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Abstract

Heterogeneous data fusion technology for electric power big data is a crucial support for the
construction and development of smart grids. The rapid development of smart grids has resulted in a
significant increase in the amount of data within power systems, which is characterized by being multi-
source, heterogeneous, and large-scale. This data includes real-time operational information, equipment
status monitoring data, and market transaction records from various devices and systems. It is essential
for enhancing grid operational efficiency, ensuring the security and stability of the grid, and optimizing
resource allocation. By integrating multi-source heterogeneous data, electric power big data fusion
technology enables data integration, sharing, and comprehensive analysis. This provides core technical
support for the intelligent management of power systems. Currently, this technology has made significant
progress in data cleaning, transformation, and integration. It is widely applied in areas such as grid
dispatching, load forecasting, and equipment status monitoring.
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1. Introduction

With the accelerated deployment of smart grids and the maturation of big-data technologies, power-
system big data has become a key driver of digitalization in the electricity sector. It plays a crucial role
in the sector's intelligent transformation. Modern grids generate massive, high-velocity, and highly
diverse data streams by deploying sensors, smart meters, and advanced measurement infrastructures
(Chen et al., 2019). These data span the full power-system chain—generation, transmission, substations,

distribution, consumption and dispatch that form a representative power big-data ecosystem.
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As smart grids evolve, heterogeneous data fusion has emerged as a central research topic in power
informatization. Improvements in monitoring devices and communications have led to exponential
growth in data volume and structural complexity. Meanwhile, inconsistent standards and strong
heterogeneity across business systems have resulted in “information silos” which substantially limit the
practical value of power big data (Zhang, Huang, & Bompard, 2018). To address this issue, researchers
have explored heterogeneous data-integration and fusion methods to enable effective aggregation of
multi-source power data. Conventional fusion techniques have made preliminary progress in areas such
as image processing, but major challenges remain. These challenges include data-quality issues, high
algorithmic complexity, and insufficient real-time processing capability (Hongjun, Wei, Ou, et al., 2020).
As show in Figure 1, power big data exhibits the classic “4V” characteristics—volume, variety, velocity,
and value. They encapsulate rich domain knowledge and operational semantics that are specific to power
systems. Its applications not only include real-time grid situational awareness, fault detection, and load
forecasting, but also support market operation decisions, renewable energy integration, and optimal
dispatch (Hossein Akhavan-Hejazi & Hamed Mohsenian-Rad, 2018). Consequently, the industry faces
pressing problems in efficiently acquiring, storing, processing, and sharing heterogeneous power data, as
well as systematically extracting actionable value.

This paper presents a structured review of heterogeneous fusion technologies for power big data. It
examines current technical bottlenecks and challenges, and explores multi-source integration strategies
focused on efficient fusion methodologies (Alma’aitah, Wafa’ Za’al, et al., 2024). This study compares
representative approaches and summarizes their advantages and limitations. It aims to provide theoretical
insights and practical guidance for integrating complex power-system data and improving grid

intelligence, resource allocation, and supply reliability.

2. Overview of Power Big Data

2.1 Data Sources and Characteristics

Power big data primarily originates from the large-scale deployment of sensor networks, smart metering
devices, and advanced metering infrastructure (AMI). It also comes from various power information
management systems in smart grids. Together, these sources form a multi-dimensional and multi-layer
data acquisition framework, including SCADA, EMS, and WAMS systems. The collected data
comprehensively cover key stages of the power system, such as generation, transmission, transformation,
distribution, consumption and dispatching (I Made Putrama & Péter Martinek, 2024).

Power big data exhibits typical “4V” characteristics: massive volume, high variety, high velocity, and
relatively low value density. These features result in strong heterogeneity, which is reflected in the
diversity of data sources, complex data structures, and strict real-time processing requirements. Data
from different sources often differ significantly in format, accuracy, and sampling frequency. This

includes real-time measurements, historical records, textual data, and multimedia data.
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To ensure reliable integration and utilization, data standardization, cleansing, and preprocessing are
essential steps in power big data management. Due to the stringent real-time requirements of power
system operations, data platforms must quickly respond to grid dynamics and provide accurate
information to support decision-making. Challenges related to data quality, security, and privacy
protection remain significant concerns in multi-source data integration. This underscores the importance
of developing efficient and reliable fusion technologies.

2.2 Processing and Analysis Technologies

In smart grids, large-scale sensing devices continuously collect operational data and transmit them to
centralized data warehouses for further analysis and decision support.

For data storage, distributed architectures are widely adopted to accommodate the rapid growth and
massive scale of power big data. A typical big-data platform architecture based on Apache open-source
technologies is illustrated. This framework relies on the Hadoop Distributed File System (HDFS) for
scalable storage. It uses MapReduce as the core distributed computing engine, enabling the efficient
management of petabyte- and even zettabyte-level datasets (Kyuseok Shim, 2012).

During data processing, distributed computing models such as MapReduce and Spark significantly
improve computational efficiency by decomposing tasks and executing them in parallel.

From an analytical perspective, the core of this architecture is built on data mining and intelligent analysis
techniques. These include association rule mining, clustering analysis, and pattern recognition. The
techniques have been extensively applied to power load forecasting, fault diagnosis and system condition
monitoring that accelerate the development of intelligent grid operations. Furthermore, machine learning
models, such as neural networks and support vector machines, have shown strong capabilities in
capturing complex nonlinear relationships. They are also effective in extracting deep feature
representations from power data.

In summary, the processing and analysis framework of power big data integrates data acquisition,
distributed storage, parallel computing, and intelligent analytics. This forms a complete technical pipeline
that supports efficient utilization and value extraction in modern power systems (Michat Kunicki,

Sebastian Borucki, Dariusz Zmarzly, & Jerzy Frymus, 2020).
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Figure 1. Overall Architecture of the Power Big Data Platform
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3. Technical Principles and Methods of Heterogeneous Fusion for Power Big Data

3.1 Data Acquisition and Preprocessing

With the rapid advancement of grid intelligence and informatization, the large-scale deployment of
sensors and high-speed data acquisition devices has increased data diversity. At the same time, data
volumes are growing rapidly. The power big data has become a prominent trend in modern power systems.
In heterogeneous fusion of power big data, data acquisition serves aim to extract key information from
multiple heterogeneous sources (Chu, Dong, Chen, Yu, & Huang, 2020). This process involves collecting
operational data related to power supply and demand, grid topology, load profiles, and energy storage
conditions. At the data access layer, the system must support multiple communication protocols and
interface standards. These include WebService-based standardized interfaces, power-specific
communication protocols (IEC 61850) and various proprietary file formats. At the data-type level, the
platform needs to handle diverse data modalities, such as real-time monitoring data, historical operational
records, equipment text logs, inspection multimedia data, and load time-series data. These data include
structured data, semi-structured data, and unstructured data.

Real-time operational parameters, such as power, voltage, current, load fluctuations, and energy storage
status, are continuously generated from these sources. In addition, equipment condition data play a vital
role in health monitoring and fault diagnosis. Indicators such as current, voltage, temperature, and
vibration directly reflect equipment operating states and potential abnormal conditions (Ablimit Aji,
Fusheng Wang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang, & Joel Saltz, 2013).
Furthermore, non-IoT data sources, including inspection records and maintenance reports, also need to

be integrated. These data are typically uploaded through periodic backups and provide essential support
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for grid safety management and asset maintenance. Log data generated by enterprise systems, such as
OA and ERP platforms, record critical processes related to dispatching, operations, and fault handling.
These logs provide valuable insights for safety supervision and incident analysis.

In the era of big data, information acquisition and preprocessing form the foundation of intelligent
decision-making. Data cleaning and preprocessing are particularly important, including duplicate
removal, missing-value imputation, outlier detection, and data format transformation. These procedures
aim to reduce noise, improve data consistency, and standardize the representation for subsequent analysis.
This ensures data accuracy and reliability, providing a solid foundation for effective heterogeneous fusion

and advanced analytics (Xiao, Wu, Li, Liu, Zhou, Deng, Yang, Hou, Liu, & Mao, 2019).

Table 1. Power Heterogeneous Data Collection

Input Data Type Description

System Operation Includes energy flow, operational status monitoring data, covering key links such
Data as power generation, grid infrastructure, load demand, and energy storage.
Equipment Includes parameters such as current, voltage, temperature, and vibration
Condition Data characteristics, which are used for equipment health monitoring and fault diagnosis.
Non-IoT API Includes power inspection data and laboratory experimental data, which are

Transmission Data  uploaded periodically through scheduled transmission mechanisms.
Generated from internal management systems such as OA and ERP, recording
Log Data business process logs related to dispatching, operation, and fault handling, which

are critical for power grid security management and incident investigation.

3.2 Data Aggregation, Storage, and Management

Heterogeneous power big data aggregation is a critical component of informatization in the power
industry. Its primary objective is to integrate heterogeneous data from multiple business systems in order
for enhancing overall data value and application effectiveness. Power big data originates from a wide
range of sources. Core operational data are collected from power production and management systems
such as Supervisory Control and Data Acquisition (SCADA), Energy Management Systems (EMS), and
Wide-Area Measurement Systems (WAMS), which continuously monitor grid operating conditions,
equipment parameters, and load profiles (Zhao & Wang, 2019).

In addition, equipment monitoring data play a vital role in system operation and maintenance. These data
include condition information from key assets such as generators, transformers, and transmission lines.
This includes measurements like temperature, vibration, and oil levels, which are acquired in real-time
through distributed sensor networks and transmitted to centralized data centers. External environmental
data, such as meteorological information and geographic information system (GIS) data, also constitute

important data sources, providing essential support for load forecasting, fault early warning, and
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operational planning. During data aggregation, the Extract—Transform—Load (ETL) process is widely
adopted to integrate data from heterogeneous sources, resolve format and semantic inconsistencies, and
construct a unified data view (Dong Xin Luna, Gabrilovich Evgeniy, Heitz Geremy, Horn Wilko, Murphy
Kevin, Sun Shaohua & Zhang Wei, 2014).

Big data storage technologies serve as fundamental infrastructure for the digital transformation of the
power industry, enabling reliable storage, efficient management, and high-performance access to massive
datasets. In heterogeneous fusion scenarios, the main categories of stored power data include system
operation data, equipment condition data, non-IoT API transmission data, and log data generated by
enterprise information systems.

To achieve scalable storage and high availability, distributed file systems such as HDFS and distributed
storage platforms such as Ceph are commonly deployed. Column-oriented databases, including HBase
and Cassandra, are suitable for large-scale structured data storage and analytical workloads, offering
improved query performance. Graph databases such as Neo4j are applied to represent and manage
complex topological relationships in power networks, including connectivity among grid components.
Furthermore, time-series databases such as InfluxDB are specifically designed for storing and managing
high-frequency monitoring data generated by grid sensors and measurement devices (Dong Xin Luna,
Gabrilovich Evgeniy, Heitz Geremy, Horn Wilko, Murphy Kevin, Sun Shaohua & Zhang Wei, 2014).
From a data management perspective, the power industry emphasizes data standardization and unified
interface design. ETL tools such as Talend and Informatica are widely used for data extraction,
transformation, cleansing, and preprocessing to ensure data consistency and quality. Enterprise-level data
warehouses, including Teradata and Greenplum, are commonly adopted to support integrated data storage
and analytical processing. Meanwhile, access control mechanisms and encryption technologies are
implemented to enhance data security and privacy protection. In addition, data lake architectures built on
Hadoop-based platforms enable the storage of raw-format data and provide flexible support for multi-
type heterogeneous data analysis. For data governance, platforms such as Apache Atlas are employed to

manage metadata, monitor data quality, and enforce data security and compliance policies.

Table 2. Storage and Management of Power Heterogeneous Data

Data Storage Data Management

Description Description

Technology Tool

Uses distributed file systems such as
Distributed Hadoop HDFS and Ceph to achieve
Storage reliable storage and efficient access
for massive-scale data.
Column- Technologies such as HBase and

Oriented Cassandra are suitable for storing

Data Warehouse

Data Lake

Tools such as Teradata and Greenplum
are used to build enterprise-level data
warehouses for data integration,
storage, and analytical processing.

Built on big data platforms such as

Hadoop to store raw-format data and
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Storage and analyzing large-scale structured support multi-type data analysis and
data, improving query performance. processing.
Systems such as Neo4j are applied
Tools such as Talend and Informatica
to store and manage complex
Graph are used for data extraction,
relational data in power grids, ETL Tools
Database transformation, and loading, enabling
including  connectivity = among
efficient data integration.
equipment.

Time-Series

Database

Databases such as InfluxDB are
specifically designed to store and
manage time-series data, such as

power grid monitoring data.

Data Governance

Tools

Platforms such as Apache Atlas are
used for metadata management, data
quality monitoring, and data security

control.

3.3 Data Fusion and Sharing

Data integration aggregates information from multiple heterogeneous sources and performs cross-
domain correlation analysis, thereby enriching the information content available for power system
applications. The objective of heterogeneous data integration is to unify different data formats and
standards, enabling a more comprehensive system-level perspective to support intelligent decision-
making in power grids. Integration and sharing technologies play a central role in this process by
facilitating efficient data aggregation, high-speed processing, and secure data exchange. Through
algorithm-driven fusion mechanisms, data from diverse sources can be effectively combined. This
approach addresses the challenges of large data volume, high velocity, and multi-type heterogeneity in
power systems, while ensuring data accuracy, consistency, and reliability.

3.3.1 Data Fusion Techniques

Kalman Filter-Based Data Fusion: In power systems, the diversity of data acquisition sources and the
heterogeneity of data formats lead to highly heterogeneous measurement environments. These data
include multi-source, multi-temporal, and multi-precision measurements obtained from different sensors,
such as voltage, current, and power factor signals. By integrating such heterogeneous observations,
Kalman filtering provides more accurate and robust state estimation results, thereby supporting grid
monitoring, control, and operational optimization.

The Kalman filtering algorithm adopts a recursive estimation framework, in which the core
computational procedure consists of two key stages: prediction and update. In heterogeneous power big
data fusion, these stages are implemented through a series of mathematical operations to dynamically
integrate multi-source measurements and minimize estimation errors, enabling optimal state estimation
under noisy and uncertain measurement conditions.

(1) Prediction Step: Based on the optimal state estimate at the previous time step and the system noise,
the prior state at the next time step is predicted. In power system applications, the state prediction and

the corresponding error covariance prediction can be expressed as
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Rik-1 = FiRk-1k-1 + Bik
where Ry, denotes the state estimate at time step k predicted from the estimated state at time step
Ryx-1- Fi is the state transition matrix that describes the evolution of the system state from time step
k—1 to k; Rg_qx—1 represents the optimal state estimate at time step k — 1; By is the control input
matrix that characterizes the influence of control inputs on the system state; and uk denotes the control
input vector at time step k.
(2) Prediction Error Covariance Matrix: The prediction error covariance matrix is used to characterize
the uncertainty associated with the predicted system state and can be expressed as:

Pik-1 = FiPee1k-1Fk + Qi
Where Pgi-, denotes the prediction error covariance matrix at time step k, P_;x—; represents the
estimation error covariance matrix at time step k — 1, and Qy 1is the process noise covariance matrix,
which quantifies the uncertainty introduced by system process noise.
(3) Update Step: The update step refines the system state estimate by incorporating new measurement
information and the predicted state. In power system applications, this process can be expressed as:

Ky = Pt HY (HicPget HY + Ri) ™

Xk = Rik-1 + Kie(zx — HiXye—1)
Pex = (I — KgHy) Pk

Where Kj denotes the Kalman gain that balances the contribution of the predicted state and the
measurement information; Hy is the observation matrix that maps the system state to the measurement
space; zk represents the measurement vector at time step k, Xy is the updated optimal state estimate
at time step k; Ry is the measurement noise covariance matrix that characterizes the uncertainty of
observation noise; Py denotes the updated error covariance matrix at time step k; and I is the identity
matrix.

(4) Mathematical Principles and Computational Process: The Kalman filtering algorithm is founded on
Bayesian inference and Gaussian distribution assumptions, and recursively estimates the system state by
minimizing the variance of prediction errors. During the prediction stage, the algorithm estimates the
next system state and its associated uncertainty based on the system dynamic model. During the update
stage, newly acquired measurement data are incorporated to correct the predicted state, and the Kalman
gain is employed to achieve optimal state estimation. Notably, this recursive framework does not require
storing historical data sequences. It only relies on the current state estimate and error covariance matrix.
This ensures high computational efficiency and real-time performance, making it well-suited for large-
scale power system applications.

Model-Based Data Fusion: Model-based data fusion approaches use standardized data models to achieve
interoperability across heterogeneous systems. For example, Wu introduced the Common Information
Model (CIM) as a unified data representation framework, enabling heterogeneous system data to be
mapped into the CIM structure for standardized integration and fusion. The CIM model defines typical

object structures and relational semantics in power systems. By extending the CIM schema to
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accommodate application-specific requirements, data mapping and fusion across different systems can
be effectively realized. For instance, by constructing standardized equipment condition models and
performing semantic mapping and structural alignment with CIM, multi-source equipment status data
can be efficiently integrated. Model-based fusion techniques effectively address heterogeneity challenges,
improve data standardization and interoperability, and help eliminate “information silos” by promoting
cross-system data sharing and exchange. The unified and structured representation further provides a
solid foundation for subsequent data analytics and decision-making processes, significantly enhancing
processing efficiency and result reliability.

Machine Learning-Based Data Fusion: Machine learning-driven fusion methods leverage advanced
algorithms such as deep neural networks to extract and integrate features from multi-source
heterogeneous data. For example, Ji proposed a machine learning-based data integration framework that
employs deep learning techniques to automatically discover intrinsic data patterns and correlations,
achieving high-accuracy fusion performance. Specifically, deep Boltzmann machines have been utilized
to project heterogeneous data into a unified feature space for effective integration. Other studies have
applied recurrent neural networks to construct temporal feature models for anomaly detection and state
recognition tasks. These approaches are capable of capturing complex nonlinear relationships within
power systems and adaptively learning discriminative feature representations, thereby significantly
improving fusion accuracy and computational efficiency. Consequently, machine learning-based fusion
techniques provide new technical pathways for power big data processing and accelerate the intelligent
evolution of power system operations.

Rule-Based Data Fusion: Rule-based fusion methods integrate heterogeneous data by applying
customized integration rules and domain knowledge constraints. For example, Liu Jia proposed a rule-
driven data integration framework that performs data filtering, cleansing, and merging based on
predefined integration standards tailored to specific application scenarios. These rules are typically
designed according to data attributes and operational requirements to ensure targeted and accurate fusion.
In addition, event-driven mechanisms have been introduced to control information exchange and data
sharing, enabling dynamic and on-demand integration. Such approaches enhance fusion efficiency and
precision through explicit logical constraints and flexible control strategies, providing adaptable
solutions for complex power big data environments and improving the practical value of heterogeneous
data integration.

3.3.2 Data Fusion Tools

Hadoop and Spark: Hadoop and Spark serve as core technological frameworks for big data processing
and provide essential support for distributed storage architectures, parallel computing, and advanced
analytics in the power industry. Both platforms are capable of handling large-scale datasets and fully
satisfy the high-throughput and high-reliability requirements of power system data processing. Hadoop
achieves efficient storage and access of massive data through its distributed file system and parallel

computing mechanisms, while Spark significantly improves processing throughput by leveraging in-
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memory computing paradigms. The synergistic integration of Hadoop and Spark enables fast processing
and large-scale integration of power big data, thereby establishing a solid foundation for heterogeneous
data fusion and system-level analytics.

Deeplearning4j: Deeplearning4j is a distributed deep learning framework that can be seamlessly
integrated with big data platforms such as Hadoop and Spark, enabling large-scale parallel training and
efficient processing of massive datasets. By exploiting deep neural network architectures, Deeplearning4j
can automatically extract discriminative features and discover latent patterns in power data, thereby
facilitating high-accuracy data integration and intelligent analysis. Its strong performance in power data
fusion and anomaly detection applications provides effective technical support for enhancing the
intelligence level of modern power systems.

ETL Tools: ETL frameworks play a central role in data integration by performing data extraction,
transformation, and loading operations. Based on predefined data flow and transformation rules, these
frameworks collect data from heterogeneous sources, perform data cleansing and normalization, and load
standardized data into integrated platforms, ensuring data accuracy, consistency, and completeness. In
power big data integration scenarios, ETL tools significantly optimize processing pipelines, improve
integration efficiency and quality, and support systematic data governance. Consequently, they establish
areliable foundation for subsequent analytics and decision-making processes and promote the continuous

advancement of heterogeneous data fusion technologies in power systems.

Table 3. Heterogeneous Data Fusion Technologies and Tools for Power

Fusion Technology  Brief Description Tool Brief Description
Map heterogeneous system Big-data platforms enabling
data into a unified CIM large-scale storage and
Model-based fusion Hadoop & Spark
schema for standardization distributed/fast computing
and integration. for fusion and analytics.

Use deep learning/neural
Spark-based deep learning
networks for feature
ML-based fusion Deeplearning4j framework for fusion and
extraction and multi-source
anomaly detection.
fusion.

Tools (e.g., Talend,
Apply predefined rules to
Informatica) for extract—
Rule-based fusion filter, cleanse, and merge ETL tools
transform—load  pipelines
multi-source data.
supporting integration.
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3.3.3 Data Sharing Technologies

SOA-Based Data Sharing: Service-oriented architecture (SOA) enables data sharing across
heterogeneous power information systems by exposing standardized service interfaces, thereby
improving inter-system data exchange and interoperability. For example, Wang developed an SOA-based
data sharing platform that reduces coupling among systems while enhancing adaptability and scalability
of the sharing mechanism. Standardization and compatibility of interfaces are central to effective SOA
implementation, requiring a shared semantic understanding and consistent rules across participating
systems. In the power sector, SOA can integrate business functions across dispatching, operation, and
customer service departments, facilitating cross-department collaboration and data reuse. With ongoing
technological advances and standardization efforts, SOA is expected to play an increasingly important
role in power big data sharing.

Cloud Computing-Based Data Sharing: Cloud platforms support cloud-based storage, management, and
distribution of power industry data by leveraging elastic computing and large-scale storage capabilities.
Li reported that cloud-based infrastructures can improve data management efficiency and enable
convenient data access and sharing through network connectivity. Nevertheless, data security and privacy
protection remain major challenges for cloud-based sharing, and platform stability and reliability are also
critical in power system applications. Power utilities can build centralized data centers on cloud platforms

to manage business data and deliver data-driven services to users through cloud-based interfaces.
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3.3.4 Data Sharing Tools

RESTful APIs: RESTful APIs are widely adopted interface standards in service-oriented architectures
and provide an effective mechanism for cross-system and cross-platform data sharing. By defining
unified service interfaces, interoperability among heterogeneous systems can be significantly enhanced.
Based on the HTTP protocol, RESTful APIs employ standardized operations such as GET and POST to
access and manipulate resources. In power big data sharing applications, multiple API endpoints can be
designed to support data querying, retrieval, and service invocation, enabling efficient data exchange
among different systems. The standardized interface design simplifies sharing workflows, improves
interaction efficiency, and promotes seamless data interoperability across platforms, thereby supporting
the digital and intelligent transformation of power systems.

Cloud Storage Services: Cloud storage platforms, such as Alibaba Cloud and Amazon Web Services
(AWS), provide scalable and reliable infrastructures for power industry data storage and access. These
services are characterized by high scalability, availability, and security, making them well suited for large-
scale power big data sharing. By adopting distributed storage architectures, power data are replicated and
distributed across multiple nodes, ensuring high system availability and strong fault tolerance. In addition,
cloud storage platforms offer flexible access interfaces and fine-grained access control mechanisms,
which enhance data security and privacy protection while facilitating efficient data sharing and

collaboration.

Table 4. Heterogeneous Data Sharing Technologies and Tools for Power

Sharing Technology Brief Description Tool Brief Description
Standardized service interfaces SOA-friendly interfaces
SOA-based sharing RESTful API
for cross-system interoperability. enabling cross-platform sharing.
Cloud-based Store and distribute power data Services (e.g., Alibaba Cloud,
Cloud storage
sharing via cloud platforms. AWS) for scalable sharing.

In heterogeneous power data environments, data integration techniques commonly perform multi-
dimensional fusion across temporal, spatial, and semantic dimensions. For example, Gaussian models
and hierarchical Bayesian methods can be adopted to improve integration accuracy and computational
efficiency. In practice, the power sector often relies on standardized data models and interfaces (e.g., SG-
CIM) to normalize heterogeneous data sources and establish a unified foundation for interoperability and
data sharing. Moreover, ETL pipelines combined with distributed storage systems enable automated data
cleansing, transformation, and loading, thereby ensuring consistent data quality across systems. Finally,
shared data platforms and open APIs further enhance cross-department and cross-system data circulation,

supporting the continuous development of smart grids.
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4. Development Trends and Future Research Directions

4.1 Technology Development Trends

With continuous advances in smart grids and data analytics, heterogeneous integration of power data is
exhibiting expanding application potential and accelerating convergence with emerging technologies.
Looking ahead, power data integration will increasingly emphasize real-time capability, accuracy, and
intelligent processing to support secure, reliable, and high-efficiency power system operations.
Recently, more artificial intelligence (Al) techniques have been introduced into power data fusion. For
instance, distance-based clustering methods can detect abnormal attributes by measuring deviations from
cluster centroids, while pattern-recognition-driven knowledge discovery can further identify anomalous
behaviors in complex datasets. Deep learning has also been applied to load forecasting and renewable
generation prediction, improving the accuracy and robustness of forecasting results. Moreover, Al-based
data processing can enhance data quality by mitigating the effects of noise and outliers. In addition,
distributed ledger technologies (DLT) show promise for enabling more transparent and secure data
sharing and management. Due to their distributed storage and tamper-resistance properties, such
technologies can strengthen security during data transmission and integration, providing technical
safeguards for power system operation.

4.2 Future Research Directions

As smart grids and analytical technologies evolve, heterogeneous power data integration is becoming a
key enabler of power system intelligence. Future studies are expected to focus on the following directions.
4.2.1 Development of Efficient Data Fusion Algorithms

Given the diversity, high dimensionality, and real-time requirements of power data, future work should
develop more efficient and accurate fusion methods. In particular, leveraging deep learning and Al to
automatically learn representative features and identify latent patterns is expected to be a major research
focus for improving integration performance.

4.2.2 Development of Data Fusion Platforms and Toolchains

To streamline integration workflows and facilitate data aggregation, sharing, and advanced analytics,
there is a strong need for integrated data fusion platforms and toolkits. Such platforms should be scalable,
user-friendly, and robust, supporting heterogeneous data modalities and remaining compatible with
diverse fusion paradigms, thereby providing a solid foundation for large-scale power data applications.
4.2.3 Establishment of Standards and Specifications

To ensure data quality, security, and interoperability, it is necessary to establish comprehensive standards
and specifications for power big data. These standards should cover the full lifecycle of data acquisition,
storage, processing, fusion, and application, providing unified technical guidance and strong guarantees

for heterogeneous data fusion in power systems.
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