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Abstract 

Heterogeneous data fusion technology for electric power big data is a crucial support for the 

construction and development of smart grids. The rapid development of smart grids has resulted in a 

significant increase in the amount of data within power systems, which is characterized by being multi-

source, heterogeneous, and large-scale. This data includes real-time operational information, equipment 

status monitoring data, and market transaction records from various devices and systems. It is essential 

for enhancing grid operational efficiency, ensuring the security and stability of the grid, and optimizing 

resource allocation. By integrating multi-source heterogeneous data, electric power big data fusion 

technology enables data integration, sharing, and comprehensive analysis. This provides core technical 

support for the intelligent management of power systems. Currently, this technology has made significant 

progress in data cleaning, transformation, and integration. It is widely applied in areas such as grid 

dispatching, load forecasting, and equipment status monitoring.  
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1. Introduction 

With the accelerated deployment of smart grids and the maturation of big-data technologies, power-

system big data has become a key driver of digitalization in the electricity sector. It plays a crucial role 

in the sector's intelligent transformation. Modern grids generate massive, high-velocity, and highly 

diverse data streams by deploying sensors, smart meters, and advanced measurement infrastructures 

(Chen et al., 2019). These data span the full power-system chain—generation, transmission, substations, 

distribution, consumption and dispatch that form a representative power big-data ecosystem. 
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As smart grids evolve, heterogeneous data fusion has emerged as a central research topic in power 

informatization. Improvements in monitoring devices and communications have led to exponential 

growth in data volume and structural complexity. Meanwhile, inconsistent standards and strong 

heterogeneity across business systems have resulted in “information silos” which substantially limit the 

practical value of power big data (Zhang, Huang, & Bompard, 2018). To address this issue, researchers 

have explored heterogeneous data-integration and fusion methods to enable effective aggregation of 

multi-source power data. Conventional fusion techniques have made preliminary progress in areas such 

as image processing, but major challenges remain. These challenges include data-quality issues, high 

algorithmic complexity, and insufficient real-time processing capability (Hongjun, Wei, Ou, et al., 2020). 

As show in Figure 1, power big data exhibits the classic “4V” characteristics—volume, variety, velocity, 

and value. They encapsulate rich domain knowledge and operational semantics that are specific to power 

systems. Its applications not only include real-time grid situational awareness, fault detection, and load 

forecasting, but also support market operation decisions, renewable energy integration, and optimal 

dispatch (Hossein Akhavan-Hejazi & Hamed Mohsenian-Rad, 2018). Consequently, the industry faces 

pressing problems in efficiently acquiring, storing, processing, and sharing heterogeneous power data, as 

well as systematically extracting actionable value. 

This paper presents a structured review of heterogeneous fusion technologies for power big data. It 

examines current technical bottlenecks and challenges, and explores multi-source integration strategies 

focused on efficient fusion methodologies (Alma’aitah, Wafa’ Za’al, et al., 2024). This study compares 

representative approaches and summarizes their advantages and limitations. It aims to provide theoretical 

insights and practical guidance for integrating complex power-system data and improving grid 

intelligence, resource allocation, and supply reliability. 

 

2. Overview of Power Big Data 

2.1 Data Sources and Characteristics 

Power big data primarily originates from the large-scale deployment of sensor networks, smart metering 

devices, and advanced metering infrastructure (AMI). It also comes from various power information 

management systems in smart grids. Together, these sources form a multi-dimensional and multi-layer 

data acquisition framework, including SCADA, EMS, and WAMS systems. The collected data 

comprehensively cover key stages of the power system, such as generation, transmission, transformation, 

distribution, consumption and dispatching (I Made Putrama & Péter Martinek, 2024). 

Power big data exhibits typical “4V” characteristics: massive volume, high variety, high velocity, and 

relatively low value density. These features result in strong heterogeneity, which is reflected in the 

diversity of data sources, complex data structures, and strict real-time processing requirements. Data 

from different sources often differ significantly in format, accuracy, and sampling frequency. This 

includes real-time measurements, historical records, textual data, and multimedia data. 
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To ensure reliable integration and utilization, data standardization, cleansing, and preprocessing are 

essential steps in power big data management. Due to the stringent real-time requirements of power 

system operations, data platforms must quickly respond to grid dynamics and provide accurate 

information to support decision-making. Challenges related to data quality, security, and privacy 

protection remain significant concerns in multi-source data integration. This underscores the importance 

of developing efficient and reliable fusion technologies. 

2.2 Processing and Analysis Technologies 

In smart grids, large-scale sensing devices continuously collect operational data and transmit them to 

centralized data warehouses for further analysis and decision support. 

For data storage, distributed architectures are widely adopted to accommodate the rapid growth and 

massive scale of power big data. A typical big-data platform architecture based on Apache open-source 

technologies is illustrated. This framework relies on the Hadoop Distributed File System (HDFS) for 

scalable storage. It uses MapReduce as the core distributed computing engine, enabling the efficient 

management of petabyte- and even zettabyte-level datasets (Kyuseok Shim, 2012). 

During data processing, distributed computing models such as MapReduce and Spark significantly 

improve computational efficiency by decomposing tasks and executing them in parallel. 

From an analytical perspective, the core of this architecture is built on data mining and intelligent analysis 

techniques. These include association rule mining, clustering analysis, and pattern recognition. The 

techniques have been extensively applied to power load forecasting, fault diagnosis and system condition 

monitoring that accelerate the development of intelligent grid operations. Furthermore, machine learning 

models, such as neural networks and support vector machines, have shown strong capabilities in 

capturing complex nonlinear relationships. They are also effective in extracting deep feature 

representations from power data. 

In summary, the processing and analysis framework of power big data integrates data acquisition, 

distributed storage, parallel computing, and intelligent analytics. This forms a complete technical pipeline 

that supports efficient utilization and value extraction in modern power systems (Michał Kunicki, 

Sebastian Borucki, Dariusz Zmarzły, & Jerzy Frymus, 2020). 
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Figure 1. Overall Architecture of the Power Big Data Platform 

 

3. Technical Principles and Methods of Heterogeneous Fusion for Power Big Data 

3.1 Data Acquisition and Preprocessing 

With the rapid advancement of grid intelligence and informatization, the large-scale deployment of 

sensors and high-speed data acquisition devices has increased data diversity. At the same time, data 

volumes are growing rapidly. The power big data has become a prominent trend in modern power systems. 

In heterogeneous fusion of power big data, data acquisition serves aim to extract key information from 

multiple heterogeneous sources (Chu, Dong, Chen, Yu, & Huang, 2020). This process involves collecting 

operational data related to power supply and demand, grid topology, load profiles, and energy storage 

conditions. At the data access layer, the system must support multiple communication protocols and 

interface standards. These include WebService-based standardized interfaces, power-specific 

communication protocols (IEC 61850) and various proprietary file formats. At the data-type level, the 

platform needs to handle diverse data modalities, such as real-time monitoring data, historical operational 

records, equipment text logs, inspection multimedia data, and load time-series data. These data include 

structured data, semi-structured data, and unstructured data. 

Real-time operational parameters, such as power, voltage, current, load fluctuations, and energy storage 

status, are continuously generated from these sources. In addition, equipment condition data play a vital 

role in health monitoring and fault diagnosis. Indicators such as current, voltage, temperature, and 

vibration directly reflect equipment operating states and potential abnormal conditions (Ablimit Aji, 

Fusheng Wang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang, & Joel Saltz, 2013). 

Furthermore, non-IoT data sources, including inspection records and maintenance reports, also need to 

be integrated. These data are typically uploaded through periodic backups and provide essential support 
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for grid safety management and asset maintenance. Log data generated by enterprise systems, such as 

OA and ERP platforms, record critical processes related to dispatching, operations, and fault handling. 

These logs provide valuable insights for safety supervision and incident analysis. 

In the era of big data, information acquisition and preprocessing form the foundation of intelligent 

decision-making. Data cleaning and preprocessing are particularly important, including duplicate 

removal, missing-value imputation, outlier detection, and data format transformation. These procedures 

aim to reduce noise, improve data consistency, and standardize the representation for subsequent analysis. 

This ensures data accuracy and reliability, providing a solid foundation for effective heterogeneous fusion 

and advanced analytics (Xiao, Wu, Li, Liu, Zhou, Deng, Yang, Hou, Liu, & Mao, 2019). 

 

Table 1. Power Heterogeneous Data Collection 

Input Data Type Description 

System Operation 

Data 

Includes energy flow, operational status monitoring data, covering key links such 

as power generation, grid infrastructure, load demand, and energy storage. 

Equipment 

Condition Data 

Includes parameters such as current, voltage, temperature, and vibration 

characteristics, which are used for equipment health monitoring and fault diagnosis. 

Non-IoT API 

Transmission Data 

Includes power inspection data and laboratory experimental data, which are 

uploaded periodically through scheduled transmission mechanisms. 

Log Data 

Generated from internal management systems such as OA and ERP, recording 

business process logs related to dispatching, operation, and fault handling, which 

are critical for power grid security management and incident investigation. 

 

3.2 Data Aggregation, Storage, and Management 

Heterogeneous power big data aggregation is a critical component of informatization in the power 

industry. Its primary objective is to integrate heterogeneous data from multiple business systems in order 

for enhancing overall data value and application effectiveness. Power big data originates from a wide 

range of sources. Core operational data are collected from power production and management systems 

such as Supervisory Control and Data Acquisition (SCADA), Energy Management Systems (EMS), and 

Wide-Area Measurement Systems (WAMS), which continuously monitor grid operating conditions, 

equipment parameters, and load profiles (Zhao & Wang, 2019). 

In addition, equipment monitoring data play a vital role in system operation and maintenance. These data 

include condition information from key assets such as generators, transformers, and transmission lines. 

This includes measurements like temperature, vibration, and oil levels, which are acquired in real-time 

through distributed sensor networks and transmitted to centralized data centers. External environmental 

data, such as meteorological information and geographic information system (GIS) data, also constitute 

important data sources, providing essential support for load forecasting, fault early warning, and 
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operational planning. During data aggregation, the Extract–Transform–Load (ETL) process is widely 

adopted to integrate data from heterogeneous sources, resolve format and semantic inconsistencies, and 

construct a unified data view (Dong Xin Luna, Gabrilovich Evgeniy, Heitz Geremy, Horn Wilko, Murphy 

Kevin, Sun Shaohua & Zhang Wei, 2014). 

Big data storage technologies serve as fundamental infrastructure for the digital transformation of the 

power industry, enabling reliable storage, efficient management, and high-performance access to massive 

datasets. In heterogeneous fusion scenarios, the main categories of stored power data include system 

operation data, equipment condition data, non-IoT API transmission data, and log data generated by 

enterprise information systems. 

To achieve scalable storage and high availability, distributed file systems such as HDFS and distributed 

storage platforms such as Ceph are commonly deployed. Column-oriented databases, including HBase 

and Cassandra, are suitable for large-scale structured data storage and analytical workloads, offering 

improved query performance. Graph databases such as Neo4j are applied to represent and manage 

complex topological relationships in power networks, including connectivity among grid components. 

Furthermore, time-series databases such as InfluxDB are specifically designed for storing and managing 

high-frequency monitoring data generated by grid sensors and measurement devices (Dong Xin Luna, 

Gabrilovich Evgeniy, Heitz Geremy, Horn Wilko, Murphy Kevin, Sun Shaohua & Zhang Wei, 2014). 

From a data management perspective, the power industry emphasizes data standardization and unified 

interface design. ETL tools such as Talend and Informatica are widely used for data extraction, 

transformation, cleansing, and preprocessing to ensure data consistency and quality. Enterprise-level data 

warehouses, including Teradata and Greenplum, are commonly adopted to support integrated data storage 

and analytical processing. Meanwhile, access control mechanisms and encryption technologies are 

implemented to enhance data security and privacy protection. In addition, data lake architectures built on 

Hadoop-based platforms enable the storage of raw-format data and provide flexible support for multi-

type heterogeneous data analysis. For data governance, platforms such as Apache Atlas are employed to 

manage metadata, monitor data quality, and enforce data security and compliance policies. 

 

Table 2. Storage and Management of Power Heterogeneous Data 

Data Storage 

Technology 
Description 

Data Management 

Tool 
Description 

Distributed 

Storage 

Uses distributed file systems such as 

Hadoop HDFS and Ceph to achieve 

reliable storage and efficient access 

for massive-scale data. 

Data Warehouse 

Tools such as Teradata and Greenplum 

are used to build enterprise-level data 

warehouses for data integration, 

storage, and analytical processing. 

Column-

Oriented 

Technologies such as HBase and 

Cassandra are suitable for storing 
Data Lake 

Built on big data platforms such as 

Hadoop to store raw-format data and 



www.scholink.org/ojs/index.php/asir             Applied Science and Innovative Research                  Vol. 10, No. 1, 2026 

36 
Published by SCHOLINK INC. 

Storage and analyzing large-scale structured 

data, improving query performance. 

support multi-type data analysis and 

processing. 

Graph 

Database 

Systems such as Neo4j are applied 

to store and manage complex 

relational data in power grids, 

including connectivity among 

equipment. 

ETL Tools 

Tools such as Talend and Informatica 

are used for data extraction, 

transformation, and loading, enabling 

efficient data integration. 

Time-Series 

Database 

Databases such as InfluxDB are 

specifically designed to store and 

manage time-series data, such as 

power grid monitoring data. 

Data Governance 

Tools 

Platforms such as Apache Atlas are 

used for metadata management, data 

quality monitoring, and data security 

control. 

 

3.3 Data Fusion and Sharing 

Data integration aggregates information from multiple heterogeneous sources and performs cross-

domain correlation analysis, thereby enriching the information content available for power system 

applications. The objective of heterogeneous data integration is to unify different data formats and 

standards, enabling a more comprehensive system-level perspective to support intelligent decision-

making in power grids. Integration and sharing technologies play a central role in this process by 

facilitating efficient data aggregation, high-speed processing, and secure data exchange. Through 

algorithm-driven fusion mechanisms, data from diverse sources can be effectively combined. This 

approach addresses the challenges of large data volume, high velocity, and multi-type heterogeneity in 

power systems, while ensuring data accuracy, consistency, and reliability. 

3.3.1 Data Fusion Techniques 

Kalman Filter-Based Data Fusion: In power systems, the diversity of data acquisition sources and the 

heterogeneity of data formats lead to highly heterogeneous measurement environments. These data 

include multi-source, multi-temporal, and multi-precision measurements obtained from different sensors, 

such as voltage, current, and power factor signals. By integrating such heterogeneous observations, 

Kalman filtering provides more accurate and robust state estimation results, thereby supporting grid 

monitoring, control, and operational optimization. 

The Kalman filtering algorithm adopts a recursive estimation framework, in which the core 

computational procedure consists of two key stages: prediction and update. In heterogeneous power big 

data fusion, these stages are implemented through a series of mathematical operations to dynamically 

integrate multi-source measurements and minimize estimation errors, enabling optimal state estimation 

under noisy and uncertain measurement conditions. 

(1) Prediction Step: Based on the optimal state estimate at the previous time step and the system noise, 

the prior state at the next time step is predicted. In power system applications, the state prediction and 

the corresponding error covariance prediction can be expressed as 
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x̂k∣k−1 = Fkx̂k−1∣k−1 + Bkuk 

where x̂k∣k−1 denotes the state estimate at time step k predicted from the estimated state at time step 

x̂k∣k−1. Fk is the state transition matrix that describes the evolution of the system state from time step 

k − 1 to k； x̂k−1∣k−1 represents the optimal state estimate at time step k − 1; Bk is the control input 

matrix that characterizes the influence of control inputs on the system state; and uk denotes the control 

input vector at time step k. 

(2) Prediction Error Covariance Matrix: The prediction error covariance matrix is used to characterize 

the uncertainty associated with the predicted system state and can be expressed as: 

Pk∣k−1 = FkPk−1∣k−1Fk
T + Qk 

Where Pk∣k−1 denotes the prediction error covariance matrix at time step k, Pk−1∣k−1 represents the 

estimation error covariance matrix at time step k − 1, and Qk is the process noise covariance matrix, 

which quantifies the uncertainty introduced by system process noise. 

(3) Update Step: The update step refines the system state estimate by incorporating new measurement 

information and the predicted state. In power system applications, this process can be expressed as: 

Kk = Pk∣k−1Hk
T(HkPk∣k−1Hk

T + Rk)
−1

x̂k∣k = x̂k∣k−1 + Kk(zk − Hkx̂k∣k−1)

Pk∣k = (I − KkHk)Pk∣k−1

 

Where Kk  denotes the Kalman gain that balances the contribution of the predicted state and the 

measurement information; Hk is the observation matrix that maps the system state to the measurement 

space; zk represents the measurement vector at time step k, x̂k∣k is the updated optimal state estimate 

at time step k; Rk is the measurement noise covariance matrix that characterizes the uncertainty of 

observation noise; Pk∣k denotes the updated error covariance matrix at time step k; and I is the identity 

matrix. 

(4) Mathematical Principles and Computational Process: The Kalman filtering algorithm is founded on 

Bayesian inference and Gaussian distribution assumptions, and recursively estimates the system state by 

minimizing the variance of prediction errors. During the prediction stage, the algorithm estimates the 

next system state and its associated uncertainty based on the system dynamic model. During the update 

stage, newly acquired measurement data are incorporated to correct the predicted state, and the Kalman 

gain is employed to achieve optimal state estimation. Notably, this recursive framework does not require 

storing historical data sequences. It only relies on the current state estimate and error covariance matrix. 

This ensures high computational efficiency and real-time performance, making it well-suited for large-

scale power system applications. 

Model-Based Data Fusion: Model-based data fusion approaches use standardized data models to achieve 

interoperability across heterogeneous systems. For example, Wu introduced the Common Information 

Model (CIM) as a unified data representation framework, enabling heterogeneous system data to be 

mapped into the CIM structure for standardized integration and fusion. The CIM model defines typical 

object structures and relational semantics in power systems. By extending the CIM schema to 
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accommodate application-specific requirements, data mapping and fusion across different systems can 

be effectively realized. For instance, by constructing standardized equipment condition models and 

performing semantic mapping and structural alignment with CIM, multi-source equipment status data 

can be efficiently integrated. Model-based fusion techniques effectively address heterogeneity challenges, 

improve data standardization and interoperability, and help eliminate “information silos” by promoting 

cross-system data sharing and exchange. The unified and structured representation further provides a 

solid foundation for subsequent data analytics and decision-making processes, significantly enhancing 

processing efficiency and result reliability. 

Machine Learning-Based Data Fusion: Machine learning-driven fusion methods leverage advanced 

algorithms such as deep neural networks to extract and integrate features from multi-source 

heterogeneous data. For example, Ji proposed a machine learning-based data integration framework that 

employs deep learning techniques to automatically discover intrinsic data patterns and correlations, 

achieving high-accuracy fusion performance. Specifically, deep Boltzmann machines have been utilized 

to project heterogeneous data into a unified feature space for effective integration. Other studies have 

applied recurrent neural networks to construct temporal feature models for anomaly detection and state 

recognition tasks. These approaches are capable of capturing complex nonlinear relationships within 

power systems and adaptively learning discriminative feature representations, thereby significantly 

improving fusion accuracy and computational efficiency. Consequently, machine learning-based fusion 

techniques provide new technical pathways for power big data processing and accelerate the intelligent 

evolution of power system operations. 

Rule-Based Data Fusion: Rule-based fusion methods integrate heterogeneous data by applying 

customized integration rules and domain knowledge constraints. For example, Liu Jia proposed a rule-

driven data integration framework that performs data filtering, cleansing, and merging based on 

predefined integration standards tailored to specific application scenarios. These rules are typically 

designed according to data attributes and operational requirements to ensure targeted and accurate fusion. 

In addition, event-driven mechanisms have been introduced to control information exchange and data 

sharing, enabling dynamic and on-demand integration. Such approaches enhance fusion efficiency and 

precision through explicit logical constraints and flexible control strategies, providing adaptable 

solutions for complex power big data environments and improving the practical value of heterogeneous 

data integration. 

3.3.2 Data Fusion Tools 

Hadoop and Spark: Hadoop and Spark serve as core technological frameworks for big data processing 

and provide essential support for distributed storage architectures, parallel computing, and advanced 

analytics in the power industry. Both platforms are capable of handling large-scale datasets and fully 

satisfy the high-throughput and high-reliability requirements of power system data processing. Hadoop 

achieves efficient storage and access of massive data through its distributed file system and parallel 

computing mechanisms, while Spark significantly improves processing throughput by leveraging in-
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memory computing paradigms. The synergistic integration of Hadoop and Spark enables fast processing 

and large-scale integration of power big data, thereby establishing a solid foundation for heterogeneous 

data fusion and system-level analytics. 

Deeplearning4j: Deeplearning4j is a distributed deep learning framework that can be seamlessly 

integrated with big data platforms such as Hadoop and Spark, enabling large-scale parallel training and 

efficient processing of massive datasets. By exploiting deep neural network architectures, Deeplearning4j 

can automatically extract discriminative features and discover latent patterns in power data, thereby 

facilitating high-accuracy data integration and intelligent analysis. Its strong performance in power data 

fusion and anomaly detection applications provides effective technical support for enhancing the 

intelligence level of modern power systems. 

ETL Tools: ETL frameworks play a central role in data integration by performing data extraction, 

transformation, and loading operations. Based on predefined data flow and transformation rules, these 

frameworks collect data from heterogeneous sources, perform data cleansing and normalization, and load 

standardized data into integrated platforms, ensuring data accuracy, consistency, and completeness. In 

power big data integration scenarios, ETL tools significantly optimize processing pipelines, improve 

integration efficiency and quality, and support systematic data governance. Consequently, they establish 

a reliable foundation for subsequent analytics and decision-making processes and promote the continuous 

advancement of heterogeneous data fusion technologies in power systems. 

 

Table 3. Heterogeneous Data Fusion Technologies and Tools for Power 

Fusion Technology Brief Description Tool Brief Description 

Model-based fusion 

Map heterogeneous system 

data into a unified CIM 

schema for standardization 

and integration. 

Hadoop & Spark 

Big-data platforms enabling 

large-scale storage and 

distributed/fast computing 

for fusion and analytics. 

ML-based fusion 

Use deep learning/neural 

networks for feature 

extraction and multi-source 

fusion. 

Deeplearning4j 

Spark-based deep learning 

framework for fusion and 

anomaly detection. 

Rule-based fusion 

Apply predefined rules to 

filter, cleanse, and merge 

multi-source data. 

ETL tools 

Tools (e.g., Talend, 

Informatica) for extract–

transform–load pipelines 

supporting integration. 
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3.3.3 Data Sharing Technologies 

SOA-Based Data Sharing: Service-oriented architecture (SOA) enables data sharing across 

heterogeneous power information systems by exposing standardized service interfaces, thereby 

improving inter-system data exchange and interoperability. For example, Wang developed an SOA-based 

data sharing platform that reduces coupling among systems while enhancing adaptability and scalability 

of the sharing mechanism. Standardization and compatibility of interfaces are central to effective SOA 

implementation, requiring a shared semantic understanding and consistent rules across participating 

systems. In the power sector, SOA can integrate business functions across dispatching, operation, and 

customer service departments, facilitating cross-department collaboration and data reuse. With ongoing 

technological advances and standardization efforts, SOA is expected to play an increasingly important 

role in power big data sharing. 

Cloud Computing-Based Data Sharing: Cloud platforms support cloud-based storage, management, and 

distribution of power industry data by leveraging elastic computing and large-scale storage capabilities. 

Li reported that cloud-based infrastructures can improve data management efficiency and enable 

convenient data access and sharing through network connectivity. Nevertheless, data security and privacy 

protection remain major challenges for cloud-based sharing, and platform stability and reliability are also 

critical in power system applications. Power utilities can build centralized data centers on cloud platforms 

to manage business data and deliver data-driven services to users through cloud-based interfaces. 

 

 

Figure 2. Data Sharing Integration Framework 
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3.3.4 Data Sharing Tools 

RESTful APIs: RESTful APIs are widely adopted interface standards in service-oriented architectures 

and provide an effective mechanism for cross-system and cross-platform data sharing. By defining 

unified service interfaces, interoperability among heterogeneous systems can be significantly enhanced. 

Based on the HTTP protocol, RESTful APIs employ standardized operations such as GET and POST to 

access and manipulate resources. In power big data sharing applications, multiple API endpoints can be 

designed to support data querying, retrieval, and service invocation, enabling efficient data exchange 

among different systems. The standardized interface design simplifies sharing workflows, improves 

interaction efficiency, and promotes seamless data interoperability across platforms, thereby supporting 

the digital and intelligent transformation of power systems. 

Cloud Storage Services: Cloud storage platforms, such as Alibaba Cloud and Amazon Web Services 

(AWS), provide scalable and reliable infrastructures for power industry data storage and access. These 

services are characterized by high scalability, availability, and security, making them well suited for large-

scale power big data sharing. By adopting distributed storage architectures, power data are replicated and 

distributed across multiple nodes, ensuring high system availability and strong fault tolerance. In addition, 

cloud storage platforms offer flexible access interfaces and fine-grained access control mechanisms, 

which enhance data security and privacy protection while facilitating efficient data sharing and 

collaboration. 

 

Table 4. Heterogeneous Data Sharing Technologies and Tools for Power 

Sharing Technology Brief Description Tool Brief Description 

SOA-based sharing 
Standardized service interfaces 

for cross-system interoperability. 
RESTful API 

SOA-friendly interfaces 

enabling cross-platform sharing. 

Cloud-based 

sharing 

Store and distribute power data 

via cloud platforms. 
Cloud storage 

Services (e.g., Alibaba Cloud, 

AWS) for scalable sharing. 

 

In heterogeneous power data environments, data integration techniques commonly perform multi-

dimensional fusion across temporal, spatial, and semantic dimensions. For example, Gaussian models 

and hierarchical Bayesian methods can be adopted to improve integration accuracy and computational 

efficiency. In practice, the power sector often relies on standardized data models and interfaces (e.g., SG-

CIM) to normalize heterogeneous data sources and establish a unified foundation for interoperability and 

data sharing. Moreover, ETL pipelines combined with distributed storage systems enable automated data 

cleansing, transformation, and loading, thereby ensuring consistent data quality across systems. Finally, 

shared data platforms and open APIs further enhance cross-department and cross-system data circulation, 

supporting the continuous development of smart grids. 
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4. Development Trends and Future Research Directions 

4.1 Technology Development Trends 

With continuous advances in smart grids and data analytics, heterogeneous integration of power data is 

exhibiting expanding application potential and accelerating convergence with emerging technologies. 

Looking ahead, power data integration will increasingly emphasize real-time capability, accuracy, and 

intelligent processing to support secure, reliable, and high-efficiency power system operations. 

Recently, more artificial intelligence (AI) techniques have been introduced into power data fusion. For 

instance, distance-based clustering methods can detect abnormal attributes by measuring deviations from 

cluster centroids, while pattern-recognition-driven knowledge discovery can further identify anomalous 

behaviors in complex datasets. Deep learning has also been applied to load forecasting and renewable 

generation prediction, improving the accuracy and robustness of forecasting results. Moreover, AI-based 

data processing can enhance data quality by mitigating the effects of noise and outliers. In addition, 

distributed ledger technologies (DLT) show promise for enabling more transparent and secure data 

sharing and management. Due to their distributed storage and tamper-resistance properties, such 

technologies can strengthen security during data transmission and integration, providing technical 

safeguards for power system operation. 

4.2 Future Research Directions 

As smart grids and analytical technologies evolve, heterogeneous power data integration is becoming a 

key enabler of power system intelligence. Future studies are expected to focus on the following directions. 

4.2.1 Development of Efficient Data Fusion Algorithms 

Given the diversity, high dimensionality, and real-time requirements of power data, future work should 

develop more efficient and accurate fusion methods. In particular, leveraging deep learning and AI to 

automatically learn representative features and identify latent patterns is expected to be a major research 

focus for improving integration performance. 

4.2.2 Development of Data Fusion Platforms and Toolchains 

To streamline integration workflows and facilitate data aggregation, sharing, and advanced analytics, 

there is a strong need for integrated data fusion platforms and toolkits. Such platforms should be scalable, 

user-friendly, and robust, supporting heterogeneous data modalities and remaining compatible with 

diverse fusion paradigms, thereby providing a solid foundation for large-scale power data applications. 

4.2.3 Establishment of Standards and Specifications 

To ensure data quality, security, and interoperability, it is necessary to establish comprehensive standards 

and specifications for power big data. These standards should cover the full lifecycle of data acquisition, 

storage, processing, fusion, and application, providing unified technical guidance and strong guarantees 

for heterogeneous data fusion in power systems. 
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Figure 3. Development Trends and Future Research Directions of Heterogeneous Power Data 
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