
Applied Science and Innovative Research 

ISSN 2474-4972 (Print) ISSN 2474-4980 (Online) 

Vol. 1, No. 2, 2017 

www.scholink.org/ojs/index.php/asir 

80 
 

An Agricultural Spraying Robot Based on the Machine Vision 

Zhongrui Wang1 & Zhongcheng Wang2* 

1 Qingdao No.2 Middle School of Shangdong Province, Qingdao, China 

2 Qingdao Agricultural University, Qingdao, China 

* Zhongcheng Wang, E-mail: wangzc0826@163.com 

 

Received: May 20, 2017          Accepted: June 2, 2017         Online Published: June 6, 2017 

doi:10.22158/asir.v1n2p80       URL: http://dx.doi.org/10.22158/asir.v1n2p80 

 

Abstract 

Accurate target spraying is a key technology in modern and intelligent agriculture. For solving the 

problems of pesticide waste and poisoning in the spraying process, a spraying robot based on 

binocular machine vision was proposed in this paper. A digital signal processor was used to identify 

and locate tomatoes as well as to control the nozzle spray. A stereoscopic vision model was established, 

and color normalization, 2G-R-B, was adopted to implement background segmentation between plants 

and soil. As for the tomatoes and plants, depth information and circularity depended on the nozzle’s 

target, and the plant shape area determined the amount of pesticide. Experiments shown that the 

recognition rate of this spraying robot was up to 92.5% for tomatoes. 
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1. Introduction 

According to agricultural departments, there are approximately 35 varieties of and 58 million manual 

plant protection machines in China (Ling & Fenfen, 2002). Overseas, spray technologies are more 

advanced than domestic varieties, such as electrostatic aerial spraying (Latheef, Carlton, Kirk, & 

Hoffmann, 2009). However, all of these sprayers and technologies are widely used at present at home 

and abroad that do not emphasize precision or pilot status, waste a large amount of pesticides and are 

harmful to workers’ health. Thousands of intoxication accidents have occurred in the past (Xiongkui, 

2004). Herbicide abuse also hurts the environment in addition to leading to soil acidification and water 

pollution (Peralta & Hegazy, 1994). Traditional backpack sprayers, which have a high failure rate and 

poor performance, could not meet the requirements for scientific and reasonable spraying (Giles & 

Slaughter, 1997). 

Some studies on auto-spraying have been performed by domestic and international scholars (Yiming, 

2004). However, at present, most spraying robots lean towards weed identification instead of crop 

identification, such as tomatoes. In addition, most spraying robots based on machine vision are 
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developed using OpenCV, which depends on VC6.0 to be run an industrial computer or PC, leading to 

a series of problems due to the long system development cycle, high development cost, large volume 

and high power consumption. More importantly, existing systems use a single camera to identify plants; 

however, the obtained images are not good enough to generate accurate depth information, and thus, 

the precision of locating and spraying targets is extremely low. 

To overcome the disadvantages listed above, a spraying robot based on location using binocular 

machine vision is presented in this paper. The digital signal processor TMS320DM642 is used to 

identify and locate tomatoes rather than OpenCV, an open source computer vision library based on a 

PC. Referencing the binocular vision model, we designed and implanted a location algorithm over the 

DSP. In addition, we proposed and verified the tomato features extraction algorithm. 

 

2. Hardware Design 

The spraying robot consists of two parts: a host computer image process module and a slave computer 

control module. The image process module includes the image process core, TMS320DM642; a power 

module; a binocular vision camera; and an image output module. The slave computer control module 

includes the main control module, TMS320F2812; a power module; a manipulator; a spraying robot; a 

GSM module; a GPS module; and a mobile platform. 

The sprayer works as follows. First, the binocular vision camera captures images from the head area 

and transmits them to the host computer; the TMS320DM642 image processor (DM642 in short) uses 

color normalization 2G-R-B to implement background segmentation between plants and soil while it 

uses circularity to identify tomatoes from other plants. Additionally, the binocular locating model could 

acquire the targets’ depth and three-dimensional coordinate information. Then, the three-dimensional 

coordinate data are transported to the slave computer through the RS232 serial communication. 

TMS320F2812 (F2812 in short) is the main control chip; aims the nozzle, which is fixed on the 

terminal of the manipulator, at the targets; and then starts the spray system to accurately spray the 

targets, depending on the received data from the host computer. Furthermore, TMS320F2812 could 

control the amount of pesticide using the area of the tomatoes. In addition, a GSM module was used to 

transmit data regarding the machine conditions to the server, and the user could access server by a 

mobile phone. In addition, a GPS module is used as a high accuracy positioning module; hence, 

workers can easily adjust the path of the machine. Therefore, the spraying machine is able to achieve 

unmanned and intelligent spraying. 

 

3. Software Design 

3.1 Main Control Module Program Design 

The main control module mainly performs 3 functions. 

1) Receiving and analyzing the image process results from TMS320DM642 as well as controlling the 

spraying robot to spray quantitatively toward the targets. 
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2) Driving the mobile platform to move and stop precisely. 

3) Gathering the system states and position information, receiving the request from the worker and 

transmitting information to server. 

The main control chip F2812 that drives the mobile platform, receives and analyzes the image process 

results from DM642, controls the manipulator and sprays the targets, responds to the requests from the 

worker and sends system state and poison information. 

3.2 Main Image Processing Module Program 

The diagram of the main image processing module is shown in Figure 1. Using a binocular camera to 

capture images, we first process the images through the color normalization 2G-R-B and the Laplacian 

algorithms. Furthermore, by referencing the binocular locator model, the DSP could calculate the 

three-dimensional coordinate values after extracting the targets’ features. 

 

image capture

 image Pre - processing

shape feature extraction 

display and output

binocular vision locating

end

start

Laplace  edge processing

 

Figure 1. Main Image Processing Module 

 

3.3 Section and Subsection Headings 

3.3.1 Color Normalization 2G-R-B 

A MJW camera by SONY Corporation was adopted to capture two-channel images. The captured 

images include R, G and B three color components, which, respectively, represent red, green and blue. 

According to previous research by Woebbecke and Meyer (Meyer et al., 1988), the color parameter G 

makes a great difference between green plants and soil. In addition, excess green 2G-R-B, similar to 

R-G-B, which aggravates the green parameter, is an effective color parameter for background 

segmentation of plant images (Woebbeckew, Meyer, Mortensen, & Von Barge, 1995). 
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Parameter  yxExG ,  represents the useful image, and three parameters,  yxG , ,  yxR ,  and 

 yxB ,  represent three-color components matrixes (Ying, 2005). 

3.3.2 Laplace Edge Processing 

The Laplacian equation uses second derivative information and has strait isotropic homogeneity. The 

image becomes a cliffy zero cross point, which allows for judgment of the target’s edge to be made 

easily. 

The definition of the Laplacian equation is: 

 
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2

2

2
2 ,

y
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





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The images processed by the Laplacian equation are shown in Figure 2. It is obvious that the eight 

neighborhoods Laplacian processed image has more practical values than the four neighborhoods 

Laplacian image. 

 

    

  (1) The original image                (2) Eight neighborhoods image 

Figure 2. Laplacian Edge Processing 

 

3.3.3 Tomatoes’ Features Extraction 

The tomatoes have an approximate ball shape, which is different from the shape of the plants, and the 

area of a tomato is obviously less than that of a plant. Therefore, we use the area and circularity 

parameters to distinguish tomatoes from plants. 

Circularity is a characteristic quantity to calculate the complex degree of the shape based on the area 

and perimeter. The circularity calculation formula is: 

2

4

L

S
e




                                   (3) 

Where parameter S represents the region area and L represents the region perimeter. The smaller the 

circularity, the greater the complexity of the image, and vice versa. When parameter e  is close to 1, it 

is implied that the image is extremely close to a circle. 

The steps of identify algorithm for tomatoes are as follows: 

Ⅰ. In the first image captured by the left stereo camera, search for the first point of the targets’ contour, 
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process it using the Laplacian equation above and mark it as coordinate 
1A . 

Ⅱ. Skipping 
1M  points in the horizontal direction, whose magnitude is decided by the targets’ size, 

search for the second point in the contour and mark it as 
1B ; if there is not a second point, then repeat 

step Ⅰ. 

Ⅲ. Skipping 
1N  points in the vertical direction, start from point 

1A  and search for the third point in 

the contour and mark it as 
1C ; if the query process is hindered, then repeat step Ⅱ a maximum of 10 

times until point 
1C  is determined. If a second point does not exist, then return and repeat step Ⅰ. 

Similar to point 
1M , the magnitude of parameter 

1N  is decided by the target’s size. 

Ⅳ. Make a vertical bisector function through the 
1A , 

1B  and 
1C  that were found and mark it as 

function 
1f ; Similar to 

1A  and 
1C , the function is denoted by 

2f . 

Ⅴ. Seek the coordinates of the intersection point between function 
1f  and 

2f , mark it 
1O , which is 

the target’s centroid. 

Ⅵ. Correspondingly, process the second image captured by the right stereo camera and calculate the 

target’s three points, which are 
2A , 

2B , 
2C , and the centroid 

2O . 

The schematic diagram of the algorithm is shown in Figure 3.  
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Figure 3. Schematic Diagram of the Algorithm 

 

3.3.4 Tomatoes’ Volume Calculation 

In the steps Ⅰ and Ⅴ of section 3.3.3, we can obtain the length of 
1A  and 

1O , which is the target’s 

radius and is denoted by 1r . Similarly, compute 2r  through 
2A  and 

2O  and average r  through 

1r  and 2r . 

We could also use the formula 3

3

4
RV   to calculate the target’s volume, which is denoted by the 

parameter V , and decide the amount of pesticide for the target. 
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3.4 Binocular Locating Arithmetic Design 

3.4.1 Camera Calibration 

Camera calibration is the process by which the intrinsic parameters and external parameters of the 

binocular camera are captured. In this design, the lattice calibration board is 7×5. Using a binocular 

vision camera, 20 images were captured from a calibration board that was placed at different locations. 

We use the sixth calibrated parameters from the calibration board as the external parameters. 

3.4.2 Stereo Matching Based on Feature Points 

In section 3.3.3, we calculated the feature points of the centroid  
111

, yxO  from the left image and the 

centroid  222 , yxO  from the right image. 

These feature points likely represent the same target if coordinate 1y  is close to coordinate 2y . 

Therefore, the stereo matching courses become extremely simple and efficient. 

3.4.3 Three-Dimensional Coordinate Calculation 

Figure 4 shows the binocular stereo vision model of arbitrary point P  in space. 
LO  and 

RO  are the 

left and right camera coordinate system origins, respectively, while 
1I  and 

2I  are the image planes 

of the left and right camera, respectively. 

 

P

OL

ZR

I1 I2P1 P2

XR

OR

XL

ZL

YL YR

 

Figure 4. Binocular Stereo Vision Model 

 

The centroids are 
1O  and 

2O , whose images coordinates, respectively, are  111 ,vup  and  222 ,vup , 

which were calculated in section 3.3.3. 

According to the camera imaging model, we could obtain the formulas as follows (Zou, X. J., Zou, H. 

X., & Lu, 2012). 
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lM  and 
rM  are the projection matrices, and  zyx ,,  is the three-dimensional coordinate of point 

P . Eliminating 
lZ  and 

rZ  from the above formulas, we can obtain the arithmetic expression below. 
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The formula above is changed into matrix form: 

bAP                                     (7) 
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According to least squares method, we can determine the concrete three-dimensional value. 

  bAAAP T1
'


                                 (11) 

 

4. Test Result and Analysis 

4.1 Test Site and Condition Selection 

The prototype of the spraying robot is shown in Figure 5. It was placed in the middle of two trenches of 

plants; the binocular camera is between 30 cm and 80 cm away from the targets. The diameters of the 

tomatoes in the greenhouse range from 6 cm to 12 cm, which is beneficial for testing and verifying the 

generality of our feature extraction algorithm. To test the adaptability of the system, the experiment was 

conducted in a tomato greenhouse from the morning, with enough light, to dusk, with less light, with 

no illumination compensation, and the experiment was repeated several times. 
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Figure 5. The Spraying Robot Prototype 

 

4.2 Test Results and Analysis 

The binocular vision camera captures images from the head area and transmits them to the host 

computer; DM642 processes and analyzes the images and calculates the target’s three-dimensional 

value depending on the equations in caption 3.4.3. Then, the three-dimensional coordinate data can be 

transported to F2812. 

We use a six Degrees-Of-Freedom (DOF) manipulator for target spraying and use the relay to control 

the pesticide spraying robot. In detail, F2812 decides when to move or not move the mobile platform; 

the manipulator decides which target to spray, and the relay determines when the pesticide system 

sprays and stop spraying. 

To test the illumination factor that influenced this system, we settled the system in a tomato greenhouse 

from 8:00 a.m. to 8:00 p.m. and tested it every two hours. Even at dusk, we did not add any 

illumination compensation. Figure 6 demonstrates that in the morning and especially at dusk and night, 

the identification rate was lower than at noon. The identification rate is stable both after and before 

noon, such as from 10:00 to 16:00. Obviously, illumination is the most vital factor for the identification 

rate because the camera is able to capture less image information when with less illumination. 
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Figure 6. The Influence of the Illumination Intensity 
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Figure 7 shows that when the targets’ diameter is less than 7 cm and more than 12 cm, the identification 

rate declines repeatedly. However, in a relatively large area between 7 cm and 12 cm, the success rate is 

considerable and reliable. Using Figure 10, we can conclude that the targets’ diameter is an important 

factor for the identification rate. Therefore, the feature extraction algorithm would lose efficacy when 

the target’s diameter is too small or too large to be captured by the camera. 
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Figure 7. The Influence of the Target Diameter 

 

5. Conclusions 

In this paper, DM642 was used as the main control core to identify and locate tomatoes, while F2812 

was used to control the nozzle spray. Tests demonstrated that the illumination intensity, target diameter 

and target distance were the three factors that affected and decided the identification rate of the system. 

The system spray design in this paper is able to effectively reduce worker’s intoxication accidents, 

spray cost, and pesticide residue, which is of great significance for the development of agricultural 

spraying towards intelligent systems, modernization, and precision. On the one hand, what appropriate 

conditions and circumstances should be developed as much as possible. On the other hand, for these 

problems, illumination compensation and a more general identification algorithms are necessary and 

urgent. 
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