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Abstract 

Smart devices integrate haptic feedback and voice interaction technologies to provide innovative 

solutions for navigation and information interaction for the visually impaired. This paper explains the 

fundamental principles of core technologies such as sensors, voice recognition, and haptic feedback, as 

well as the architecture of auxiliary navigation systems. It analyzes the integration patterns and 

optimization strategies of haptic and voice interaction, and explores the challenges faced by current 

technologies in terms of recognition accuracy, latency, and battery life through practical applications 

such as outdoor and indoor navigation. The paper also proposes targeted improvement measures to 

provide technical references for enhancing the efficiency of navigation and interaction experiences for 

the visually impaired. 
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1. Introduction 

Blind individuals face challenges in mobility and information interaction. While existing guide dogs or 

white canes have addressed safety concerns during travel, they fall short in providing real-time navigation 

and interaction in complex environments. In recent years, rapid advancements in sensor technology, 

speech recognition, and wearable devices have emerged. Enhancing navigation and interaction 

capabilities through smart devices has become a key strategy for improving the experience of blind 

individuals. Haptic feedback, as an artificial tactile input method that conveys spatial and environmental 

information through vibrations or dot patterns, combined with speech recognition and natural language 

processing (NLP), which enables natural and cost-effective information interaction, can further enhance 

the reliability of environmental perception, improve the quality of human-machine interaction, and 

ultimately enhance the mobility experience. This paper will systematically analyze the technological 
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foundations, integration models, application practices, and challenges of smart devices in navigation and 

interaction for the visually impaired, with the aim of providing references for the development and 

optimization of accessible technologies. 

 

2. Technical Foundation of Smart Devices and Assisted Navigation 

2.1 Sensor Technology 

Sensors serve as the “eyes” of smart devices and are critical for environmental perception and the stability 

of human-machine interaction. LiDAR (Light Detection and Ranging) can create a three-dimensional 

point cloud of the environment for path planning; image sensors combined with deep learning can 

identify semantic information such as tactile paving and house numbers; ultrasonic sensors are used for 

close-range obstacle detection, compensating for LiDAR's inability to perceive transparent media; and 

inertial measurement units (IMUs) combined with stride estimation technology can maintain indoor 

positioning accuracy when GPS is interrupted. 

2.2 Speech Recognition and Natural Language Processing (NLP) Technology Basics 

Voice interaction provides visually impaired individuals with a contactless channel for receiving 

information. The primary metrics for this task are noise resistance and semantic understanding. The 

perceptron uses MFC to achieve an error rate of approximately 5% per word in an end-to-end model 

recognition scenario on an empty room noise dataset. In outdoor noisy environments, a beamformer is 

employed to suppress speakers not participating in the target conversation, combined with Voice Activity 

Detection (VOA) to reduce unwanted noise from the environment, achieving a correct recognition rate 

of up to 85%. NLP primarily focuses on user command semantic understanding, i.e., modeling sentences 

based on BERT model initialization methods, such as understanding “Can I sit down nearby?” This 

involves searching for relevant domain vocabulary and returning terms like ‘chair’ or “stool,” then using 

a path planning system to return an appropriate route based on the user's current location. 

2.3 Principles of Haptic Feedback and Wearable Interaction Technology 

Haptic feedback transmits spatial information to humans through mechanical vibrations or changes in 

pressure. The vibration frequency range of common eccentric motors is 50–200 Hz, with frequencies 

between 100–150 Hz yielding the best results in perception and recognition. Therefore, navigation 

information is encoded as follows: a 120 Hz vibration from the left motor indicates a left turn, the same 

frequency from the right motor indicates a right turn, and alternating vibrations from the front and rear 

motors indicate straight ahead. Distance information can be encoded using a combination of vibration 

intensity and intervals, such as strong vibration plus short intervals indicating an obstacle within 5 meters, 

and weak vibration plus long intervals indicating an object more than 10 meters ahead. Flexible haptic 

arrays can simulate graphical information by using an array of raised contact points at different positions 

to represent simple graphics. Individual point pressure control is accurate to within 0.01 N, ensuring the 

accurate identification of fine details such as simple Braille symbols (Zhao Jinku, Kang Zhenyu, & Xiong 

Geya, 2024). Electromyography (EMG) sensors detect muscle electrical signals in the forearm to 
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recognize gesture commands, achieving a recognition rate of over 90%, thereby providing users with an 

alternative interaction method when both hands are occupied. 

2.4 Overall Architecture of the Auxiliary Navigation System 

The auxiliary navigation system adopts a three-layer architecture of “perception-decision-interaction.” 

Each module achieves data interconnection through a low-latency bus (such as ROS2), as shown in 

Figure 1. 

 

 

Figure 1. Auxiliary Navigation System Architecture 

 

The perception layer is responsible for collecting environmental and user status data: the lidar and camera 

array perform synchronized sampling to form joint obstacle detection information, while the GPS and 

IMU use Kalman filtering to form positioning data. The voice pickup array captures the user's voice and 

performs preprocessing to reduce noise. Decision layer: The core control module includes path planning 

and scene understanding: path planning uses the A* algorithm and simultaneously considers obstacles 

and road conditions in the environment to obtain a navigation planning path, while also re-planning the 

local path in response to foreseeable obstacles (such as pedestrians suddenly walking in front of the 

vehicle); the scene understanding module uses machine learning (such as ResNet) to identify the 

corresponding scene (such as “sidewalk,” “stairs,” “shopping mall”) in the input environment image and 

switch to an adaptive interaction mode (e.g., increasing tactile perception intensity in staircase scenarios). 

Interaction Layer Data: Voice interaction converts data decisions into voice commands (e.g., “There are 

steps 3 meters ahead; lift your foot”), while tactile interaction encodes directional information as 

vibrations on an array for output. During navigation on complex roads, simplified map symbols are used 

as output, and the system's energy management is embedded to control sensor usage based on battery 

levels. 
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3. Integration of Haptic and Voice Interaction 

3.1 Navigation Applications of Haptic Feedback 

Haptic feedback is the core method for achieving rapid spatial positioning and alarm transmission in 

white cane navigation for the blind. Wrist-mounted white canes use vibrators to encode direction, such 

as horizontal vibrations indicating forward movement and left/right vibrations indicating turns; vibration 

intervals can be adjusted based on distance changes to indicate the distance traveled. Foot pressure 

sensors can detect ground conditions, with heel vibrations indicating protrusions and forefoot vibrations 

indicating depressions, with vibration duration correlated to height (Guo Zhanmiao & Wang Bo, 2023). 

In complex intersections or information-rich environments, a waist-mounted haptic array can encode 

commands such as “straight ahead + vehicle approaching from the right,” achieving 92% accuracy, with 

haptic feedback response speeds significantly faster than voice guidance. 

3.2 Voice Interaction for Navigation and Information Retrieval 

Voice interaction provides granular information delivery and operational commands, enabling contactless 

navigation. The system design incorporates multi-layered semantic dialogue: the conventional navigation 

semantic layer provides current location and direction information via short voice prompts; the 

information question-answering layer uses natural language understanding and entity linking technology 

to extract structured answers from the POI database, such as “When does the nearest bank open?”; the 

command control layer supports context-related operations, such as “Cancel the previous route,” 

combined with dialogue state tracking to ensure continuity. The overall voice recognition and 

understanding accuracy is high, with command control recognition reaching over 88%, providing users 

with an efficient and convenient navigation experience. 

3.3 Fusion Algorithm for Multimodal Interaction 

In the multimodal fusion algorithm, the information synchronization and time-domain equalization of 

tactile perception data and voice commands, as well as the adaptive control of proportional factors, are 

implemented. In the information synchronization component, an event-based triggering mechanism is 

employed to synchronize tactile vibration and speech recognition output. The principle is that when the 

robot collides with an object, it triggers both tactile vibration and speech recognition output, ensuring the 

synchronous reception of information. Proportional factor adaptive control involves dividing the working 

environment into different complexity levels based on uncertainty for scene planning. The proportional 

factor W is defined as: 

W=α·Senv+(1−α)·Ctask 

 

Among these, Senv represents environmental complexity, Ctask represents task complexity, and α 

represents the scene weighting coefficient. When W > 0.6, the weight of auditory feedback is increased 

to 60%, while tactile feedback retains core directional information (Zhang Fangfang, Li Xiaoxuan, & 

Yang Shuqiang, et al., 2024); when W < 0.3, the weight of tactile feedback is increased to 70%, and 

auditory feedback is simplified to single-syllable prompts (e.g., “left,” “right”). This algorithm improves 
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the information transmission efficiency of multimodal interaction by 40% compared to single-modal 

interaction. 

3.4 Human-Computer Interaction Experience Optimization Strategy 

Experience optimization focuses on personalized adaptation and cognitive load control. Tactile 

preference parameters are generated through user behavior modeling: a random forest model trained on 

500 interaction data points can predict user preferences for vibration frequency and intensity, with an 

adaptation accuracy rate of 85%. Voice interaction employs adaptive speech rate adjustment: if the user 

response time exceeds 2 seconds (e.g., command confirmation delay), the speech rate is automatically 

reduced by 15%, and key words are emphasized (e.g., “Turn left in 5 meters”). To prevent information 

overload, the system sets an “attention threshold”: when three or more obstacle alerts are triggered within 

10 seconds, the system automatically filters out secondary information, retaining only emergency 

warnings, to keep information density within 70% of the user's cognitive capacity, thereby reducing 

interaction fatigue. 

 

4. Practical Applications of Smart Devices in Navigation for the Blind 

4.1 Outdoor Navigation 

Outdoor navigation relies on multi-source positioning and dynamic path planning, primarily addressing 

complex traffic scenarios and unstable signal conditions. The bone-conduction smart cane employs 

GPS/BeiDou dual-mode positioning and utilizes differential positioning (RTK) to maintain positioning 

accuracy within 1 meter. In densely populated urban environments, it combines inertial navigation (IMU) 

with PDR algorithms for short-term navigation positioning. Navigation information is conveyed via bone 

conduction as a “distance + landmark” description (e.g., “proceed straight on the blind path for 20 meters, 

upcoming intersection with traffic lights, current green light”), while wrist vibrations alert users to turns. 

Signal-protected crosswalks utilize 5G to connect the smart cane to traffic signal controllers, sensing 

signal light states, and combine LiDAR to perceive vehicle speeds at intersections, thereby achieving an 

89% success rate for pedestrians crossing the street. 

4.2 Indoor Navigation 

Indoor navigation breaks through the limitations of GPS signal blind spots and creates a positioning 

method of “scene recognition + map matching.” UWB positioning base stations are installed in shopping 

malls and office buildings. The UWB signals recognized by smart bracelets are used in ultra-wideband 

positioning algorithms to achieve sub-meter positioning through the time difference of arrival (TDoA) 

algorithm, while matching with indoor vector maps to complete navigation. During navigation, the 

device simultaneously uses visual sensors to read ceiling markers (e.g., store numbers) and ground-level 

directional arrows (lines), and issues voice prompts such as, “Proceed straight ahead for 10 meters to 

reach the clothing section on the 3rd floor via the escalator.” Additionally, the smart bracelet sends tactile 

feedback signals to the user's feet based on their sensory input. Additionally, in large-scale applications, 

“segmented navigation” can be employed, where longer routes are divided into segments such as 
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“security check → boarding gate.” After segmentation, each stage is completed with voice prompts to 

reduce memory load and enhance positional continuity. 

4.3 Obstacle Recognition and Avoidance 

Obstacle recognition and avoidance utilize a “multi-sensor fusion + hierarchical response” technical 

process to achieve closed-loop control from detection to avoidance, as shown in Figure 2. 

 

 
Figure 2. Obstacle Recognition and Obstacle Avoidance Flow 

 

Environmental perception layer collaboration: LiDAR scans the three-dimensional environment within 

10 meters ahead to generate point cloud data, and distinguishes between dynamic human obstacles and 

static vehicle obstacles (including guardrails, pillars, etc.) in the environment through clustering 

processing. Video images captured by the camera are classified and detected by the YOLOv8 model, and 

obstacles are labeled. Ultrasonic waves supplement the scan within 5 meters to prevent small obstacles 

from being undetected. 

Decision-making layer threat level calculation: Generate a threat index based on obstacle distance (d), 

movement speed (v), and size (s). 

svdT 0.3+0.3+)(1/*0.4=  

When T > 0.7, it is determined to be a high threat. 

The response layer executes obstacle avoidance strategies: high-threat obstacles trigger an “emergency 

braking” alert (e.g., “There is a bicycle approaching rapidly 2 meters ahead; please stop”), simultaneously 

activating strong vibrations in the waist area; medium-threat obstacles (0.3 < T ≤ 0.7) prompt the user to 

change direction (e.g., “There is a pillar 3 meters to the right; it is recommended to shift left by 0.5 

meters”); Low-threat (T ≤ 0.3) situations are indicated by a gentle voice prompt (Hu Geyou, Li Lieqi, 

Xiao Jinfeng, et al., 2022). The entire process is delayed by less than 200 milliseconds, with an obstacle 
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avoidance success rate of 92%. 

4.4 Real-time Information Services 

Real-time information services establish an “active push + on-demand query” information interaction 

model, integrating navigation with lifestyle service scenarios. The active push feature is triggered based 

on time and location, such as during commuting hours, prompting users with “Heavy traffic ahead at the 

intersection during rush hour; we recommend taking an alternate route via XX Road to save 8 minutes”; 

or in retail scenarios, pushing notifications like “A nearby supermarket is currently running a promotion; 

would you like to view details?” On-demand queries support natural language interaction. When a user 

asks, “Where is the nearest accessible restroom?” the system uses NLP to analyze the intent, retrieves 

information from the POI database, and responds with, “8 meters away, at the end of the left corridor, 

requiring two turns,” while automatically planning the direct route. The device integrates public service 

interfaces, enabling queries for bus arrival times and weather forecasts. Information retrieval response 

time is <1.5 seconds, with service coverage improved by 75% compared to traditional guide devices. 

 

5. Technical Challenges and Optimization Strategies 

5.1 Speech Recognition Accuracy and Environmental Noise Interference 

In outdoor noise environments, the word error rate (WER) of speech recognition exceeds 35%, primarily 

due to the masking effect of engine noise and human voice interference on acoustic features. Current 

speech recognition technology struggles with non-stationary noise reduction methods (such as spectral 

subtraction), leading to misidentification of commands. Differences in accent and speaking speed reduce 

speech recognition robustness; when users speak quickly (over 180 words per minute), the end-to-end 

model's semantic recognition accuracy decreases by 20%. 

5.2 Delay, Energy Consumption, and Comfort Issues in Haptic Feedback 

Haptic feedback systems face three technical challenges: first, signal transmission delay, with response 

times from the decision-making layer to the actuator often exceeding 100 ms, leading to action lag in 

fast-moving scenarios (e.g., crossing the street); second, excessive energy consumption, with motor 

power consumption reaching 200 mW in continuous vibration mode, accounting for 40% of the device's 

total energy consumption and significantly reducing battery life; Third, insufficient wearable comfort, as 

rigid vibration modules in prolonged contact with the skin can cause a sense of pressure, with 80% of 

users reporting discomfort after continuous use for two hours. 

5.3 Limitations of Device Miniaturization and Battery Life 

Currently, smart white canes integrated with LiDAR and multiple sensors typically weigh over 500g, 

exceeding the weight threshold that blind individuals can comfortably hold. Miniaturization results in 

compromises in sensor performance. In terms of battery life, the device can operate continuously for only 

4–6 hours in full-function mode, primarily due to the power consumption demands of high-density 

computing (such as real-time SLAM) and multi-modal interaction. Additionally, battery capacity 

decreases by 30% in low-temperature environments (<0°C). 
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5.4 Improvement Measures 

To address noise interference, a “microphone array + deep learning” fusion solution is adopted. Using 4-

microphone beamforming technology, voice signals within 1.5 meters are captured more clearly. A noise 

adaptation training (NAT) model based on the Transformer architecture is employed to adapt to noise 

reduction processing in noisy environments, achieving a word error rate (WER) below 15% when the 

signal-to-noise ratio (SNR) exceeds 12 dB; A command keyword detection mechanism is added to reduce 

the likelihood of misexecution. Haptic feedback uses MEMS piezoelectric film technology to replace the 

original electromagnetic motor, reducing touch response time to 50 ms and lowering energy consumption 

by 60%. A flexible curved contact surface is designed, with vibration contact points adjusted based on 

local pressure sensor recognition to enhance wearing comfort (Wu Wenxin, Li Zhiyuan, Chen Yifan, et 

al., 2021). The terminal layer features a “modular low-power design,” replacing the existing SBC and 

Edge boards with a 7nm edge computing SoC, reducing SLAM computational power consumption from 

3W to 1.2W; Using layered soft-pack batteries combined with an adaptive low-power architecture 

extends battery life to 10 hours. The integrated structure featuring a carbon fiber frame, haptic units, and 

a strap board keeps the weight under 350g. 

 

6. Conclusion 

Smart devices demonstrate significant technical advantages in navigation and interaction for the visually 

impaired. The integration of haptic feedback and voice interaction effectively enhances travel safety and 

information retrieval efficiency. However, practical applications still face challenges such as noise 

interference in voice recognition, vibration-induced latency, power consumption, and the miniaturization 

and battery life of wearable devices. Therefore, future efforts should focus on continuously improving 

multi-modal joint optimization algorithms, optimizing human-machine interaction, and designing low-

power components to promote the widespread adoption of smart devices in blind navigation, thereby 

improving the quality of life for the visually impaired. 
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