2))
$[14] \vdash all \neg (p, n) \land all(t, p) \rightarrow most \neg (t, n)$	(by [6], Fact (1.2) and (1.6))
$[15] \vdash all(p, D-n) \land all(t, p) \rightarrow most(t, D-n)$	(i.e. AAM-1, by [14] and Definition D3)
[16] $\vdash all \neg (n, p) \land no \neg (t, p) \rightarrow fewer than half of the(t, n)$	(by [7], Fact (1.1) and (1.2))
[17] $\vdash all(n, D-p) \land no(t, D-p) \rightarrow fewer than half of the(t, n)$	(i.e. AEF-2, by [16] and Definition D3)
[18] $\vdash all(n, D-p) \land no(D-p, t) \rightarrow fewer than half of the(t, n)$	(i.e. AEF-4, by [17] and Fact (3.2))
[19] $\vdash all \neg (p, n) \land at most half of the \neg (t, n) \rightarrow not all(t, p)$	(by [9], Fact (1.2) and (1.7))
[20] $\vdash all(p, D-n) \land at most half of the(t, D-n) \rightarrow not all(t, p)$	(i.e. AHO-2, by [19] and Definition D3)
[21] $\vdash all \neg (n, p) \land at \ least \ half \ of \ the(t, n) \rightarrow some \neg (t, p)$	(by [10], Fact (1.2) and (1.4))
[22] $\vdash all(n, D-p) \land at \ least \ half \ of \ the(t, n) \rightarrow some(t, D-p)$	(i.e. ASI-1, by [21] and Definition D3)
[23] $\vdash all(n, D-p) \land at \ least \ half \ of \ the(t, n) \rightarrow some(D-p, t)$	(i.e. SAI-4, by [22] and Fact (3.1))
The above proof processes are logical deduction ones. Therefore, the above knowledge mining processes	

The above proof processes are logical deduction ones. Therefore, the above knowledge mining processes are consistent. Theorem 2 demonstrates that the validity of the above 14 non-trivial generalized syllogisms can be derived from the validity of the syllogism *SAI-3*. In other words, there are reducible relationships between these 15 syllogisms with the quantifiers in Square {*at least half of the*}.

5. Conclusion

The main conclusions of this paper are as follows: Theorem 1 proves the validity of the generalized syllogism *SAI-3*. Theorem 2 takes the syllogism *SAI-3* as the fundamental axiom, and then deduces the other 14 non-trivial valid generalized syllogisms with the quantifiers in Square {*at least half of the*}. It means that there are reducible relationships between these 15 syllogisms, and that the above knowledge mining processes are consistent.

Acknowledgement

This work was supported by the National Social Science Fund of China under Grant No. 22FZXB092.

References

- Cao, Q., & Li, H. (2024). The reducible relations between/among valid generalized syllogisms with the generalized quantifiers in Square {most}. *SCIREA Journal of Philosophy*, *4*(2), 34-42. https://www.scirea.org/journal/Philosophy
- Endrullis, J., & Moss, L. S. (2015). Syllogistic logic with 'most'. In de Paiva, V. et al. (Eds.), *Logic, Language, Information, and Computation* (pp. 124-139). https://doi.org/10.1007/978-3-662-47709-0_10
- Halmos, P. R. (1974). *Naive Set Theory*. New York: Springer-Verlag. https://doi.org/10.1007/ 978-1-4757-1645-0
- Hao, L. H. (2024a). Knowledge reasoning based on the generalized syllogism AHH-2. SCIREA Journal of Computer, 9(1), 1-8. https://doi.org/10.54647/computer520396
- Hao, L. H. (2024b). Generalized syllogism reasoning with the quantifiers in modern Square{no} and Square {most}. Applied Science and Innovative Research, 8(1), 31-38. https://doi.org/10.22158/ asir.v8n1p31
- Łukasiewicz, J. (1957). Aristotle's Syllogistic: From the Standpoint of Modern Formal Logic (2nd edition). Oxford: Clerndon Press.
- Ma, M. W, & Cao, Q. (2024). Knowledge mining about the generalized modal syllogism E□M令F-2 with the quantifiers in Square{fewer than half of the} and Square{no}. SCIREA Journal of Computer, 9(2), 37-46. https://www.scirea.org/journal/PaperInformation?PaperID =10947
- Moss, L. S. (2010). Syllogistic logics with verbs. *Journal of Logic and Computation*, 20(4), 947-967. https://doi.org/10.1093/logcom/exn086
- Peters, S., & Westerstähl, D. (2006). Quantifiers in Language and Logic. Oxford: Claredon Press.
- Wang, H. P., & Yuan, J. J. (2024). The reducibility of the generalized syllogism MMI-4 with the quantifiers in Square{most} and Square{some}. SCIREA Journal of Mathematics, 9(4), 84-92. https://doi.org/10.54647/mathematics110491
- Xu, J., & Yu, Z. P. (2024). The reducibility of generalized syllogisms with the quantifiers in Square {not all} and Square {most}. *Philosophy International Journal*, 7(3), 000339. https://medwinpublishers.com/article-description.php?artId=13462