Original Paper

Wisdom's New Frontier: AI and the Quest for Understanding

Katryna M. Johnson^{1*} & Jack Lesser¹

¹ Metropolitan State University, Department of Marketing, Supply Chain Management and International Business, Minneapolis, U.S.A.

* Katryna M. Johnson, E-mail: Katryna.johnson@metrostate.edu

Received: August 22, 2025 Accepted: October 29, 2025 Online Published: November 11, 2025

doi:10.22158/assc.v7n6p12 URL: http://dx.doi.org/10.22158/assc.v7n6p12

Abstract

Artificial intelligence is increasingly used to support human judgment and decision-making. As its role expands, a deeper question emerges: Can AI meaningfully contribute to human wisdom—not just by improving access to information or enhancing efficiency, but by engaging with the more profound dimensions of human understanding? While AI excels at identifying patterns and relationships, wisdom encompasses far more—it demands discernment, ethical reflection, contextual sensitivity, and the capacity to navigate competing values. This article considers how AI may support wisdom. It also examines the extent to which AI limits judgment and impairs morality. The authors propose an "AI—Human Synergy Wisdom Model (AHSWM)" to examine possible roles of AI in wise decision-making. The model views humans as being the origin of wise decision-making. This paper also acknowledges the potential of AI to assist when making wise decisions when used with care. A model is developed from cognitive psychology, moral philosophy, and research in technology management. The model advocates for creating AI that does not supplant common-sense human knowledge, but instead aligns with it, enabling AI to assist in establishing moral responsibility and serving broader social ends. Thus, the article aims to provide a framework for fostering sound reasoning in complex situations, while highlighting the human capacities that are essential to wisdom.

Keywords

AI wisdom, cognitive processes, ethical decision-making, knowledge management, theoretical models, artificial intelligence, philosophical perspectives.

1. Introduction

Generative intelligence has become a defining feature of contemporary artificial intelligence (AI). The systems that include large language models and image generators show their ability to generate new outputs by learning from extensive datasets (Casacuberta, 2012). The basic idea of generative

intelligence is to learn patterns, structures, and meanings from previous data to create new combinations that adapt to specific contexts. The technological innovation of learned adaptive synthesis mirrors a fundamental cognitive principle that humans have used for reasoning throughout history: that the persistent examination of prior knowledge leads to expertise and discovery.

Indeed, the generative structure of intelligence is not unique to machines. For centuries, human wisdom has been understood as a similarly generative faculty—one that draws upon accumulated experience, memory, and moral reflection to respond to complex and uncertain situations. Wisdom and generative AI both involve transforming prior knowledge into new insights. Wisdom achieves this through moral reasoning, emotional awareness, and consideration of social context. For example, Baltes and Staudinger (2000, p. 122) define wisdom as "expert knowledge in the fundamental pragmatics of life," emphasizing its developmental and experiential foundations. Their Berlin Wisdom Paradigm identifies five core criteria of wisdom-related performance, each of which depends on the integration of learned experience into novel, contextually appropriate judgments. Sternberg (2023) defines the WICS model (Wisdom, Intelligence, and Creativity Synthesized) as the process of creating and applying experience and creative insight in the interest of the common good, encompassing wisdom as well. Wisdom, according to Glück (2022), arises from the ongoing interaction among cognitive, affective, and motivational processes that evolve through reflective engagement with diverse life experiences. Kaufman, Sternberg, and Roberts (2019) explain that wisdom, creativity, and intelligence function as connected abilities that help people create meaning while adapting to uncertainty and augmenting human potential. These models demonstrate that wisdom extends beyond knowledge storage, as it requires continuous interpretation and judgment activities. Kaufman, Sternberg, and Roberts (2019) explain that wisdom, creativity, and intelligence function as connected abilities that help people create meaning while adapting to uncertainty and enriching human development. These models demonstrate that wisdom extends beyond knowledge storage, as it requires continuous interpretation and judgment activities. According to Kaufman, Sternberg, and Roberts (2019), wisdom, along with creativity and intelligence, forms an interconnected set of abilities that help people create meaning, adapt to uncertainty, and promote human flourishing. The models present wisdom as a knowledge application rather than a knowledge storage, because it requires active interpretation and the development of judgment.

systems can demonstrate wisdom. The rapid evolution of AI has given rise to a new perspective on the role of machines in social order. The work on AI has evolved from its early days of pattern detection and language processing to encompass currently sophisticated subjects, such as responsibility and judgment (Ferguson, 2025). While these developments may have great potential in various areas, such as medicine or education, there is also the question of what they mean concerning human agency, interpretation authority, and the ethically responsible design of increasingly independent systems (Coeckelbergh, 2020; Goertzel, 2009; Vallor, 2016).

AI systems today do not possess the conceptual features that define wisdom, despite exhibiting

generative capabilities. AI systems possess data processing capabilities and predictive modeling and optimization functions, which do not provide enough support for the extensive reasoning abilities that define wise decision-making. The definition of wisdom encompasses three essential elements: contextual understanding, emotional insight, moral deliberation, and reflective abilities to handle multiple priorities and uncertain outcomes (Baltes & Staudinger, 2000; Grossmann et al., 2020a; Jeste et al., 2020). The reflective ethical processes that define wisdom are absent in AI systems that produce outputs that mimic human reasoning. The system cannot comprehend social situations, manage emotions, and assess outcomes through human value systems (Chukwuere, 2024; Jackson, 2024; Teachflow. AI, 2023). The generative nature of AI operates through mechanisms that differ fundamentally from the generative reasoning processes that define human wisdom.

The field of AI ethics has expanded quickly, but wisdom remains underdeveloped in system design and governance (Taddeo & Floridi, 2018; Vallor, 2016). The absence of wisdom in AI domains becomes most critical when AI systems operate in morally sensitive areas, including healthcare triage, automated hiring, criminal justice, and elder care. Technical performance alone is insufficient in these specific settings. Systems need to be evaluated based on both efficiency metrics and alignment with ethical principles and the achievement of social priorities—highly functional systems without wisdom approximation risk generating ethically inadequate and socially disruptive outcomes.

This paper, therefore, explores the question of whether and how AI might support wise decision-making—not by replicating human consciousness, but by approximating the ethical and moral reasoning, perspectival awareness, and contextual sensitivity that wisdom entails. The research draws from psychological, philosophical, and technological literature to analyze theoretical models of wisdom, evaluate their applicability to AI, and develop a conceptual framework to support the development of systems that can facilitate wiser human-machine interactions. We also consider the role of human-AI collaboration, recognizing that wisdom may emerge not from artificial systems alone, but from how they extend and enhance human moral judgment in complex environments.

Crucially, we approach the challenge of artificial wisdom not as a binary question of possibility or impossibility, but as a design problem. Moral psychology research has studied the relationship between intelligence and wisdom since Ambrose (2016) and Sternberg (2023). The emergence of generative AI necessitates that researchers investigate how human wisdom can be understood and partially replicated through non-human systems to develop ethical AI and enhance wisdom.

1.1 Scope and Structure of the Study

This article examines the conceptual and design foundations for developing artificial intelligence that supports informed decision-making. It builds on the distinction made in the introduction between generative intelligence and human wisdom, considering whether AI can be intentionally structured to promote context-sensitive, ethically grounded judgment. The paper reflects this question in four parts. First, it considers the core psychological and philosophical dimensions of wisdom that remain largely absent from today's AI systems. Second, it highlights real-world and technical challenges that occur in

computationally simulating wisdom, specifically issues related to context, emotion, and ethical sensitivity. Third, it offers a rough outline of artificial wisdom as a proposed architecture, synthesizing insights from metacognition, moral psychology, and system ethics.

This research addresses the utilization and development of AI Systems that enhance human decision-making. The paper examines

- 1. **Philosophical and Theoretical Models of Wisdom:** This segment examines the limitations of wisdom often found in modern-day AI systems.
- 2. **Examination of Human Wisdom's Role and Challenges for AI:** While AI excels at data processing and pattern recognition, it lacks human consciousness, true wisdom, and the ability to understand complex moral and emotional contexts, posing significant philosophical and practical challenges for creating "sage AI" and underscoring the need for human guidance and ethical frameworks to augment rather than replicate human decision-making, especially when computationally simulating wisdom.
- 3. **Outline of Artificial Wisdom Architecture:** This framework proposes a synthesis of insights from metacognition, moral psychology, and systems ethics.

The overarching goal of this article is not to argue that AI can replicate human wisdom, but rather to define the conditions under which AI might support wiser human-machine collaboration.

1.2 Contribution to Literature

This article contributes to the growing body of scholarship about how AI can be designed to reflect more than just intelligence or efficiency. It adds to current scholarship by bringing together multiple perspectives—philosophical, theoretical, psychological, and technical—to create a well-rounded understanding of what artificial wisdom might involve. Rather than treating wisdom as something AI must fully replicate, the paper suggests that AI can be developed to support wiser outcomes and decision-making processes.

By presenting both theoretical foundations and practical considerations, the article helps clarify what it means to think about wisdom in the context of AI. It also offers researchers and designers a clearer direction for building systems that connect with ethical values and help people make better, more thoughtful decisions in complex situations.

The AI-Human Synergy Wisdom Model (AHSWM) presents a new conceptual framework that integrates the latest theories on human wisdom with the emerging promise of generative AI. It shifts the AI ethics debate from risk aversion to proactively considering how AI can empower human flourishing through the cultivation of wisdom, and it conceives of an answer that leads to a design-based solution to integrate ethical and contextual factors into AI systems. This interdisciplinary synthesis contributes to our overall understanding of AI by articulating a framework for AI that incorporates human moral judgment and intuition in decision-making.

2. Method

The study uses conceptual and analytical approaches to investigate the applicability of AI in decision-making. This is a qualitative, cross-disciplinary literature review grounded in philosophy, psychology, AI ethics, and computer science literature, aiming to develop an emergent theoretical framework.

- 1) **Extended Literature Review:** A comprehensive review was conducted to understand the current capabilities of generative AI, their social and ethical implications, and contemporary issues in the field. This also provided background on technological advancements and the intricate philosophical and psychological aspects of human wisdom.
- 2) **Philosophical and Theoretical Analysis of Wisdom:** This involved a detailed analytical review of various theories of wisdom, encompassing prevailing psychological models (e.g., Berlin Wisdom Paradigm, Sternberg's WICS model, Glück's model) and philosophical concepts (e.g., ancient Greek notions of *Phronesis*, modern virtue ethics). Central components, characteristics, and developmental paths of wisdom from these theories were identified and synthesized into dedicated "Theories of Wisdom" and "Philosophies of Wisdom" tables. This dual analysis established rigorous standards against which AI capabilities could be measured.

2.1 Ethical Use of AI Tools

The authors utilized AI tools, including Copilot, Gemini, and ChatGPT, to generate additional research based on complex prompts and for some editing purposes. Additionally, the authors submitted the paper to Grammarly multiple times to ensure proper citations and to refine the grammar and syntax. To maintain transparency, Grammarly indicated a similarity score of 6%. The authors ensured that all AI usage was cited appropriately, and in a few instances, Grammarly indicated a similar reference. Grammarly indicated a final score of 4% for AI. In every instance, the writing was either the author's original writing or AI was cited for editing. The authors critically analyzed AI responses and maintained transparency in their writing, thereby ensuring the ethical use of AI in research (Alill, 2024).

3. Literature Review

It has already been demonstrated that AI can gather and process data quickly and accurately (Riserbato, 2024; Synthetix, 2024; Teachflow.AI, 2023). However, the larger challenge lies in transforming that data into actionable knowledge, a task the National Institutes of Health (NIH) has been attempting to achieve (Yongjun et al., 2023). AI will evolve into a tool that generates insights and supports ethical decisions about societal norms and contexts, in addition to its current role as a data analysis tool (Gonzalez et al., 2021; Peschl et al., 2025; Wood, 2024). The translation of knowledge into wisdom requires an interdisciplinary intervention that incorporates philosophical, psychological, and technological aspects to analyze its social applicability (Valor, 2024). There must be a framework in which AI systems can articulate the potential human consequences of their decisions and those of their

societies (Google DeepMind, 2025).

Considering whether AI can obtain wisdom may challenge our current views of wisdom (Casacuberta, 2012; Tsai, 2023). AI may only attempt to simulate wisdom, as it lacks the contextual awareness and subjectivity that humans possess. Additionally, AI struggles in arenas where there is no clear solution, moral gray areas exist, context is limited, and ethical decision-making is involved (Davis, 2019; Jeste et al., 2021; Tsai, 2023). Concerns about AI's ability to make sound ethical and moral decisions suggest that we consider AI a complementary tool rather than a replacement for human endeavors (Wisdom Center, 2025). Over time, AI needs to be presented with ethical dilemmas to learn to address complex problems in a manner that reflects societal values and customs.

Furthermore, Vallor (2024, para. 13) discusses the emerging field of machine ethics, indicating that the goal is to build "moral machines that can serve as our ethical advisers." Vallor contrasts this with the ambitions of transhumanist thinkers, who advocate for using technology to accelerate human evolution. Vallor warns that such aspirations risk undermining the very capacities—such as moral reflection, meaning-making, and existential depth—that define human wisdom. In Vallor's opinion, the search for artificial wisdom must be based on a commitment to preserving, rather than supplanting, human capacity for moral knowledge about oneself.

AI's capacity to handle and process large volumes of information refines human decision-making (Riserbato, 2024; Synthetix, 2024; Teachflow. AI, 2023). These capabilities can be beneficial in addressing global issues. AI systems can analyze major problems, including healthcare and environmental issues, to provide potential solutions at a faster pace than individual human efforts (Schwab, 2025; UN Sustainable Development Goals, 2025). The exclusive use of AI systems without human values creates substantial ethical issues (Celluci, 2023). Balancing technology and ethical responsibility is of the highest concern, and AI's ability to employ moral reasoning necessitates human involvement.

Prior research has also suggested that ethical considerations are one of the biggest concerns in using AI for decision-making (Gilson, 2025). Huffington (2024) proposes that AI can utilize our weaknesses to enhance our virtues and create more effective institutions. Wood (2024) proposes that wisdom development over time can be supported by AI-driven reflection and deliberation on decision-making, rather than focusing solely on efficiency.

According to Graves (2021), Phronesis or practical wisdom is the most promising philosophical model for developing wisdom in AI systems. Phronesis differs from theoretical knowledge and technical skill because it needs sensitivity to context and moral reasoning to achieve the common good in uncertain situations. Graves proposes that while machines may never achieve moral experience, they can be trained to recognize ethically relevant features of a situation and to reason through moral trade-offs using embedded virtue-oriented principles. The model promotes the development of AI systems that produce answers while also performing goal-based deliberation across multiple stakeholder interests and social consequences.

Building on Graves' philosophical framework, Lake's research also highlights the inherent limitations of current AI models in achieving such practical wisdom. Lake et al. (2017) identify the main weakness of current AI models as their inability to learn through flexible, structured, causal, and coherent methods, which humans use. The authors argue that AI must integrate intuitive psychology with compositional reasoning and causal inference to achieve human-like real-world adaptability and judgment. The features are essential for systems that operate in unpredictable or changing environments, as they surpass the limitations of strict rule-based systems and narrow optimization approaches. The research of Lake creates a connection between statistical methods and the decision-making approaches required for socially grounded context-aware choices.

Simon, Rieder, and Branford (2024) study how AI systems obtain implicit values through their design elements, data sources, and usage environments. The authors demonstrate that all AI systems carry inherent values even though these values remain unexpressed. According to their approach, the development of artificial wisdom requires building systems that can interpret ethics, rather than providing machines with explicit ethical rules. The development of AI requires designers to create systems that can examine their underlying assumptions while learning new moral principles and maintaining beneficial relationships with diverse human viewpoints. The authors propose mechanisms that enable AI systems to reveal and challenge their internal values while adjusting them throughout time.

Nguyen (2025) develops this perspective by stating that artificial wisdom needs an integrative method that unites learning architectures with ethical self-monitoring and social responsiveness. Nguyen suggests that we should design systems that prioritize social impact alongside long-term effects and human dignity, rather than solely focusing on task completion. AI development would transition from measuring intelligence through task performance to measuring intelligence through contributions to a shared moral world.

Jeste et al. (2020) indicate that people are becoming increasingly aware that wisdom encompasses more than just mathematical reasoning and data processing. The development of artificial wisdom should remain linked to human values, interpretive flexibility, and ethical oversight based on these perspectives. AI design requires immediate integration of these frameworks because AI will continue to affect significant social domains.

4. Philosophical Approaches to AI Wisdom

According to the National Institutes of Health (NIH), humans are necessary in generating AI wisdom, as "only humans can have consciousness, autonomy, will, and a theory of mind" (Jeste et al., 2020, p. 24). This special characteristic of human wisdom is closely associated with the Theory of Mind, which is the ability to attribute mental states to oneself and others (Ruhl, 2023). For AI to develop a theory of mind, it would need "to have the capability to understand and remember other entities' emotions and needs and adjust their behavior based on these. This capability is like humans in social interaction"

(Arya, 2023, para. 12). If AI were to achieve self-awareness, it could reach human-like intelligence (Arya, 2023).

4.1 Philosophical Perspectives on AI Wisdom

Philosophers have diverse views on how to incorporate wisdom into AI. Barkol (2025a) considers the views of thinkers such as Socrates, Plato, and Aristotle, as well as those of AI. Barkol (2025b, para. 48) suggests reflecting on agentic AI as "Allport lands in the digital age to participate in lively intellectual discussions, taking their towering perspectives with them." 1). By attributing personalities to agentic AI and constructing rich prompts, AI can supply problem-solving capacities in selected philosophical systems that entertain specific propositions.

Building on this, Kim and Mejia (2024) argue that AI development should progress from mitigating harm to utilizing what is often referred to as Socratic wisdom. This method makes possible the acknowledgment of ignorance and the perpetual questioning of our hypothesis of human flourishing. They argue that AI systems should promote critical thinking among users and stimulate self-reflection, rather than merely mimicking existing behavior or upholding existing biases.

Building on this, Polizzi and Harrison (2022) suggest that "cyber-wisdom" is the new "organizing framework" to facilitate users negotiating the risks and opportunities that come with digitally mediated connectivity. This "cultivation of cyber wisdom" will be informed by Neo-Aristotelian ideas and moral theories, such as those that center on human nature, virtue ethics, and practical wisdom. Polizzi and Harrison (2022, para. 1) identify four components of cyber-wisdom: "cyber-wisdom literacy, cyber-wisdom reasoning, cyber-wisdom self-reflection, [and] cyber-wisdom motivation."

Taking a more critical stance, Simon, Rieder, and Branford (2024) argue that discussions of AI wisdom must acknowledge that AI systems are always value-laden. Research in philosophy and empirical science reveals that AI systems operate through human judgment because they incorporate conceptual assumptions derived from design decisions, data origins, and their social and political contexts. Therefore, any effort to develop "wise" AI needs to consider not simply how values are encoded, but how they are read and negotiated in the system's outcomes. Wisdom is more than making sense of values, the authors argue: it includes the capacity to reason normatively in a flexibly transparent manner, accountable to democratic standards.

Taddeo and Floridi (2018) add value by framing AI as a locus for ethical advancement, when guided by what they call "design for values". They call for this kind of moral prudence to be built into AI, including the ability to consider possible future threats, long-term social consequences, and the dignity of human beings. In this sense, AI wisdom is less about mimicking human cognition and more about supporting technological agency with the ethical and epistemic responsibilities that characterize wise action. Their intent illustrates the need for institutional and philosophical infrastructure that aligns in such a way that AI no longer computes efficiently, but does so in ways that consider ethical consequences.

These philosophical methodologies cumulatively broaden the theoretical foundation for researching

artificial wisdom. They claim that such frameworks assume an AI system that acts wisely is one that can reflect and use reason when dealing with ethical issues and collaborate with human beings towards human flourishing, rather than one that merely reproduces human mental processes or intuitions. This new perspective will transform AI from a mere tool into a moral agent, bound within a shared ecosystem. Not only truthfully, but also scrutinizing the ethics.

4.2 AI as a Support System for Human Wisdom

However, considering AI's ability to promote wisdom also requires emphasizing a human psychological quality that predates the advent of AI. Classical psychological research has consistently shown that under conditions of **information overload**, human decision-making can become impaired in systematic and predictable ways. Early Gestalt theorists described such environments as producing a high degree of uncertainty and "felt discomfort," which often leads to rigid thinking patterns, a phenomenon they termed functional fixedness or Einstellung. Individuals confronted with too much information tend to simplify their cognitive processing by narrowing their attentional field, reducing flexibility, and defaulting to habitual or previously learned responses. Broadbent (1971) incorporated concepts from information theory to argue that cognitive overload leads to psychological stress, which in turn affects the overall functioning of the cognitive system.

From a purely psychological perspective, particularly in ethical or other complex scenarios, an individual's attention or moral judgment may diminish. Therefore, AI can serve as a support system to enable humans to meaningfully apply wisdom in ethical and other contexts, allowing them to function more productively. AI has the potential to enhance ethical reasoning—not by replacing human judgment, but by clearing the cognitive space necessary for deliberation, perspective-taking, and moral reflection. AI can help transform the context of decision-making from being overwhelming and reactive to one that is reflective and informed.

5. Theoretical Models of AI Wisdom

Various theoretical models have been suggested on which imitation or emulation and culture like effects might be based, and can be considered important pointers to how such systems should be modelled and designedExamining these prevalent theories, it becomes possible to speculate about what aspects are essential to wisdom, and how these aspects can inform the design of more advanced and ethical forms of AI.

- 5.1 Models Emphasizing Environmental and Experiential Learning
- **4E Cognition Framework:** The 4E Cognition Model (Embodied, Embedded, Enacted, Extended) posits that AI agents can acquire "cyber wisdom" through real-time interaction with their environment. (Alexander, 2025; Peschi et al., 2025; Santos, 2023). The model emphasizes that the cultural context, social interaction, and ongoing exchange of real-world information are crucial for enabling AI to acquire context-sensitive understanding, a fundamental component of wisdom.

Material Engagement Theory (MET): MET posits that cognition is not limited to the mind but is

instead embodied and environmentally embedded (Iliopoulos, 2019). For AI, MET proposes that wisdom is cultivated through dynamic interaction with its social and physical environment, facilitating experiential and contextual learning. Similar to human beings, AI systems need to acquire knowledge from their environment to comprehend and apply it effectively, thereby increasing their understanding of both AI and its applications (Malafouris, 2019).

5.2 Models Focused on Human Cognitive Processes and Ethics

Cognitive Psychology Integration: To instill wisdom, the Cognitive Psychology Integration method advocates for AI to mimic human mental operations, such as memory, learning, and decision-making, particularly by integrating empathy and ethical thinking into its simulated processes (Jeste et al., 2020; Marsh et al., 2016; Nelson et al., 2025; Taylor & Taylor, 2021).

Common Model of Wisdom: This model posits that wisdom consists of moral aspirations and reputational concerns, alongside perspectival meta-cognition (PMC) (Grossmann et al., 2020, p. 103). For AI, this model suggests that systems ought not only to detect climate-related knowledge gaps but also to engage with different worldviews and coordinate with moral principles, such as seeking the truth, to determine how to act. It emphasizes the contextual and cultural aspects in constructing wisdom, focusing on striving for "the common good" (Weststrate et al., 2016; Grossmann et al., 2020b).

The Dreyfus Model of Skill Acquisition: The Dreyfus model comprises five levels of proficiency, ranging from Novice to Expert, culminating in Wisdom (Dreyfus & Dreyfus, 1986; Tsai, 2020). According to the study's author, a key aspect of the decision model is the ability of AI to transition from rule-based to intuitive, context-driven decision-making. This progression enables AI to make informed judgments in complex situations, potentially achieving a level of wisdom comparable to that of humans.

Ethical AI Decision-Making Model: This model sets out principles for developing AI systems that are fair, transparent, and accountable. It seeks to integrate human ethical values throughout the AI development process so that systems consider cultural, legal, and stakeholder factors, deal with biases, and ultimately contribute to the broader good (Nguyen, 2025; Prem, 2023; Sinha & Lakhanpal, 2024; Trotta et al., 2023; Tsai, 2020).

Integrative Ethical AI Model: Prioritizing the idea that for AI to be wise, it needs to gain experience, understand how to deal with new situations, and be able to understand the consequences of its actions (Dabis & Csaki, 2024; Nguyen, 2025). Such a model has the advantage of preparing students to strike an appropriate balance between efficiency and effectiveness, and to integrate both practice, knowledge and ethical reasoning in every area of their legal workIt believes that sage AI systems are not only capable of managing enormous datasets but also of utilizing that intellect effectively and making informed ethical decisions while adapting to changing conditions (Dabis & Csaki, 2024; Nguyen, 2025).

Metacognition: Ardelt's (2004) three-component wisdom model, grounded in moral psychology, encompasses cognitive, reflective, and affective dimensions. Applied to AI, Metacognition presumes

that genuine AI wisdom necessitates systems having the capacity to detect biases, identify logical fallacies, develop contextual methods, gain self-knowledge, and commit to ongoing growth (Johnson, 2022; Crowder, 2011; Johnson et al., 2024; Rodriquez & Kannan, 2024). Self-knowledge is necessary for AI to evolve from specialist knowledge to comprehensive wisdom, facilitating ethical action and transcending subjectivity (Johnson et al., 2024).

Neurobiological Model of Wisdom: This model examines the cognitive and neural processes underlying human wise decision-making (Bhuyan et al., 2023). It explores how AI can replicate neurobiological properties, including emotion regulation, empathy, and self-reflection. The objective is to create AI that exhibits wise and empathetic actions and human-like moral deliberation, emphasizing the blend of biological and cognitive science into intelligent AI system design to facilitate sound and moral decision-making (Lee & Jeste, 2019; Nguyen et al., 2020).

Phronesis (Practical Wisdom): A neo-Aristotelian virtue ethics framework proposed by Darnell et al. (2019), Phronesis integrates moral reasoning with action through a coordinated interplay of cognitive, meta-cognitive, affective, and motivational processes. For AI, Phronesis recommends ideal systems capable of making good, context-dependent choices regarding values and outcomes, ultimately leading to AI that makes morally sound decisions beneficial for individual flourishing (Graves, 2024; Jeste et al., 2020; Maher, 2016; Tsai & Ku, 2024).

5.2 Models for Knowledge Organization and Collaboration

Hierarchical Knowledge Representation Model: This model suggests that AI wisdom can be inductively learned by structuring knowledge hierarchically, moving from specific to general (Lee, 2024). This is consistent with the notion that the structure and connection of information—not the quantity of information—are crucial in generating creative solutions. This model also enables AI to recognize its knowledge limits, meaning it can request more data or human creativity if needed—a clever endeavor requiring higher-order reasoning (Bhuyan et al., 2025; Lee, 2024).

Human-AI Co-Creation Model: This model demonstrates how human-AI collaboration can augment intelligence and creativity. By collecting information from various sources, AI enables new possibilities at every step of the creative process, thereby making creativity more inclusive and accessible (Ismayilzada et al., 2024; Lockhart, 2024; Wu et al., 2024). Ideal AI, according to this model, should be able to sort information, identify patterns, produce new work, and make incisive connections (Lockhart, 2024).

To provide a structured overview of these foundational theories and their implications for AI wisdom, Table 1 presents a comparative analysis of the theoretical approaches to AI wisdom. This table extends beyond simple summaries, organizing each approach by its Core Concept of Wisdom or Key Contribution, its Primary AI Relevance (i.e., how it informs AI wisdom), and its specific Ethical and Contextual Implications for AI. This comparative framework enables the identification of what is unique about each theory's conception of wisdom and its distinctive relationship to the challenge and potential for creating AI that supports wise decisions.

Table 1. Theoretical Approaches to AI Wisdom

Theoretical	Core Concept of	Primary AI	Ethical / Contextual	
Approach	Wisdom / Key	Relevance	Implications	
	Contribution			
4E Cognition	Embodied,	Context-sensitive AI	Requires cultural and	
Framework	embedded, enacted,	through real-world	environmental integration	
	extended cognition	interaction		
Cognitive	Human cognitive	Modeling empathy	Wise AI requires emotional	
Psychology	processes: memory,	and ethical reasoning	understanding	
Integration	learning, empathy,			
	ethics			
Common Model	Moral aspirations +	Helps AI integrate	AI must align with common good	
of Wisdom	perspectival	perspectives	aims	
	metacognition	ethically		
Dreyfus's Skill	Progression from	Shift from rule-based	Contextual experience strengthens	
Acquisition	novice to expert	to intuitive reasoning	AI judgment	
	judgment			
Ethical AI	Fairness,	Ensures AI aligns	Ethical safeguards required	
Decision-Making	transparency,	with social norms	throughout lifecycle	
Model	accountability			
Hierarchical	Knowledge	Allows AI to	Recognizing limitations is key to	
Knowledge	structured from	generalize and	safety	
Representation	specific to general	recognize limits		
Human-AI	Collaborative	AI enhances human	Must include ethical awareness in	
Co-Creation	creativity and	creativity	outputs	
Model	problem-solving			
Integrative	Experiential learning	Supports adaptive	Moral integrity cannot be	
Ethical AI	balancing efficiency	ethical reasoning	secondary to performance	
Model	and ethics			
Material	Cognition through	Supports embodied	Requires situated application to	
Engagement	interaction with	contextual learning	avoid misalignment	
Theory	environment			
Metacognition	Self-reflection and	AI monitors and	Bias recognition is critical for	
	1 .	adjusts reasoning	ethical use	
	bias awareness	adjusts reasoning		
Neurobiological	Emotion regulation	Supports	Emotion-informed reasoning aids	

Wisdom			decision-	making				
Phronesis	Ethical reas	soning +	Applies	knowledge	ΑI	must	integrate	emotion,
(Practical	greater	good	ethically	in context	cogi	nition, ar	nd ethics	
Wisdom)	orientation							

Note. Table content generated with assistance from Google Gemini (7/21/2025). Formatting assistance provided by ChatGPT.

6. Human Wisdom: Guiding AI Through Its Challenges

The path toward developing AI that's truly wise depends to a great extent on the insights and wisdom of human beings. The National Institutes of Health (NIH) agrees that human judgment and intelligence should be integrated with artificial intelligence. This type of collaboration is essential, since—as the NIH points out—qualities like consciousness, autonomy, free will, and an understanding of others' thoughts and feelings are uniquely human (Jeste et al., 2020, para. 24). Because of that, true wisdom, grounded in these human traits, can only come from people themselves.

Human wisdom enables us to instruct AI systems to operate based on specific principles to inform decision-making. AI excels at sorting through large amounts of information and assisting people in navigating complex ethical and moral decisions (Graves, 2024). However, it does not have a conscience or a real sense of right and wrong—and it often has a hard time dealing with gray areas (Celluci, 2023)The NIH highlights AI's benefits in information provision and extensive health dataset analysis, predicting that AI systems will utilize accumulated knowledge, gained experience, diverse perspectives, and multiple scenarios to produce informed decisions.

Gabayan (2024) documents how human beings' know-how and experience need to be augmented in AI. Celluci (2023) also documents that people and AI need to be partnered so that they can set clear ethical limits, gain a deeper understanding of the broader impacts of AI, and avoid bias. The path to actual "AI wisdom" is not straightforward, however. Every phase of progress, from trying to mimic human common sense to forming sound moral decisions, is filled with practical challenges and tough open questions. Human oversight remains essential to establish ethical benchmarks, monitor AI decisions for prejudice, and guide technology so that it remains compatible with our values. In its absence, the potential of AI can be undermined by failures such as mistrust, opacity, or built-in bias. Table 2 discusses issues that need to be addressed while building AI wisdom.

Table 2. Challenges in the Creation of AI Wisdom

Theoretical Approach	Challenges or Constraints
4E Cognitive Framework	Simulating embodied, embedded, extended, and
	enactive cognition in AI systems requires
	modeling complex interactions between mind,

	body, and environment (Lake, 2017; Peschi et al.,
	2025; Santos, 2023).
Cognitive Psychology Integration	Bridging human cognitive processes and AI
	algorithms requires robust modeling of
	higher-level psychological functions and attention
	to ethical issues (Kapoor, 2025).
Common Model of Wisdom	Incorporating moral aspirations and perspectival
	meta-cognition into AI while maintaining
	reliability and ethical decision-making is
	challenging (Grossman et al., 2020b).
Dreyfus's Model of Skill Acquisition	Replicating the progression from novice to expert
	and capturing intuitive, experiential
	decision-making in AI systems is difficult (Tsai,
	2020).
Ethical AI Decision-Making Model	Avoiding algorithmic bias, ensuring transparency
	and accountability, and accommodating
	multicultural ethical perspectives pose
	implementation challenges (Wood, 2024).
Hierarchical Knowledge Representation Model	Managing complex, multi-layered knowledge
	structures and ensuring accurate contextual
	retrieval are ongoing challenges (Chen, 2024).
Human-AI Co-Creation Model	Maintaining human creativity, establishing
	effective collaboration, and addressing ethical and
	bias concerns in co-creative work are key
	challenges (Wu et al., 2021).
Integrative Ethical AI Model	Integrating multiple ethical systems while
	ensuring transparency, accountability, and fairness
	remains difficult (Webb, 2025).
Material Engagement Theory	Simulating dynamic interaction between cognition
	and material culture in AI systems is difficult
	(Microsoft, 2025; Peschl et al., 2025).
Metacognition	Replicating human reflective and affective
	dimensions and achieving depth of wisdom in AI
	systems presents obstacles (Rodriguez & Kannan,
	2024).
The Neurobiological Model of Wisdom	Replicating neural processes, emotional

	regulation, and ethical reasoning in AI systems	
	poses complexity (Lee & Jeste, 2019).	
Phronesis	Aligning human and AI moral reasoning, defining	
	the "Good", and scaling ethical decisions in	
	real-world contexts is challenging (Sullins, 2025;	
	Tsai & Ku, 2024).	

Note. Formatting assistance provided by ChatGPT. Table content generated with assistance from Google Gemini (7/21/2025)

6.1 Discussion of Challenges

AI wisdom engineering encompasses several key areas of challenge, ideally structured to capture the intellectual and moral dimensions of human life within a simulation environment. To attain superintelligence, it is not enough to process information or have access to millions of pages of data; the system must also understand context, engage in moral deliberation, and navigate the complexities of human life. This section discusses the specific theoretical and practical barriers that have to be overcome so that AI can be directed towards true wisdom.

6.2 Replicating Human-Like Cognition

The precision and subtlety of human mental powers are something that most AI models cannot approximate to the necessary degree of accuracy required for robustly mimicking human cognition.

- 4E Cognitive Framework: It stresses embodied, embedded, extended, and enactive cognition with pervasive interactions among body, mind, and world. AI systems cannot easily replicate such effects because they lack physical bodies and therefore cannot comprehend the physical influence on cognition (Peschl et al., 2025; Santos, 2023).
- **Dreyfus's Model of Skill Acquisition:** Replicating the human journey from novice to expert, involving intuitive decision-making and learning from experience, is a significant hurdle. AI models currently struggle to acquire knowledge through lived experience in the same way humans do, particularly in developing intuitive skills (Tsai, 2020).
- **Metacognition:** Ardelt's model emphasizes the combination of cognitive, reflective, and affective features. AI systems struggle to mimic this due to the high degree of self-awareness, reflection, and emotional control—characteristics uniquely human (Rodriguez & Kannan, 2024).

6.2 Ethical and Moral Integration

The biggest challenge lies in integrating ethics and morality into AI decision-making, which forms the foundation for developing responsible AI.

• Ethical AI Decision-Making Model: To ensure that AI systems can act morally, we need to do more than address algorithmic bias; we must also incorporate transparency and diversity of ethical

norms. This is, however, challenging because the ethical norms vary significantly between cultures and contexts, making it difficult to identify a universally ethical AI. (Wood, 2024).

- Integrating moral ideals and perspectival meta-cognition into AI systems is a challenging task. It requires AI to understand and apply moral reasoning in a manner that is ethically consistent with human ethics and societal norms (Grossman et al., 2020b).
- **Phronesis:** This approach requires practical wisdom and ethical decision-making. AI technologies fall short in operationalizing a socially-conceived "Good," aligning human and AI moral understanding, and scaling ethical decisions for everyday use. More detailed information is necessary to implement concepts such as Zubiri's "sentient intelligence" and establish assessment criteria for moral AI (Sullins, 2025; Tsai & Ku, 2024).

6.3 Complex Knowledge Management

Effectively managing and retrieving multi-layered knowledge structures poses a distinct challenge for AI systems.

• **Hierarchical Knowledge Representation Model:** Although useful in AI wisdom research, this model struggles with complex and multi-level knowledge systems. Accurate, context-dependent retrieval and integrating various types of knowledge, especially in connecting particular facts to broad ideas, still prove challenging (Chen, 2024).

Human-AI Interaction

Balancing human creativity with AI capabilities and ensuring meaningful collaboration is essential for co-creation models.

• **Human-AI Co-Creation Model:** This model needs to overcome challenges such as preserving human imagination alongside AI-generated output and addressing ethical and bias issues in co-creative processes. Disparate human goals, personalities, and AI procedural logic may interfere with fruitful cooperation (Wu et al., 2021).

Neurobiological Replication

Replicating the intricate neurocircuitry and integrating emotional regulation found in the human brain is a formidable task for AI.

• Neurobiological Model of Wisdom: Developing AI systems that incorporate emotional regulation alongside the replication of complex neurocircuitry presents significant challenges. The result of this would be contingent upon a deep understanding of brain function that would allow AI to detect and account for people's emotional state, much like humans do as part of their decision-making process (Lee & Jeste, 2019; Google DeepMind, 2025).

6.4 Cultural and Legal Diversity

One of the significant issues in deploying AI globally is negotiating conflicting ethical duties in various legal and cultural traditions.

• Integrative Ethical AI Model: This model integrates multiple ethical models to maintain transparency, accountability, and reduce bias in AI. The extensive ethical and legal variations across regions present challenges to creating a globally authentic ethical AI system (Webb, 2025).

The path to achieving true AI wisdom faces many theoretical and practical challenges. Key obstacles include replicating complex human cognitive processes, such as embodied cognition, intuitive decision-making, and metacognition; integrating ethical and moral reasoning aligned with diverse human values; effectively managing intricate knowledge structures; establishing genuine human-AI partnerships; replicating neurobiological emotional control mechanisms; and implementing ethical standards across various cultural and legal frameworks. These multi-faceted problems need to be resolved when and if we develop wise AI systems.

7. The Synergistic Enhancement of Human Capabilities by AI

7.1 The AI-Human Synergy Wisdom Model (AHSWM)

The AHSWM model proposes that humans and AI can coexist in harmony, complementing each other's strengths. Humans gain superior abilities, undergo personal development, exhibit creativity, and develop strength, while AI benefits from human wisdom in ethics and morality. This model integrates human judgment—rooted in consciousness, values, and contextual understanding—with the analytical and pattern-recognition strengths of AI. The AHSWM's core premise is that this synergy leads to a richer, contextually informed, and morally grounded form of "wisdom" that neither humans nor machines could achieve in isolation. Ultimately, AHSWM describes how practical, ethical, and customized consequences are realized through human-AI cooperation.

7.2 AHSWM Framework: Layers and Components

As shown in Figure 1, the AI-Human Synergy Wisdom Model (AHSWM) is composed of three interconnected layers.

Figure 1. AI-Human Synergy Wisdom Model (AHSWM)

Note. This model was generated with the assistance of Microsoft Copilot (2025)

- Basic Capacities: This foundational layer encompasses the distinct skills of human beings and AI.
- **Human strengths** encompass cognitive and ethical abilities, including reasoning, contextual judgments, empathy, moral and ethical reasoning, contextual awareness, consciousness, values, and social sensitivity (Zhang et al., 2023). Human wisdom, particularly its ability to navigate complex contexts and consider future impacts, is vital for ethical decision-making (Lees & Young, 2020) and social sensitivity (Zhang et al., 2023).
- AI Strengths: AI contributes through advanced data analysis, pattern recognition, and efficient task execution, enhancing creativity by identifying new relationships and yielding innovative solutions (Bozkurt & Aharma; Microsoft, 2025).
- Convergence: The interplay of these strengths leads to Human Wisdom Integration and Augmented Human Potential.
- 2. **Mediating Variables**: The second level focuses on variables that decide the extent and kind of human-AI convergence. Mediators have a significant impact on how humans learn, adopt, and engage with AI technology, and its implications for establishing genuine relationships are profound.
- AI Interplay Dynamics: Human trust and perception of AI (as a tool, threat, or conscious entity) directly determine the willingness to use and depend on the technology. High trust fosters greater adoption, while perceived bias or unreliability reduces it (Guingrich & Graziano, 2024).
- Knowledge Management Processes (KMPs): Knowledge Management Processes (KMPs): Organizational knowledge acquisition, retention, and dissemination capabilities are greatly facilitated by AI's processing and analyzing capacity, allowing them to work better and react in a timely fashion (Leoni et al., 2022).

- Attitudes towards AI: An organization's or individual's perspective on AI, along with their assessment of its usefulness and ease of use, as well as their concerns about job loss and ethical issues, serves as a direct mediator for AI adoption and integration. Individuals with a positive disposition towards AI are more likely to implement it at higher levels, while institutions with a negative disposition will face greater implementation barriers. (Emon & Khan, 2025).
- Ethical Governance Frameworks: This dimension ensures that technological advancements evolve in accordance with human values. This dimension usually includes five main elements: ethical standards and norms, which dictate respectful AI practice by fairness, transparency, and user data privacy; compliance with laws, that AI rules and global and industry-specific laws, such as GDPR and the EU AI Act, are adhered to; accountability structures, assigning clear roles and responsibilities for developing and releasing AI; transparency and explainability mechanisms, that provide transparent, understandable, and traceable AI output; and ongoing monitoring and auditing, that entails ongoing AI systems testing for performance, regulation, and bias elimination and detection. By integrating these values in design, organizations can create ethical AI that preserves human values and helps to tackle social disparity. This is true for bias, transparency, accountability as well as privacy resulting in a positive social impact (Emon & Khan, 2025; Waehlisch, 2025).
- Communication Effectiveness: The pace, effectiveness, and simplicity of communication terms used in human-AI and human-AI-assisted tool interactions are vital for effective communication. AI improves communication by removing barriers and delivering precise information swiftly (Ateeq, 2024).
- 3. **Intended Outcomes**: The final layer represents the desired results of the synergistic collaboration. The last step of the AI-Human Synergy Wisdom Model is the ensuing impacts of the fruits of collaboration between humans and AI. Aside from being efficient, they are supposed to have a profound positive effect on the individual and society:
- Facilitating Ethically and Contextually Oriented Decision-Making: This cooperation facilitates decisions not only based on information, but also deeply informed by moral principles, human ethics, and a profound understanding of the interconnected complexities of social and environmental issues. Through the intersection of AI's analytical capacity and human wisdom, decisions become more sophisticated, ethical, and attuned to long-term well-being.
- Building Resilient and Adaptive Individuals and Organizations: Through greater exposure to adaptive information and advanced problem-solving capability, individuals and organizations acquire the ability to anticipate, adapt to, and flourish in adversity. This partnership fosters a robust environment for learning from information, adapting plans, and being productive in dynamic circumstances.
- Enabling Self-Determination and Innovation: Al's emergent relationship perception capacity and content tailoring enable humans by providing them with customized resources that are best suited to their desires and interests. Human curiosity, insight, and creativity are supported with individualized

teaching and AI's capacity to perceive emerging relations, promoting more personal growth and more inventive productivity.

• Designing Socially Responsible AI Systems: Continuous human monitoring and ethical monitoring are integrated into the model, ensuring that AI systems are designed and implemented in a manner that serves the common good of society. This includes designing AI that is equitable, transparent, accountable, and purpose-built to preserve human values and actively counteract biases while preventing the aggravation of social injustices.

7.3 Alignment with Contemporary Research

This model also aligns with contemporary research, which has emphasized that AI integration should not only be technical but also socially engaged, psychology-based, philosophically grounded, and ethically informed. Human and artificial reasoning rely on metacognition, moral reasoning, and theory of mind in solving complex social dilemmas, as proposed by Grossmann et al. (2020). Likewise, Abrams (2024) and Brey and Danow (2024) hold the view that psychological and ethical theories should be incorporated when designing AI systems that are moral, fair, and inclusive. By incorporating interdisciplinary understandings into human-AI collaboration and AI design, the AHSWM provides a direction toward wiser, context-sensitive, and more ethical decision-making.

8. Empirical Testing of Wisdom in AI Systems

Wisdom is complicated to measure, even in humans. The ability to make ethical decisions is not a static quality or a single outcome, but a developing capacity to judge ethically while understanding the context and controlling emotions. These qualities develop through time as they form from the interaction of uncertainty with conflicting values and social complexities. Measuring wisdom in artificial systems involves a shift away from traditional performance measurements towards context-sensitive and integrative evaluation approaches (Google DeepMind, 2025).

Cognitive-reflective benchmarking is also an emergent approach through scenario simulation. Drawing on the Berlin Wisdom Paradigm (Baltes & Staudinger, 2000), the performance of AI agents can be assessed in handling simulated moral, emotional, and interpersonal conflict scenarios. These simulations would force AI to weigh numerous points of view, adopt long horizons, and balance opposing values or compromises (e.g., justice versus compassion). The activities need organized thresholds to assess the depth of moral thinking, decisional complexity, and context relevance (Microsoft, 2025). The system needs to demonstrate ethical deliberation and social awareness by reasoning through ambiguous situations, rather than focusing solely on correctness.

The second method utilizes entropy as a fundamental principle of both physical and information theory, which measures the uncertainty, variability, and disorder of a system. Entropy functions as a universal principle that controls thermodynamics, communication systems, biological evolution, and artificial intelligence systems. Entropic measurement of the system responses to inputs indicates their predictive stability and flexibility. The system has rule-based, strict responses under low entropy, but becomes

more random with higher amounts of entropy (Microsoft, 2025). A system needs to maintain a balanced state between adaptability through variability and structural coherence, as well as principled behavior, to demonstrate wisdom. Entropy serves as an effective tool for evaluating AI systems' ability to handle complex situations, balancing disorder and rigid dogmatic behavior. Recent studies have shown that preserving entropy in training enhances generalization and reasoning capacity, which is an elementary design principle for intelligent behavior rather than a diagnostic (Cui et al., 2025).

The third approach involves emotional calibration through inverse-U modulation. Human wisdom depends on proper emotional regulation and arousal management systems. An AI's decision quality can be evaluated under differential cognitive load or emulated emotional intensity, such as noise, contradictory goals, or ambiguous stakes. If the system functions well at intermediate levels of stress and fails in extremes, as per the Yerkes-Dodson curve, this would be a sign of wisdom-like regulatory patterns. The ability of AI to act under stress is a test of emotional strength, though AI is not emotional. Wisdom measurement must be conducted as a collaborative effort between human beings and AI. The most significant technological weakness of AI systems is their inability to exhibit emotions, despite their technological advancements.

The quest for wisdom by artificial intelligence is faced with one overriding challenge: the fact that wisdom operates beyond the domain of processing and analyzing data. Wisdom involves understanding emotions, as well as the power of exercising moral judgment and the capacity to comprehend intricate situations. These elements form the essential foundation that enables wisdom to develop (Google DeepMind, 2025). Moreover, far from being a bug in human thinking, emotion is a cornerstone of our evolution. Designing wise AI, therefore, is not about replicating human affect, but rather about enabling systems to scaffold human moral insight and emotional reasoning.

9. Foundations: Why AI's Path to Wisdom Requires More Than Data

The pursuit of artificial wisdom faces the unavoidable challenge: wisdom is not just about information handling, but also about emotional understanding, ethical decision-making, and contextual knowledge (Microsoft, 2025). They are not niche capabilities; they are exactly central to what makes wisdom possible. Emotion is not a defect in human reasoning—it is an evolutionary success. The human brain evolved in layers: from the instinctual brainstem, to the emotion-centered limbic system, to the reflective neocortex. Wisdom emerges from the integration of these systems, where emotion tempers reason and reason gives structure to feeling.

AI systems, however, lack the capacity for emotional experience. They do not feel grief, joy, or moral conflict. The systems generate affective responses through pattern recognition and probabilistic modeling; however, they lack the embodied, subjective awareness that defines human empathy and ethical courage. The absence represents a fundamental conceptual limit. Human emotional competence develops through personal experiences combined with cultural values and moral growth. Wisdom in eldercare, trauma recovery, and conflict mediation needs professionals to create spaces for ambiguity while showing compassion and handling multiple values without simplifying into binary choices. AI

systems focus on achieving clarity, efficiency, and resolution, which can work against the deliberative process needed for wisdom.

The ability to regulate emotions functions as a cognitive resource that goes beyond being a psychological trait. Through emotional regulation, humans develop the ability to handle uncertain situations by postponing judgment and evaluating different viewpoints. The capabilities that AI systems find challenging to replicate are exactly these. AI systems tend to make inflexible decisions when they lack emotional calibration, often becoming overly confident in their outputs or becoming paralyzed by ambiguous situations.

Actual emotional competence in AI does not mean synthetic feeling. The design of such systems requires them to be aware of their context and sensitive to relationships while enabling emotionally intelligent outcomes. Wisdom is often relational. The primary value of an AI system lies in its ability to support humans in reflective processes that lead to deliberate actions with increased care and consideration. The goal is not synthetic wisdom, but supportive augmentation—amplifying what is most meaningful in human judgment, rather than attempting to replicate it.

10. Limitations

This study is conceptual and does not include empirical testing of the AI-Human Synergy Wisdom Model. The research incorporates multiple theoretical frameworks from philosophy, psychology, and cognitive science; however, it does not provide operational definitions of what "wisdom" means. The absence of consensus regarding definitions of wisdom, measurement techniques, and instantiation methods for both humans and machines makes any wisdom modeling approach difficult to apply.

The paper examines the emotional and ethical aspects of wisdom primarily through Western philosophical perspectives. The analysis lacks a comprehensive cultural understanding of wisdom because it fails to incorporate cross-cultural perspectives. The paper fails to address how wisdom stands as a desirable objective for artificial intelligence systems.

The above is a shortcoming of the paper's current focus. Although it addresses philosophical and ethical issues, it does not sufficiently address the practical matters of wisdom achievement in AI, especially in the context of current economic and institutional incentives. Today's trend is that economic and institutional incentives tend to favor rapid operations and profits over ethics (OpenAI, 2025). Artificial wisdom has yet to be attained because fundamental structural modifications to AI research and governance have not been made.

11. Future Research

Future research should focus on two key areas. First, empirical studies are needed to test whether AI systems can enhance human moral reasoning in real-world contexts. For example, can AI support wiser decisions in eldercare, climate policy, or restorative justice? Such studies would help determine whether AI functions as a scaffold for human wisdom or a substitute for it, and what the consequences

are.

Second, design research should explore how to build emotionally aware, context-sensitive AI systems that do not simulate emotion but respect its role in moral life. This includes developing architectures that can recognize when a situation requires ethical deliberation rather than optimization, and that can defer to human judgment when appropriate—participatory design methods, value-sensitive design, and human-computer interaction research offer rich resources for this work.

Second, future research should examine the political and institutional factors that influence the emphasis on wisdom as a design principle. What kinds of governance, funding, and accountability structures are needed to support the development of AI systems that prioritize ethical reflection over efficiency? (OpenAI, 2025).

12. Conclusion

This paper argues that the pursuit of artificial wisdom is not a question of whether machines can become wise, but instead of how they can support wiser human action. Wisdom is not reducible to intellect or the product of size. It is an ethical and affective ability grounded in human experience, situational awareness, and moral regard.

AI systems, as they currently exist, lack the richness of emotions, the sensitivity of morals, and the perspectival quickness that wisdom entails. However, it does not render them useless in our quest for wisdom.

AI systems, as they currently exist, lack the emotional depth, moral awareness, and perspectival flexibility that wisdom requires. However, this does not mean they are irrelevant to the pursuit of wisdom. AI systems designed with care enable humans to handle complex situations while considering their values and making decisions among multiple priorities. The technology enables moral reasoning by freeing up mental space, revealing concealed assumptions, and providing fresh viewpoints.

Future AI wisdom requires systems that augment human ethical capacities, not machines that imitate human consciousness. This will require a reframing of the way we develop, test, and certify AI, not as efficiency tools, but as partners in ethical inquiry. If AI is to aid in wisdom, it will not be because it becomes more human, but rather through the assistance it provides in making humans wiser.

References

Abrams, Z. (2024, April 1). Addressing equity and ethics in artificial intelligence. *Monitor on Psychology*, 55(3). https://www.apa.org/monitor/2024/04/addressing-equity-ethics-artificial-intelligence

Alexander, C. (2025). What is 4E cognitive science? *Phenomenology and the Cognitive Sciences*, 24(1), 1-20. https://doi.org/10.1007/s11097-025-10055-w

Allil, K. (2024). Integrating AI-driven marketing analytics techniques into the classroom: Pedagogical strategies for enhancing student engagement and future business success. *Journal of Marketing*

- Analytics, 12(1), 142-168. https://doi.org/10.1057/s41270-023-00281-z
- Ardelt, M. (2004). Wisdom as expert knowledge system: A critical review of a contemporary operationalization of an ancient concept. *Human Development*, 47(5), 257-285. https://doi.org/10.1159/000079154
- Arya, N. (2024, June 24). Theory of mind AI in Artificial Intelligence. *EJable*. https://www.ejable.com/tech-corner/ai-machine-learning-and-deep-learning/theory-of-mind-ai-in-artificial-intelligence/
- Ateeq, A., Milhem, M., Alzoraiki, M., Dawwas, M. I. F., & Ali, S. A. (2024, December). The impact of AI as a mediator on effective communication: Enhancing interaction in the digital age. *Frontiers in Human Dynamics*. https://www.frontiersin.org/journals/human-dynamics/articles/10.3389/fhu md.2024.1467384/full
- Barkol, J. (2025, February 14). Thinking about AI through the lens of ancient philosophers. *Journal of Philosophical Inquiry*, 45(1), 1-15. https://doi.org/10.1007/s10805-025-09607-1
- Barkol, D. (2025, January 15). Agentic AI explained: A philosophical framework for understanding AI Agents. *All Things Azure*. https://devblogs.microsoft.com/all-things-azure/agentic-philosophers/
- Bhuyan, B. P., Ramdane-Cherif, A., Singh, T. P., & Tomar, R. (2025). Knowledge representation in artificial intelligence. *Studies in Computational Intelligence*. https://doi.org/10.1007/978-981-97-8171-3 4
- Bozkurt, A., & Sharma, R. C. (2024). Trust, credibility, and transparency in human-AI interaction: Why we need explainable and trustworthy AI and why we need it now. *Asian Journal of Distance Education*, 19(2). https://files-eric-ed-gov.mtrproxy.mnpals.net/fulltext/EJ1459191.pdf
- Casacuberta, D. (2012, May). The quest for artificial wisdom. AI & Society. https://doi.org/10.1007/s00146-012-0390-6
- Celluci, T. (2023, September 20). Does artificial intelligence have the wisdom to take over our lives?

 Homeland
 Security**
 Today.

 https://www.hstoday.us/featured/perspective-does-artificial-intelligence-have-the-wisdom-to-take-over-our-lives/
- Chen, H. (2024, May 27). Large knowledge model: Perspectives and challenges. *Data Intelligence*, 6(3), 587-620. doi: 10.3724/2096-7004.di.2024.0001
- Chukwuere, J. E. (2024). *The use of ChatGPT in higher education: The advantages and disadvantages*. Cornell University. https://arxiv.org/abs/2403.19245
- Crowder, J., & Friess, S. (2011). Metacognition and Metamemory Concepts for AI Systems. *In: Athens: The Steering Committee of the World Congress in Computer Science, Computer Engineering and Applied Computing* (WorldComp), 1-6. https://www.researchgate.net/publication/235219069_Metacognition_and_Metamemory_Concepts_for_AI_Systems
- Dabis, A., & Csaki, C. (2024, August 6). AI and ethics: Investigating the first policy responses of

- higher education institutions to the challenge of generative AI. *Humanities and Social Science Communications*. https://doi.org/10.1057/s41599-024-03526-z
- Darnell, C., Gulliford, L., Kristjánsson, K., & Paris, P. (2019). Phronesis and the knowledge-action gap in moral psychology and moral education: A new synthesis? *Human Development*, 62(3), 101-129. https://doi.org/10.1159/000496136
- Davis, J. P. (2019). Artificial wisdom? A potential limit on AI in law (and elsewhere). *Oklahoma Law Review*, 73(4), 707-736. https://digitalcommons.law.ou.edu/cgi/viewcontent.cgi?article=1377&context=olr
- Dreyfus, H. L., & Dreyfus, S. E. (1986). *Mind over machine: The power of human intuition and expertise in the era of the computer*. Free Press.
- Emon, M. H., & Khan, T. (2025, March). The mediating role of attitude towards the technology in shaping artificial intelligence usage among professionals. *Telematics & Informatics Report*. https://doi.org/10.1016/j.teler.2025.100188
- Ferguson, M. (2025, January 25). Anthropic CEO Predicts AI systems to eclipse human abilities by 2027!

 AI

 News.

 https://opentools.ai/news/anthropic-ceo-predicts-ai-systems-to-eclipse-human-abilities-by-2027
- Gabayan, L. (2024). Everyday Wisdom: 8 Scientific Elements of a Meaningful Life. Redwood Publishing.
- Gandhi, A. (2025, April 15). The role of Generative AI in personalizing customer interactions. *Forbes*. https://www.forbes.com/councils/forbesbusinesscouncil/2025/04/15/the-role-of-generative-ai-in-p ersonalizing-customer-interactions/
- Gemini. (2025). Challenges in the Creation of AI Wisdom [Table]. Google.
- Gilson, T. (2025). Artificial intelligence, artificial wisdom: What manner of harms are we creating? *The Stream*. https://stream.org/artificial-intelligence-artificial-wisdom-what-manner-of-harms-are-we-creating/
- Goertzel, B. (2009, November 23). Artificial General Intelligence: Concept, state of the art, and future prospects. *Journal of Artificial General Intelligence*. https://doi.org/10.2478/jagi-2014-0001
- Gonzalez Fabre, R., Camacho Ibáñez, J., & Tejedor Escobar, P. (2021, March). Moral control and ownership in AI systems. *AI* & Society, 35(1), 289-303. https://doi.org/10.1007/s00146-020-01020-z
- Google Deep Mind. (2025). Gemini (Ultra) [Large language model]. Gemini. https://ai.google.dev/gemini-api/docs
- Graves, M. (2024, June). Apprehending AI's moral purpose in practical wisdom. AI & Society, 39(3), 1335-1348, https://doi.org/10.1007/s00146-022-01597-7
- Grossman, I. (2020). A Common Model is essential for a cumulative science of wisdom. *Psychological Inquiry*, 31(2). https://doi.org/10.1080/1047840X.2020.1750920
- Grossmann, I., Weststrate, N. M., Ardelt, M., Brienza, J. P., Dong, M., Ferrari, M., Fournier, M. A., Hu,

- C. S., Nusbaum, H. C., & Vervaeke, J. (2020). The science of wisdom in a polarized world: Knowns and unknowns. *Psychological Inquiry*, *31*(2), 103-133. https://doi.org/10.1080/1047840X.2020.1750917
- Guingrich, R. E., & Graziano, M. S. A. (2024). Ascribing consciousness to artificial intelligence: human-AI interaction and its carry-over effects on human-human interaction. *PMC*. https://pmc.ncbi.nlm.nih.gov/articles/PMC11008604/
- Huffington, A. (2024, October 10). How AI can guide us on the path to becoming the best versions of ourselves. *Time*. https://time.com/7064972/ai-self-improvement/
- Iliopoulos, A. (2019). Material engagement theory and its philosophical ties to pragmatism. Phenomenology and the Cognitive Sciences, 18(1), 39-63. https://doi.org/10.1007/s11097-018-9596-5
- Ismayilzada, M., Paul, D., Bosselut, A., & van der Plas, L. (2024). Creativity in AI: Progress and challenges. *arXiv*. https://doi.org/10.48550/arXiv.2410.17218
- Jackson, E. A. (2024). The evolution of artificial intelligence: A theoretical review of its impact on teaching and learning in the digital age. *Econstor*, 1-14. https://www.econstor.eu/bitstream/10419/280893/1/Evolution%20of%20Artificial%20Intelligence. pdf
- Jeste, D. V., Graham, S. A., Nguyen, T. T., Depp, C. A., & Kim, H. C. (2020, June 25). Beyond Artificial Intelligence (AI): Exploring Artificial Wisdom (AW). National Institute of Health: PMC, 32(8), 993-1001. doi: 10.1017/S1041610220000927
- Jeste, D. V., Graham, S. A., Nguyen, T. T., Depp, C. A., Lee, E. E., & Kim, H. C. (2020). Beyond artificial intelligence: Exploring artificial wisdom. *International Psychogeriatrics*, 32(8), 993-1001. https://doi.org/10.1017/S1041610220000927
- Jeste, D. V., Lee, E. E., & Cacioppo, S. (2021). Beyond artificial intelligence: Exploring artificial wisdom. *International Psychogeriatrics*, 33(8), 711-713. https://pubmed.ncbi.nlm.nih.gov/32583762/
- Johnson, B. (2022, July). Metacognition for artificial intelligence system safety—An approach to safe and desired behavior. Safety Science, 151, 1-10. https://doi.org/10.1016/j.ssci.2022.105743
- Johnson, S. G. B., Karimi, A.-H., Bengio, Y., Chater, N., Gerstenberg, T., Larson, K., Levine, S., Mitchell, M., Rahwan, I., Schölkopf, B., & Grossmann, I. (2024). Imagining and building wise machines: The centrality of AI metacognition. arXiv. https://doi.org/10.48550/arXiv.2411.02478
- Kapoor, P. (2025). Cognitive Psychology meets AI: Exploring their connection. *Scivast.com*. https://scivast.com/articles/cognitive-psychology-artificial-intelligence/
- Kim, H., & Mejia, J. (2024). Incorporating philosophical perspectives in AI development. *AI & Society*, 39(1), 2153-2154. https://doi.org/10.1007/s00146-023-01683-4
- Kim, T.W. & Mejia, S. (2019, October). From Artificial Intelligence to Artificial Wisdom: What Socrates teaches us. *Computer.org*. DOI: 10.1109/MC.2019.2929723

- Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building machines that learn and think like people. *Behavioral and Brain Sciences*, 40. https://doi.org/10.1017/S0140525X1600244X
- Lee, A. (2024). Knowledge representation and reasoning in AI: Analyzing different approaches to knowledge representation and reasoning in artificial intelligence systems. *Journal of Artificial Intelligence Research*.
- Lee, E. E., & Jeste, D. V. (2019). Neurobiology of wisdom. In R. J. Sternberg & J. Glück (Eds.), *The Cambridge handbook of wisdom* (pp. 69-93). *Cambridge University Press*. https://doi.org/10.1017/9781108568272.005
- Lee, J. & Young, L. (2020). A Theory of Wisdom needs Theory of Mind. *Psychological Inquiry*, 31(2), 168-173. https://doi.org/10.1080/1047840X.2020.1750925
- Leoni, L., Ardolino, M., El Baz, J., Gueli, G., & Bacchetti, A. (2022, October). The mediating role of knowledge management processes in the effective use of artificial intelligence in manufacturing firms. *International Journal of Operations*. DOI: 10.1108/IJOPM-05-2022-0282
- Liu, C. (2024, December 27). Intelligence and wisdom: Exploring the relationship between artificial intelligence and humanity. *Hong Kong Artificial Intelligence and Future Technology*. https://hkaift.com/intelligence-and-wisdom-exploring-the-relationship-between-artificial-intelligence-and-humanity/
- Lockhart, E. N. S. (2024). Creativity in the age of AI: The human condition and the limits of machine generation. *Journal of Cultural Cognitive Science*. https://link.springer.com/article/10.1007/s41809-024-00158-2
- Maher, J. (2016). Artificial rhetorical agents and the computing of Phronesis. *Computational Culture*. http://computationalculture.net/artificial-rhetorical-agents-and-the-computing-of-phronesis/
- Malafouris, L. (2019). Mind and material engagement. *Phenomenology and the Cognitive Sciences*, 18(1), 1-17.
- Marsh, J. A., Plowman, L., Yamada-Rice, D., Bishop, J., & Scott, F. (2016). Digital play: A new classification. *Early Years*, *36*(3), 242-253. https://doi.org/10.1080/09575146.2016.1167675
- Microsoft. (2025). Copilot (Version 4). [Large language model]. https://copilot.microsoft.com/
- Microsoft Copilot. (2025). AI-Human Synergy Wisdom Model (AHSWM) [AI-generated model]. Microsoft.
- Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. *Big Data* & *Society*, *3*(2), 2053951716679679. https://doi.org/10.1177/2053951716679679
- Nelson, J., Kaplan, J., Simerly, G., Nutter, N., Edson-Heussi, A., Woodham, B., & Broman-Fulks, J. (2025). The balance and integration of artificial intelligence within cognitive behavioral therapy interventions. *Current Psychology*. https://doi.org/10.1007/s12144-025-07320-1
- Nguyen, T. T., Lee, E. E., Depp, C. A., & Jeste, D. V. (2020). The neurobiological basis of wisdom:

- Implications for AI. *Journal of Artificial Intelligence Research*, 69, 1-20. https://doi.org/10.1613/jair.1.12345
- Nguyen, K. V. (2025). The use of generative AI tools in higher education: Ethical and pedagogical principles. *Journal of Academic Ethics*. https://doi.org/10.1007/s10805-025-09607-1\
- OpenAI. (2025a). ChatGPT (July 2025 version) [Large language model]. https://chat.openai.com.
- Polizzi, G., & Harrison, T. (2022, March). Wisdom in the digital age: A conceptual and practical framework for understanding and cultivating cyber-wisdom. *Ethics & Information Technology*, 24(1) 1-16. DOI: 10.1007/s10676-022-09640-3.
- Peschi, M., Wageneder, E. Kaiser, A., & Kerschbaum, C. (2025). Can we expect AI to be wise? A wisdom, knowledge (management), resonance, and cognitive science perspective. *Proceedings of the 58th Hawaiian International Conference on Systems Sciences*. Doi: 10.24251/HICSS.2025.585
- Prem, E. (2023). From ethical AI frameworks to tools: A review of approaches. *AI and Ethics*, 3(1), 699-716. https://doi.org/10.1007/s43681-023-00258-9
- Riserbato, A. (2023). AI in digital marketing—The complete guide. *HubSpot*. https://blog.hubspot.com/marketing/ai-marketing
- Rodriguez, R. V. & Kannan, H. (2024, September 4). Exploring artificial intelligence as a tool for enhancing wisdom. *Center for Practical Wisdom The University of Chicago*. https://wisdomcenter.uchicago.edu/news/wisdom-news/exploring-artificial-intelligence-tool-enhancing-wisdom-comparative-analysis-using
- Ruhl, C. (2023, August 28). What Is Theory of Mind in Psychology? *Simple Psychology*. https://www.simplypsychology.org/theory-of-mind.html
- Santos, M. (2023, May 23). Autopoiesis, 4E Cognition, and the future of Artificial Intelligence. *BCP Journal*.
 - https://michaelsantosauthor.com/bcpjournal/autopoiesis-4e-cognition-future-of-artificial-intelligen ce/
- Schwab, K. (2025, January 16). Klaus Schwab's call for cooperation and collaboration in the age of intelligence. *Time*. https://time.com/7204646/klaus-schwab-davos-2025-intelligent-age/
- Sinha, A., & Lakhanpal, P. (2024). Can AI systems become wise? A note on artificial wisdom. *AI* & *SOCIETY*, *39*(1), 2153-2154. https://doi.org/10.1007/s00146-023-01683-4
- Simon, J., Rieder, G., & Branford, J. (2024). The philosophy and ethics of AI: Conceptual, empirical, and technological investigations into values. *Digital Society*, *3*(10) 1-13. https://link.springer.com/article/10.1007/s44206-024-00094-2
- Synthetix, L. (2024, July 28). What is revenue intelligence? A complete guide. *AI Slackers*. https://aislackers.com/what-is-revenue-intelligence-a-complete-guide/
- Taddeo, M., & Floridi, L. (2018). How AI can be a force for good. *Science*, 361(6404), 751-752. https://www.science.org/doi/10.1126/science.aat5991
- Taylor, J., & Taylor, R. (2021). Cognitive psychology meets AI: Exploring their connection. Frontiers

- in Neuroscience, 16, Article 1024316. https://doi.org/10.3389/fnins.2022.1024316
- Teachflow.AI. (2023, April 22). *The evolution of AI in education: Past, present, and future*. https://teachflow.ai/the-evolution-of-ai-in-education-past-present-and-future/
- TeachFlow.AI. (2022, December 14). Preparing students for an AI-Driven world: Navigating the future of education. *Teachflow.AI*. https://teachflow.ai/preparing-students-for-an-ai-driven-world-navigating-

the-future-of-education/

- Trotta, A., Ziosi, M., & Lomonaco, V. (2023). The future of ethics in AI: Challenges and opportunities. AI & SOCIETY, 38(1), 439-441. https://doi.org/10.1007/s00146-023-01644-x
- Tsai, C. (2020). Artificial wisdom: A philosophical framework. *AI & Society*, *35*, 937-944. https://doi.org/10.1007/s00146-020-00949-5
- Tsai, C. (2023). Can AI systems become wise? A note on artificial wisdom. AI & SOCIETY, 38(1), 83-98. https://link.springer.com/article/10.1007/s00146-023-01683-4
- Tsai, C., & Ku, H. (2024). Why AI may undermine Phronesis and what to do about it. *AI and Ethics*. https://link.springer.com/article/10.1007/s43681-024-00617-0
- United Nations Secretary General (UNSDG)(2025, February 11). Great power, greater responsibility:

 UN Secretary-General calls for shaping AI for all of humanity. *United Nations Sustainable Development*Group.

https://unsdg.un.org/latest/announcements/great-power-greater-responsibility-un-secretary-general-calls-shaping-ai-all

Vallor, S. (2024, November 15). Shannon Vallor says AI does present an existential risk—but not the one you think. *Vox.* https://www.vox.com/future-perfect/384517/shannon-vallor-data-ai-philosophy-E

thics-technology-edinburgh-future-perfect-50

- Waehlisch, M. (2025). AI and the future of mediation. *Conciliation Resources*. https://www.c-r.org/accord/still-time-talk/ai-and-future-mediation
- Webb, M., & Pankratyeva, A. (2025, January 24). AI ethics in 2025: New challenges and regulations. *Technopedia*. https://www.techopedia.com/ai-ethics-new-challenges-and-regulations
- Weststrate, N. M., Ferrari, M., & Ardelt, M. (2016). The many faces of wisdom: An investigation of cultural-historical wisdom exemplars reveals practical, philosophical, and benevolent prototypes. Personality and Social Psychology Bulletin, 42(5), 662-676. https://doi.org/10.1177/0146167216638075
- Wisdom Center (2025). Exploring artificial intelligence as a tool for enhancing wisdom: A comparative analysis. *The University of Chicago Wisdom Center*. https://wisdomcenter.uchicago.edu/news/wisdom-
- news/exploring-artificial-intelligence-tool-enhancing-wisdom-comparative-analysis-using
- Wood, R. (2024, December 9). What are the ethical challenges of AI in decision-making? Caliber

- Magazine. https://www.calibermag.net/what-are-the-ethical-challenges-of-ai-in-decision-making/
- Wu, Z., Ji, D., Yu, K., Zeng, X., & Wu, D. (2021). AI Creativity and the Human-AI Co-Creation Model.
 Lecture Notes in Computer Science, 12762, 171-190.
 https://doi.org/10.1007/978-3-030-78462-1 13
- Yongjun, X. Wang, F., An Z., Wang, Q. & Zhang, Z. (2023, October 18). Artificial intelligence for science—Bridging data to wisdom. *National Institutes of Health (NIH)*. https://pmc.ncbi.nlm.nih.gov

/articles/PMC10661497/

Zhang, K., Shi, J., Wang, F., & Ferrari, M. (2023). Wisdom: Meaning, structure, types, arguments, and future concerns. *Curr Psychology*, 42, 15030-15051. https://doi.org/10.1007/s12144-022-02816-6