Original Paper

Strategic Lean Leadership in Lean Six Sigma Projects for Manufacturing Excellence

Attia Hussien Gomaa¹ ¹ Professor, Mechanical Engineering Department, Faculty of Engineering. Shubra, Benha University, Cairo, Egypt E-mail: attia.goma@feng.bu.edu.eg

Received: February 21, 2025	Accepted: March 29, 2025	Online Published: April 16, 2025
doi:10.22158/ibes.v7n2p125	URL: http://dx.doi.org/10).22158/ibes.v7n2p125

Abstract

Strategic Lean leadership is essential for successfully implementing Lean Six Sigma (LSS) initiatives, enhancing operational efficiency, and achieving manufacturing excellence in today's competitive landscape. This study examines how integrating Lean, Six Sigma, and Total Quality Management (TQM) influences leadership strategies that improve organizational agility, resilience, and responsiveness to market changes. It highlights the vital role of leadership in fostering collaboration, maximizing resource utilization, and fostering a culture of continuous improvement. The Structured Lean Leadership Framework is introduced as a strategic tool for developing leadership capabilities critical to LSS success, addressing challenges such as weak leadership commitment, resistance to change, and communication barriers. By leveraging the DMAIC framework, key performance indicators (KPIs), and Voice of Customer (VOC) analysis, the study ensures alignment with business objectives, customer needs, and sustainability goals. Furthermore, it examines how integrating LSS with Agile methodologies can improve operational efficiency, governance, and innovation, enabling organizations to adapt more effectively to future challenges. This research offers actionable insights for executives, practitioners, and researchers, supporting leadership development, data-driven decision-making, and long-term value creation. Future research should focus on validating the Structured Lean Leadership Framework, examining the integration of Agile and LSS in regulated industries, and exploring how Industry 4.0 technologies—such as AI, IoT, and automation—can optimize both LSS practices and leadership, with a focus on leadership impact, project outcomes, and sustainability.

Keywords

Effective Leadership, Lean Leadership, TQM, LSS, DMAIC, Continuous Improvement

1. Introduction

In today's rapidly evolving manufacturing landscape, Strategic Lean Leadership is critical for driving efficiency, fostering innovation, and ensuring sustainable growth. To remain competitive, organizations

must adopt structured approaches that integrate continuous improvement and waste reduction. Lean Six Sigma (LSS)—combining Lean's waste elimination principles with Six Sigma's data-driven problem-solving—offers a systematic methodology for optimizing processes, enhancing quality, and improving overall business performance. However, the success of LSS depends not only on its tools and methodologies but also on strong leadership that aligns organizational objectives, engages employees, and cultivates a culture of continuous improvement.

Lean leadership plays a pivotal role in this transformation by setting a clear strategic direction, empowering teams, and embedding Lean principles into organizational culture. While many organizations focus on LSS tools, leadership is the key driver of sustained success, ensuring effective implementation and overcoming challenges such as resistance to change, leadership gaps, and weak commitment. Without strong leadership, LSS adoption remains inconsistent, limiting its impact on operational excellence. As illustrated in Figure 1, Lean leadership fosters a culture of continuous improvement by integrating strategic vision, team empowerment, and structured problem-solving. Figure 2 highlights the synergy between Lean manufacturing principles and Six Sigma methodologies, creating a structured approach to waste reduction, process optimization, and quality enhancement. Figure 3 presents the LSS-DMAIC framework (Define, Measure, Analyze, Improve, and Control) as a structured methodology for achieving sustained process improvements and operational excellence.

This study explores Strategic Lean Leadership in driving Lean Six Sigma project success for manufacturing excellence. It identifies essential leadership competencies, introduces a Structured Lean Leadership Framework, and addresses key challenges in LSS adoption. Additionally, it presents a generic LSS-DMAIC framework for structured problem-solving and continuous improvement, integrating Lean's efficiency-driven approach with Six Sigma's precision to enhance resource utilization and governance. Aligned with project management best practices, the study incorporates Core LSS Principles, the DMAIC Framework, and digital transformation to ensure adaptability in an evolving industrial environment. The remainder of this paper is structured as follows: Section 2 reviews leadership and Lean Six Sigma literature; Section 3 identifies research gaps; Section 4 outlines the research methodology and introduces the LSS leadership framework; and Section 5 presents strategic insights, industry recommendations, and future research directions.

Figure 1. A Leadership Role Framework toward Creating Lean Leadership

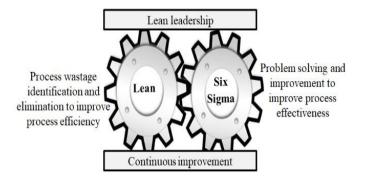


Figure 2. Lean Six Sigma Concept

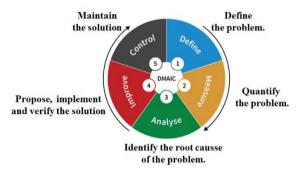


Figure 3. DMAIC Cycle

2. Literature Review

Lean principles drive operational excellence by optimizing quality, speed, and cost while eliminating inefficiencies categorized as waste (muda), unevenness (mura), and overburden (muri). Effective Lean leadership is essential in fostering a culture of continuous improvement, empowering employees, and enabling decentralized decision-making (Aij & Teunissen, 2017; Gomaa, 2024).

Dombrowski and Mielke (2013; 2014) proposed an integrated Lean leadership model built on five core principles: improvement culture, self-development, qualification, gemba, and hoshin kanri. These principles highlight the importance of front-line engagement in sustaining continuous improvement. Improvement culture fosters shared responsibility for innovation, where leaders facilitate problem-solving and view failures as opportunities for learning. Self-development underscores the need for leaders to cultivate both technical expertise and leadership skills, serving as role models while applying structured methodologies such as the PDCA cycle. Qualification ensures ongoing knowledge transfer and skill development through mentoring, equipping employees for effective decision-making and problem-solving. Gemba encourages direct leader engagement with operations, enabling a firsthand understanding of inefficiencies and structured intervention. Hoshin kanri ensures strategic alignment by linking organizational goals with daily operations, guaranteeing that short-term improvements drive long-term success.

Lean Six Sigma (LSS) integrates Lean's waste reduction philosophy with Six Sigma's data-driven precision, providing a structured framework for process optimization, defect minimization, and

efficiency enhancement. At its core, the DMAIC framework (Define, Measure, Analyze, Improve, Control) offers a systematic approach to continuous improvement. Beyond DMAIC, LSS employs a comprehensive set of tools to drive decision-making, waste reduction, and performance enhancement. Table 1 outlines 53 key LSS tools, covering visual management (5S, Andon, Kanban), root cause analysis (5 Whys, Fishbone, RCA), statistical methodologies (ANOVA, DOE, Control Charts, Cpk, Sigma Level), and process optimization (DMAIC, DMADV, SMED, Poka-Yoke, Heijunka). These tools also support waste elimination (8 Wastes, Value-Added Analysis, JIT, Takt Time), strategic decision-making (Hoshin Kanri, Benchmarking, COPQ, KPIs, SMART Goals), customer-centric improvements (VOC, KANO, QFD), and operational excellence (TPM, OEE, Gemba, Jidoka). Collectively, these methodologies empower organizations to enhance efficiency, reduce variability, lower costs, and sustain manufacturing excellence in complex industrial environments (Gomaa, 2023b,c,d).

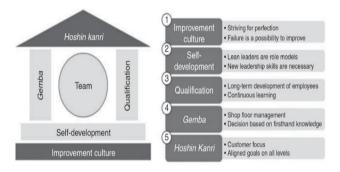


Figure 4. Lean Leadership Model, [Dombrowski and Mielke, 2013]

Table 1. Ke	y LSS Too	ols in Manu	ifacturing
-------------	-----------	-------------	------------

#	Tool	Description	Objective
1	5S / 6S	Visual control	Organize and standardize the workspace.
2	5 Whys	Root cause analysis	Identify causes by repeatedly asking "why."
3	7QC Tools	Quality control methods	Improve product quality using statistical tools.
4	8 Wastes	Lean waste analysis	Eliminate inefficiencies in processes.
5	ABC	Pareto classification	Categorize items by frequency or significance.
6	ABC-XYZ	Advanced classification	Enhance inventory and resource optimization.
7	Andon	Visual control device	Provide real-time production feedback.
8	ANOVA	Variance analysis	Compare group means for decision-making.
9	Benchmarking	Performance comparison	Assess against industry best practices.
10	Bottleneck	Constraint analysis	Identify and resolve process bottlenecks.
11	C&E Diagram	Cause-and-effect analysis	Visualize root causes of problems.

12	CBA	Cost-benefit analysis	Evaluate financial impact of decisions.
13	Charts	Process control charts	Monitor process stability over time.
14	COPQ	Cost of Poor Quality	Quantify losses due to inefficiencies.
15	Cpk	Process capability	Measure how well a process meets specs.
16	CSA	Customer satisfaction	Analyze feedback to improve quality.
17	CTQ	Critical to Quality	Identify key quality factors.
18	DMAIC	Improvement	Define, Measure, Analyze, Improve, Control.
		methodology	
19	DMADV	Process design	Define, Measure, Analyze, Design, Validate.
20	DOE	Design of experiments	Optimize processes through controlled testing.
21	Fishbone	Ishikawa diagram	Identify potential causes of issues.
22	FMEA	Failure mode analysis	Prioritize failure risks in a process.
23	Gage R&R	Measurement analysis	Assess variation in measurement systems.
24	Gantt	Project timeline	Visualize tasks and milestones.
25	Gemba	Go & see	Observe processes firsthand.
26	Heijunka	Workload leveling	Balance production to reduce inefficiencies.
27	Hoshin Kanri	Strategic alignment	Link company goals with daily actions.
28	Jidoka	Automated detection	Enable machines to detect & fix issues.
29	JIT	Just-in-Time	Minimize inventory by producing on demand.
30	Kaizen	Continuous improvement	Drive small, ongoing enhancements.
31	Kanban	Visual workflow	Manage inventory and tasks effectively.
32	KANO	Customer satisfaction	Prioritize features based on user needs.
		model	
33	KPIs	Performance tracking	Measure progress against business goals.
34	Mapping	Process mapping	Visualize workflows (SIPOC, flowchart).
35	OEE	Equipment effectiveness	Assess machine performance.
36	Pareto	Pareto chart	Identify key problem areas.
37	PDCA	Problem-solving cycle	Plan, Do, Check, Act for improvements.
38	Poka-Yoke	Mistake proofing	Prevent defects and errors.
39	QFD	Quality function	Translate customer needs into specs.
		deployment	
40	RACI	Responsibility matrix	Define roles in projects.
41	RCA	Root cause analysis	Identify sources of process issues.
42	SIPOC	High-level mapping	Define Suppliers, Inputs, Process, Outputs,
			Customers.
43	SMART	Goal setting	Specific, Measurable, Achievable, Relevant,

			Time-bound.
44	SMED	Rapid changeover	Reduce equipment setup time.
45	Standard Work	Best practice	Ensure consistency in processes.
		documentation	
46	Taguchi	Robust design	Minimize process variation.
47	Takt Time	Production pacing	Align production rate with demand.
48	TQM	Total quality management	Foster company-wide quality culture.
49	TPM	Total productive	Maximize equipment reliability.
		maintenance	
50	Value-Added	Process efficiency	Identify value-adding activities.
51	VOC	Voice of Customer	Capture and analyze customer needs.
52	VOP	Voice of Process	Assess and enhance process performance.
53	Sigma Level	Process capability	Measure performance using Six Sigma.

2.1 Critical Failure Factors in Lean Six Sigma (LSS) Projects

While Lean Six Sigma (LSS) is widely recognized for enhancing efficiency and quality, its successful implementation often encounters significant challenges. Common barriers include resistance to change, inadequate leadership support, insufficient training, and resource constraints. Several studies have identified these obstacles as critical to LSS adoption (Erne, 2022; Moradi et al., 2024; Lima et al., 2023; Ikuabe et al., 2022; Albalkhy et al., 2021a, 2021b; Thakkar et al., 2021; Dursun et al., 2022; Connor, 2022; Alnadi et al., 2021). Addressing these challenges early in the process enhances the likelihood of successful implementation. Table 2 outlines the most critical failure factors, emphasizing the need for strong leadership, clear objectives, effective training, and open communication. Organizations that proactively mitigate these risks are better positioned to achieve sustainable process improvements and operational excellence. Successful LSS execution requires strategic alignment across multiple dimensions, including customer focus, leadership commitment, resource management, workforce engagement, IT integration, and financial sustainability. Failure to address challenges in these areas can lead to inefficiencies and project setbacks. The primary failure factors can be categorized as follows:

1) Customer-Related Challenges: Many organizations struggle to align LSS initiatives with customer needs due to incomplete requirements, changing specifications, and a lack of structured feedback mechanisms. Limited customer involvement throughout the project lifecycle can lead to misaligned expectations and disruptions. Implementing Voice of Customer (VOC) analysis, proactive engagement, and real-time feedback systems helps ensure that improvements align with customer expectations.

2) Leadership and Organizational Challenges: Effective leadership is essential for LSS success, yet many projects fail due to insufficient executive support, unclear objectives, and a lack of strategic vision. The absence of Key Performance Indicators (KPIs), standardized operating procedures (SOPs), and structured performance monitoring weakens execution. Resistance to change, ineffective stakeholder management, and poor project governance further disrupt implementation. Leaders must foster a Lean culture, ensure strategic alignment, and establish governance frameworks to sustain LSS initiatives.

3) Resource and Supply Chain Constraints: Effective resource planning is crucial for LSS success, but many organizations experience shortages of materials, equipment, and skilled personnel. Procurement delays, inefficient resource allocation, and excessive reliance on subcontractors create operational risks. Additionally, weak supplier relationships and resistance to Lean-driven changes further complicate execution. Organizations should adopt data-driven resource management, strengthen supplier collaboration, and optimize supply chain processes to improve efficiency and sustainability.

4) Workforce and Change Management Challenges: A skilled and engaged workforce is critical for LSS success, yet many organizations face challenges such as inadequate training, resistance to change, and high employee turnover. Limited expertise in risk assessment, problem-solving, and process improvement methodologies can hinder progress. To foster a Lean culture, companies must invest in skill development, implement structured training programs, and adopt change management strategies that encourage employee participation and buy-in.

5) IT Infrastructure Deficiencies: Data-driven decision-making is a cornerstone of LSS, yet many projects struggle due to weak IT infrastructure, limited digital tools, and poor integration of smart manufacturing solutions. Without real-time analytics, automation, and digital monitoring systems, organizations find it difficult to maintain process visibility and sustain improvements. Investing in digital transformation, AI-driven analytics, and smart process control systems enhances LSS effectiveness and operational efficiency.

6) Financial Constraints and Cost Management: Budget limitations, high inventory costs, and inefficient cost control pose significant challenges for LSS implementation. Many organizations fail to allocate sufficient financial resources for process improvement initiatives, leading to stalled or underfunded projects. Additionally, weak tracking of return on investment (ROI) undermines the business case for Lean transformations. Companies must adopt Lean financial strategies, optimize inventory management, and align cost reduction efforts with LSS objectives to maximize profitability and sustain improvements.

In conclusion, the success of an LSS project depends on a holistic approach that integrates leadership commitment, resource optimization, workforce development, IT enablement, and financial sustainability. By proactively addressing critical failure factors, organizations can improve efficiency, reduce costs, and foster a culture of continuous improvement. Strategic alignment and data-driven decision-making enable businesses to achieve long-term success in their LSS initiatives, driving sustained operational excellence and competitive advantage.

131

#	Perspective	Objective	Strategic Alignment	Critical Failure Factors
1	Customer /	Align LSS with	Customer-Centric	1) Misaligned objectives.
	Client	customer	Approach: Integrates	2) Unclear or changing
		expectations to	VOC, stable	requirements.
		enhance satisfaction	requirements, and	3) Lack of satisfaction
		and engagement.	satisfaction metrics.	measurement.
				4) Limited customer involvement.
				5) Unrealistic expectations.
2	Management	Establish	Leadership &	6) Weak leadership commitment.
	/ Leadership	leadership-driven	Governance: Ensures	7) Lack of clear strategy.
		continuous	executive support,	8) No benchmarking.
		improvement and	strategic vision, and	9) Poor KPIs and monitoring.
		accountability.	structured	10) No standardized processes.
			decision-making.	11) Inadequate project
				management.
				12) Limited LSS training.
				13) Weak planning and risk
				control.
				14) Undefined roles.
				15) Poor communication.
				16) Resistance to change.
3	Resources &	Optimize resources	Operational	17) Insufficient resources.
	Supply Chain	and supplier	Efficiency &	18) Equipment issues.
		collaboration for	Resilience: Focuses	19) Inefficient utilization.
		LSS success.	on resource planning,	20) Supply chain delays.
			supplier engagement,	21) Weak supplier relationships.
			and waste reduction.	22) Over-reliance on
				subcontractors.
				23) Supplier resistance to Lean.
4	Workforce	Develop a skilled	Talent Development	24) Skills shortage.
		and motivated	& Change Readiness:	25) Low motivation.
		and motivated	ee change recaamess.	
		workforce.	Emphasizes training,	26) Inadequate training.
			-	,
			Emphasizes training,	26) Inadequate training.

	Infrastructure	transformation for	Manufacturing:	analytics.
		LSS efficiency.	Supports automation,	30) Weak digital integration.
			analytics, and process	
			optimization.	
6	Financial	Ensure cost-effective	Financial Viability &	31) Budget constraints.
		and sustainable LSS	ROI Optimization:	32) High operational costs.
		implementation.	Aligns cost control	
			with performance	
			tracking.	

2.2 LSS Studies in Manufacturing Industries

Lean Six Sigma (LSS) methodologies have been widely adopted across various industrial sectors, particularly in manufacturing, maintenance, quality improvement, and sustainability. Tables 3 and 4 categorize these studies based on their key objectives and contributions, offering a structured overview of LSS implementation in different contexts.

1) Manufacturing Process Optimization: LSS has significantly enhanced manufacturing efficiency, defect reduction, and cost control. Studies by Singh (2024), Srinivasan (2024), Gomaa (2024), Jimenez (2023), Tsarouhas (2023), Mittal (2023), Toki (2023), and Satolo (2023) examine LSS applications in medical equipment, steel, spare parts, textiles, packaging, rubber weather strips, garments, and dairy processing. These studies report improved Overall Equipment Effectiveness (OEE), minimized non-value-added (NVA) time, and optimized production costs, leading to better operational performance.

2) Lean Implementation & Waste Reduction: LSS-driven lean strategies have helped industries reduce waste and improve efficiency. Research by Oliveira (2023), Sasikumar (2023), Conde (2023), and Habib (2023) in automotive, tire manufacturing, car parts, and labeling & packaging highlights reductions in setup time, material waste, and process inefficiencies, enhancing productivity while maintaining high-quality standards.

3) Project Management & Shutdown Optimization: LSS frameworks have improved project execution and downtime reduction. McDermott (2024) and Trubetskaya (2024) demonstrate how LSS enhances off-site manufacturing and dairy industry shutdowns, significantly reducing project duration, optimizing resources, and minimizing operational disruptions.

4) Maintenance & Reliability Improvement: LSS methodologies enhance equipment reliability and maintenance efficiency. Studies by Jurewicz (2024), Gomaa (2023), Al Farihi (2023), Shannon (2023), West (2023), Trubetskaya (2024), and Macalinao (2024) in petrochemical, pharmaceutical, oil services, and dairy industries show improvements in OEE, reduced downtime, and optimized maintenance processes, contributing to increased productivity and lower operational costs.

4) Quality & Performance Enhancement: LSS has proven effective in enhancing product quality and performance. Research by Altug (2023), Enache (2023), and Jimenez (2023) in spare parts, metal doors, and textiles demonstrates reductions in rejection rates and scrap levels, leading to higher productivity and improved quality standards.

5) Sustainability & Energy Efficiency: LSS is increasingly applied to support sustainable manufacturing and energy efficiency. Studies by Utama (2023) and Andron (2023) in carrageenan production and refrigeration highlight LSS's role in improving the Manufacturing Sustainability Index (MSI) and energy efficiency, ensuring environmentally responsible operations.

The 2024-2025 period marks a pivotal shift, with LSS deeply integrated into Industry 4.0, transforming it into an AI-driven, predictive decision-making framework. Amjad et al. (2024) showcased AI-enhanced LSS applications in engineering, demonstrating efficiency gains through predictive maintenance and automated defect detection. Kumar et al. (2024) identified key success factors for LSS in I4.0, emphasizing leadership, digital culture, and AI-driven analytics. Gomaa (2025a, 2025b) introduced Lean 4.0 and LSS 4.0, integrating AI, IoT, blockchain, and digital twins to shift process control from reactive to predictive. Meanwhile, Jason et al. (2025) and Rodrigues and Alves (2025) explored Lean Thinking in IT, validating its benefits in software development while identifying scalability challenges.

In conclusion, the reviewed studies showcase the versatility and impact of LSS across manufacturing and related industries. Whether applied to process optimization, waste reduction, maintenance improvement, quality enhancement, or sustainability, LSS continues to drive operational excellence, cost savings, and long-term efficiency.

140	Table 0. Lean Six Signa (LSS) Statutes in Manufacturing Industries (2020-2021)					
#	Reference	Contribution	Application	Key Objectives		
1	Singh, 2024	Environmental LSS	Medical equipment	Improve capacity		
		framework	manufacturing	utilization, air quality		
2	Srinivasan,	LSS framework for	Steel industry	Reduce NVA time,		
	2024	manufacturing		improve efficiency		
3	Gomaa, 2024	LSS framework for	Spare parts company	Improve OEE %, sigma		
		manufacturing		level		
4	McDermott,	LSS for project	Off-site manufacturing	Reduce time, cost		
	2024	management (PM)				
5	Trubetskaya,	DMAIC for shutdown	Dairy industry	Reduce downtime		
	2024	projects				
6	Jurewicz, 2024	TPM framework	Machinery fleet	Improve OEE		
7	Trubetskaya,	DMAIC for maintenance	Dairy industry	Reduce maintenance		

Table 3. Lean Six Sigma (LSS) Studies in Manufacturing Industries (2023-2024)

	2024			downtime
8	Macalinao,	TPM framework	Pharmaceutical	Reduce maintenance
	2024		manufacturing	downtime
9	Gomaa, 2023d	LSS framework for	Spare parts company	Improve OEE %,
		manufacturing		quality %
10	Abdullahi,	Lean construction	Construction project	Improve efficiency,
	2023	framework		effectiveness
11	Tsarouhas,	Six Sigma framework	Olive packaging	Minimize defects, reduce
	2023			cost
12	Altug, 2023	Six Sigma framework	Spare parts company	Improve performance,
				reduce lead time
13	Andron, 2023	Kaizen framework for	Refrigeration company	Increase energy efficiency
		energy		
14	Conde, 2023	LSS framework for	Car parts	Reduce defects
		manufacturing	manufacturing	
15	Enache, 2023	LSS framework for	Metal door	Reduce scrap rate
		manufacturing	manufacturing	
16	Habib, 2023	Lean framework	Labeling & packaging	Reduce lead time,
				improve effectiveness
17	Jimenez, 2023	LSS framework	Textile sector	Improve quality,
				productivity
18	Mittal, 2023	Six Sigma framework	Rubber weather strips	Reduce rejection rate,
				cost
19	Oliveira, 2023	Lean framework	Automotive assembly	Reduce setup time
20	Sasikumar,	LSS framework	Bias tire	Reduce waste, improve
	2023		manufacturing	OEE
21	Satolo, 2023	LSS framework	Milking processes	Reduce defects %, cost
22	Toki, 2023	LSS - Quick Changeover	Ready-made garments	Improve efficiency,
		framework		reduce cost
23	Trubetskaya,	LSS framework	Animal feed	Reduce inventory, lead
	2023		manufacturing	time
24	Utama, 2023	Sustainable LSS	Carrageenan	Improve sustainability
		framework	production	index
25	Gomaa, 2023	LSS DMAIC framework	Petrochemical	Improve OEE, reliability
		for maintenance	company	
26	Al Farihi,	Lean maintenance	Wiring harness	Reduce unplanned

	2023	framework	production	downtime, MTTR
27	Shannon, 2023	LSS for maintenance	Pharmaceutical plant	Improve OEE, reduce
				corrective maintenance
28	West, 2023	LSS for maintenance	Oil service company	Improve efficiency,
		process		increase availability

Table 4. Summary of LSS Applications Across Industries (2023-2024)

#	Category	Reference(s)	Industry/Application	Key Contributions
1	Manufacturing	Singh (2024),	Medical equipment, steel,	Increased OEE,
	Process	Srinivasan (2024),	spare parts, textiles,	improved process
	Optimization	Gomaa (2024),	packaging, rubber weather	efficiency, reduced
		Jimenez (2023),	strips, garments, milking	defects, minimized
		Tsarouhas (2023),		NVA time, reduced
		Mittal (2023), Toki		costs
		(2023), Satolo (2023)		
2	Lean	Oliveira (2023),	Automotive, tire	Reduced setup time,
	Implementation &	Sasikumar (2023),	manufacturing, car parts,	minimized waste,
	Waste Reduction	Conde (2023), Habib	labeling & packaging	improved OEE,
		(2023)		reduced process
				defects & lead time
3	Project	McDermott (2024),	Off-site manufacturing,	Reduced project
	Management &	Trubetskaya (2024)	dairy industry	duration, minimized
	Shutdown			shutdown downtime,
	Optimization			cost optimization
4	Maintenance &	Jurewicz (2024),	Machinery fleets,	Improved OEE &
	Reliability	Gomaa (2023), Al	petrochemical, wiring	reliability, reduced
	Improvement	Farihi (2023), Shannon	harness, pharmaceuticals,	unplanned downtime,
		(2023), West (2023),	oil services, dairy industry	optimized
		Trubetskaya (2024),		maintenance
		Macalinao (2024)		efficiency
5	Quality &	Altug (2023), Enache	Spare parts, metal doors,	Reduced rejection &
	Performance	(2023), Jimenez	textiles	scrap rates, enhanced
	Enhancement	(2023)		quality &
				productivity
6	Sustainability &	Utama (2023), Andron	Carrageenan production,	Enhanced
	Energy Efficiency	(2023)	refrigeration	sustainability index,

increased energy efficiency

3. Research Gap Analysis

Despite the widespread adoption of Lean Six Sigma (LSS) in manufacturing, several research gaps remain, particularly concerning strategic leadership's role in ensuring project success. This study identifies five key gaps that require further investigation to strengthen Lean leadership practices and improve LSS implementation.

- 1) Cross-functional collaboration in LSS Projects: Effective cross-functional collaboration is crucial for the success of Lean Six Sigma (LSS) projects, yet organizations often struggle with integrating teams from different departments. This challenge arises from a lack of leadership strategies that encourage cooperation and communication. The research gap here is the insufficient exploration of how leadership can foster collaboration across departments. Future studies should focus on leadership approaches that enhance cross-functional teamwork, ensuring that diverse perspectives and expertise are leveraged to optimize LSS project outcomes.
- 2) Scaling LSS Across the Organization: Scaling Lean Six Sigma beyond individual projects is a major hurdle for many organizations. While LSS may succeed in isolated initiatives, broader implementation often faces difficulties in standardization and integration across various levels of the organization. The research gap lies in understanding how leadership can guide the effective scaling of LSS practices. Future research should focus on developing leadership strategies that allow for consistent application of LSS principles throughout the organization, ensuring enterprise-wide improvement and alignment with long-term objectives.
- 3) Balancing Short-Term and Long-Term Goals: In LSS projects, leaders must strike a balance between achieving immediate results and ensuring alignment with long-term strategic goals. However, achieving this balance remains a challenge, as focusing solely on short-term improvements can undermine the pursuit of broader organizational objectives. The research gap here is in understanding how leadership can navigate this delicate balance. Future research should investigate leadership strategies that help achieve quick wins while ensuring that LSS initiatives remain aligned with the long-term vision and strategic priorities of the organization.
- 4) Leadership in Employee Development and Knowledge Retention: Continuous improvement in LSS projects depends not only on process optimization but also on developing and retaining knowledge within the workforce. Leadership plays a vital role in fostering employee development and ensuring that the lessons learned from LSS initiatives are retained within the organization. However, this aspect of leadership in LSS projects remains underexplored. Future research should investigate leadership strategies that support employee training, knowledge retention, and skill development, ensuring that improvements are sustained and applied to future projects.

- 5) Overcoming Organizational Resistance to LSS: Resistance to Lean Six Sigma adoption is a common barrier, often stemming from leadership's inability to engage employees or communicate the benefits of change effectively. The research gap lies in understanding how leadership can mitigate resistance and drive successful cultural shifts toward continuous improvement. Future studies should explore leadership approaches that overcome organizational resistance by promoting employee buy-in, fostering a growth mindset, and ensuring the effective integration of LSS principles into the company culture.
- 6) Sustaining Momentum Post-LSS Implementation: After initial success in LSS projects, many organizations face challenges in maintaining momentum. This decline can be attributed to a lack of sustained leadership commitment or a failure to continuously engage employees. The research gap here is in understanding how leadership can ensure the longevity of LSS initiatives. Future research should explore strategies for leaders to maintain focus on continuous improvement, creating systems that ensure the long-term sustainability and growth of LSS practices within the organization.
- 7) Aligning LSS with Organizational Strategy: For Lean Six Sigma to be most effective, it must align closely with the organization's broader strategic goals. However, many organizations struggle to integrate LSS initiatives with their long-term vision. The research gap is in understanding how leadership can better align LSS with organizational strategy. Future studies should focus on how leaders can integrate LSS principles into the organizational strategy, ensuring that improvements are not only operational but also strategically significant, driving the organization toward its overarching goals.
- 8) Cultural Adaptation of LSS Practices: In global organizations, the cultural adaptation of Lean Six Sigma is essential to ensure successful implementation across diverse regions. Leadership's role in facilitating this cultural adaptation is crucial yet underexplored. The research gap here lies in understanding how leaders can adapt LSS practices to various cultural contexts, ensuring that the principles resonate with diverse workforces. Future research should investigate how leadership can guide the cultural adaptation of LSS, ensuring its effectiveness in multinational or culturally diverse environments.
- 9) Supplier and Partner Collaboration in LSS Projects: LSS projects often involve external stakeholders, such as suppliers and partners. Effective leadership is required to manage and enhance these external collaborations, ensuring alignment with LSS goals. The research gap is in understanding how leadership can drive better collaboration with external partners in LSS projects. Future research should focus on leadership strategies that foster strong, productive relationships with suppliers and other partners, ensuring all stakeholders are aligned and contributing to the success of LSS initiatives.

In conclusion, addressing these research gaps crucial for advancing strategic Lean leadership in Lean Six Sigma projects. Organizations can achieve long-term operational excellence by focusing on leadership strategies for improving cross-functional collaboration, scaling LSS across the organization, balancing short-term and long-term goals, supporting employee development, overcoming resistance, maintaining momentum, aligning LSS with organizational strategy, adapting to cultural differences, and enhancing supplier collaboration. Bridging these gaps will allow organizations to drive continuous improvement, innovation, and sustainable success in an increasingly complex and competitive manufacturing environment.

#	Research Gap	Challenges	Future Research Directions
1	Cross-Functional	Lack of integration between	Study leadership approaches to
	Collaboration	departments.	enhance cross-functional teamwork
			in LSS projects.
2	Scaling LSS Across the	Difficulty in applying LSS	Focus on leadership strategies for
	Organization	principles organization-wide.	scaling LSS across all levels.
3	Balancing Short-Term	Balancing immediate results	Investigate leadership strategies for
	and Long-Term Goals	with long-term goals.	aligning short-term wins with
			long-term objectives.
4	Employee Development	Challenges in maintaining	Research leadership's role in
	and Knowledge Retention	workforce development.	employee training and knowledge
			retention.
5	Overcoming	Employee resistance due to	Explore leadership strategies to
	Organizational Resistance	lack of leadership engagement.	overcome resistance and drive
			cultural change.
6	Sustaining Momentum	Decline in engagement after	Study leadership approaches to
	Post-LSS Implementation	initial success.	maintain long-term momentum and
			continuous improvement.
7	Aligning LSS with	Difficulty integrating LSS	Research leadership's role in
	Organizational Strategy	with overall business strategy.	aligning LSS with strategic business
			goals.
8	Cultural Adaptation of	Adapting LSS to diverse	Investigate leadership strategies for
_	LSS Practices	cultural contexts.	cultural adaptation of LSS.
9	Supplier and Partner	Lack of alignment between	Study leadership strategies for
	Collaboration in LSS	internal teams and external	enhancing collaboration with
	Projects	partners.	suppliers and partners.

Table 7. Research Gap Analysis

4. Research Methodology

The success of Lean Six Sigma (LSS) projects in manufacturing hinges on a leadership-driven approach that integrates strategic vision, data-driven decision-making, and a culture of continuous improvement. By aligning Lean principles, Six Sigma methodologies, and leadership best practices with project management excellence, organizations can enhance scalability, adaptability, and resilience in complex industrial environments. This research methodology follows a structured framework designed to optimize operational efficiency, improve quality, and achieve strategic objectives. It consists of six key components:

- Strategic Lean Leadership in LSS Projects-Leadership is fundamental to the success of LSS initiatives. This component focuses on developing core leadership competencies such as strategic vision, change management, workforce engagement, and agile decision-making. Strong leadership ensures that LSS initiatives align with organizational goals, drive effective project execution, and sustain long-term improvements.
- 2) Core Principles of Strategic Lean Leadership-LSS leadership is guided by principles that prioritize efficiency, quality, and sustainability. These principles align projects with customer expectations, technological advancements, and business strategies. By fostering a culture of continuous improvement, leaders drive adaptability, innovation, and operational excellence in dynamic manufacturing environments.
- 3) DMAIC Framework Integration-The Define, Measure, Analyze, Improve, and Control (DMAIC) methodology provides a structured approach to problem-solving, risk mitigation, and process optimization. Effective leadership ensures the smooth execution of this framework, enhancing efficiency, enabling data-driven decision-making, and delivering measurable improvements in manufacturing operations.
- 4) Key Performance Indicators (KPIs) for LSS Leadership-Establishing clear and measurable KPIs is essential for evaluating leadership effectiveness in LSS projects. This component identifies performance metrics that assess leadership impact on operational efficiency, quality improvements, team collaboration, and overall project success. These indicators provide actionable insights to enhance leadership effectiveness and project outcomes.
- 5) Voice of Customer (VOC) Analysis in LSS Projects VOC analysis ensures that LSS projects remain customer-centric. By addressing key project dimensions—scope, schedule, quality, safety, and cost—organizations align LSS initiatives with customer expectations, leading to greater efficiency, superior quality, and enhanced customer satisfaction.
- 6) Integrating Agile Methodologies with LSS The integration of Agile methodologies with LSS presents both challenges and opportunities for organizations aiming to enhance efficiency, responsiveness, and continuous improvement. A structured integration approach enables organizations to balance Agile's flexibility with LSS's structured problem-solving, fostering innovation, adaptability, and operational excellence.

By seamlessly integrating Lean Six Sigma with strategic leadership principles, this research methodology fosters a culture of continuous improvement, enables data-driven decision-making, and ensures sustainable operational excellence in modern manufacturing environments.

4.1 Strategic Lean Leadership in LSS Projects

Strategic Lean Leadership is a critical enabler of Lean Six Sigma (LSS) project success, providing the vision, direction, and culture necessary for achieving manufacturing excellence, operational efficiency, and sustainable continuous improvement. While LSS methodologies offer structured problem-solving frameworks such as DMAIC (Define, Measure, Analyze, Improve, and Control) and Lean principles focus on waste elimination, leadership plays a fundamental role in ensuring these approaches are effectively implemented and sustained within an organization. A strong leadership foundation facilitates cross-functional collaboration, strategic resource allocation, and the integration of digital transformation to enhance process optimization and business performance. Organizations that invest in leadership development for LSS projects experience higher success rates, faster adoption of Lean principles, and improved employee engagement, resulting in sustained productivity gains.

- Strategic Vision and Alignment: Effective Lean leadership requires a clear strategic vision that aligns LSS initiatives with organizational goals. Leaders must anticipate market trends, integrate sustainability-driven Lean strategies, and leverage digital technologies such as AI and big data analytics. A well-defined vision ensures LSS becomes a long-term strategic driver of efficiency, resilience, and competitive advantage.
- 2) Change Management and Cultural Transformation: Resistance to change is a common barrier to LSS adoption. Strong leadership fosters a culture of continuous improvement, adaptability, and innovation. By implementing structured change management strategies—such as clear communication, leadership commitment, and workforce training—leaders can overcome resistance and embed Lean principles into the organization's DNA, ensuring long-term engagement and sustainability.
- 3) Workforce Engagement and Empowerment: Employee involvement is crucial for LSS success. Lean leaders create a high-performance culture by encouraging cross-functional collaboration, problem-solving, and knowledge sharing. Empowering employees with decision-making responsibilities, recognizing contributions, and fostering a trust-based environment enhances motivation and ownership, driving sustained operational improvements.
- 4) Data-Driven Decision-Making and Agility: In today's dynamic manufacturing environment, Lean leaders must embrace a data-driven approach to decision-making. Utilizing real-time analytics, predictive modeling, and digital tools enables proactive problem-solving, risk mitigation, and performance optimization. Agile decision-making allows organizations to quickly adapt to market changes and operational challenges, ensuring LSS project success.

- 5) Seamless Integration of LSS Methodologies: Lean leadership must ensure the smooth integration of LSS methodologies into corporate strategy and project execution. This involves aligning teams, optimizing workflows, and leveraging the DMAIC (Define, Measure, Analyze, Improve, Control) framework for systematic problem-solving. Effective integration eliminates silos, enhances collaboration, and maximizes Lean's impact on operational efficiency.
- 6) Future Leadership in LSS: As industries evolve, Lean leadership must adapt to emerging technologies such as IoT, automation, and hybrid project management models that combine Agile and Lean principles. Sustainability-driven Lean strategies will become increasingly important, requiring leaders to balance efficiency with environmental and social responsibility. The future of Lean leadership will be shaped by its ability to integrate technology while maintaining a people-centric approach to innovation and operational excellence.

In conclusion, strategic Lean Leadership is the foundation of successful Lean Six Sigma project execution, ensuring that organizations achieve efficiency, quality improvement, and manufacturing excellence. By leveraging strategic vision, change management, workforce engagement, and agile decision-making, leaders can maximize the impact of LSS initiatives and drive sustainable performance improvement. As global competition intensifies and digital transformation accelerates, organizations that prioritize leadership excellence in LSS will gain a competitive advantage, fostering innovation, resilience, and long-term success.

#	Key Area	Objective	Description
1	Strategic Vision &	Integrate LSS with	Establish a clear vision for sustainability,
	Alignment	organizational goals	digital transformation, and efficiency.
2	Change Management	Overcome resistance,	Implement leadership commitment,
		drive Lean culture	structured change strategies, and training.
3	Workforce	Foster engagement and	Promote ownership, cross-functional
	Empowerment	collaboration	teamwork, and knowledge sharing.
4	Data-Driven Agility	Enable proactive	Utilize real-time analytics and digital tools
		decision-making	for process optimization.
5	LSS Methodology	Ensure structured	Align DMAIC and process frameworks with
	Integration	execution	strategic objectives.
6	Future Leadership &	Adapt to technology and	Leverage AI, IoT, and hybrid models while
	Innovation	sustainability	maintaining a people-centric approach.
	-		

Table 8.	Strategic	Lean	Leadershi	p in	LSS	Projects

4.2 Core Principles of Strategic Lean Leadership in LSS Projects

Strategic Lean Leadership in Lean Six Sigma (LSS) projects is founded on key principles that drive efficiency, quality, and long-term success. These principles ensure that projects are not only optimized for performance but also aligned with customer expectations, technological advancements, and organizational strategy.

- Customer-Driven Value Creation Ensures that LSS projects align with customer expectations using tools like Voice of the Customer (VoC) and Kano Model, focusing on sustainability and long-term value.
- Data-Driven Decision-Making Leverages AI, machine learning, and predictive analytics to optimize performance, forecast risks, and enable proactive decision-making.
- Dynamic Continuous Improvement (Kaizen) Implements real-time feedback loops and digital automation to support iterative, scalable improvements beyond traditional Kaizen approaches.
- End-to-End Waste Elimination Expands Lean's waste reduction focus to digital and operational inefficiencies, streamlining workflows and integrating automation.
- 5) Variability Reduction & Process Stability Uses predictive modeling, real-time analytics, and adaptive controls to minimize defects and ensure project consistency.
- Integrated Stakeholder Engagement Aligns stakeholder expectations and promotes collaboration through AI-driven analytics and dynamic expectation mapping across teams, suppliers, and regulatory bodies.
- Smart Process Standardization & Control Ensures global quality and compliance with SPC (Statistical Process Control), control charts, and cloud-based quality systems for real-time monitoring.
- Empowered Workforce & Digital Collaboration Encourages innovation and knowledge-sharing using AI-driven insights, digital collaboration platforms, and agile methodologies to enhance team contributions.
- Predictive Failure Prevention & Risk Mitigation Applies machine learning-based FMEA (Failure Mode and Effects Analysis) and root cause analysis to identify and mitigate risks before they occur.
- 10) Agile-LSS Integration for Adaptive Execution Combines Lean Six Sigma with Agile to balance process optimization with flexibility, ensuring adaptability in changing business environments.

In conclusion, these principles redefine Strategic Lean Leadership by integrating data-driven decision-making, digital transformation, and stakeholder-centric project execution. By embracing AI, predictive analytics, and real-time adaptability, Lean leaders enhance efficiency, reduce risks, and ensure sustained manufacturing excellence in a competitive global market.

#	Core Principle	Description	Key Focus Areas
1	Customer-Driven Value	Ensures LSS projects align with	VoC, Kano Model,
	Creation	customer expectations and	sustainability, customer
		long-term value.	experience.
2	Data-Driven	Leverages AI, machine learning,	Real-time monitoring, risk
	Decision-Making	and predictive analytics to enhance	forecasting, performance
		project outcomes.	optimization.
3	Dynamic Continuous	Embeds real-time feedback loops	Digital automation, real-time
	Improvement (Kaizen)	for iterative process optimization.	insights, adaptive learning.
4	End-to-End Waste	Reduces physical, digital, and	Lean waste categories,
	Elimination	operational inefficiencies across	automation, workflow
		processes.	optimization.
5	Variability Reduction &	Enhances consistency through	Six Sigma, real-time analytics,
	Process Stability	AI-driven predictive modeling and	dynamic simulations.
		adaptive controls.	
6	Integrated Stakeholder	Ensures proactive alignment,	AI-driven analytics,
	Engagement	collaboration, and engagement	expectation mapping, risk
		across all stakeholders.	alignment.
7	Smart Process	Uses digital tools to maintain	SPC, control charts,
	Standardization &	global consistency and quality.	cloud-based quality assurance.
	Control		
8	Empowered Workforce &	Fosters innovation, autonomy, and	AI-driven insights, agile
	Digital Collaboration	real-time collaboration through	teams, knowledge sharing.
		technology.	
9	Predictive Failure	Uses advanced analytics for early	Machine learning-based
	Prevention & Risk	risk detection and proactive issue	FMEA, resilience strategies,
	Mitigation	resolution.	root cause analysis.
10	Agile-LSS Integration for	Combines Lean Six Sigma with	Agile-LSS synergy, iterative
	Adaptive Execution	Agile for flexibility, speed, and	development, continuous
		responsiveness.	refinement.

Table 8. Core Principles of Strategic Lean Leadership in LSS Projects

4.3 DMAIC Framework of Strategic Lean Leadership in LSS Projects

The Define, Measure, Analyze, Improve, and Control (DMAIC) framework is a fundamental methodology in Lean Six Sigma (LSS), providing a structured, data-driven approach to project management. In the context of Strategic Lean Leadership, DMAIC extends beyond process

optimization by incorporating leadership-driven decision-making, workforce engagement, and alignment with strategic business goals to drive sustainable manufacturing excellence. Table 9 outlines how Strategic Lean Leadership strengthens each phase of the DMAIC cycle, ensuring efficiency, quality, and continuous improvement in LSS projects.

- 1) Define Phase: Establishing a Strategic Vision and Project Scope: The Define phase provides a clear foundation for Lean Six Sigma projects by ensuring alignment with business strategy. It eliminates uncertainty by defining the project scope, objectives, and key stakeholder roles. A Project Charter outlines critical details such as the problem statement, scope, and success criteria. Critical-to-Quality (CTQ) factors ensure the project delivers customer-centric value, while the SIPOC analysis maps workflows and stakeholder interactions. A structured approach at this stage ensures clarity, stakeholder alignment, and a well-defined execution strategy.
- 2) Measure Phase: Establishing Performance Baselines with Data-Driven Insights: The Measure phase collects and analyzes key performance data to establish baseline metrics, ensuring informed decision-making. Organizations define Key Performance Indicators (KPIs) to track efficiency and effectiveness. Value Stream Mapping (VSM) highlights bottlenecks and process inefficiencies, while Failure Modes and Effects Analysis (FMEA) identifies potential risks. By leveraging these tools, teams gain data-driven insights, enabling precise identification of improvement areas.
- 3) Analyze Phase: Identifying Root Causes of Inefficiencies and Risks: The Analyze phase focuses on diagnosing the root causes of inefficiencies and defects, preventing teams from addressing only surface-level symptoms. Structured techniques such as Root Cause Analysis (RCA), 5 Whys, and Fishbone Diagrams help pinpoint performance gaps. Pareto Analysis prioritizes high-impact issues, ensuring that the most critical problems receive immediate attention. Regression Analysis and Hypothesis Testing validate potential improvements by assessing process variability. These analytical approaches strengthen risk management and provide a solid foundation for process optimization.
- 4) Improve Phase: Implementing Targeted Solutions for Sustainable Efficiency: The Improve phase focuses on designing and implementing solutions that enhance efficiency and project performance. Lean methodologies such as 5S (Sort, Set in Order, Shine, Standardize, Sustain) improve workplace organization and eliminate waste. Kanban and Just-in-Time (JIT) systems streamline workflows, reduce lead times, and enhance operational flexibility. Before full implementation, pilot testing and simulations validate the effectiveness of improvements, minimizing risks and ensuring sustainable gains. This structured approach enhances productivity, accelerates agility, and secures long-term efficiency improvements.
- 5) Control Phase: Sustaining Long-Term Success and Continuous Improvement: The Control phase ensures that improvements are sustained and continuously optimized. Organizations implement Standard Operating Procedures (SOPs) to standardize best practices and maintain consistency. Control Charts and real-time dashboards monitor performance trends, allowing teams to detect

deviations and take corrective actions promptly. Regular audits, employee training, and feedback mechanisms reinforce a culture of continuous improvement, preventing regression into old inefficiencies. By embedding strong governance and monitoring systems, this phase safeguards long-term project success and ensures that Lean Six Sigma benefits are sustained over time.

In conclusion, The Strategic Lean Leadership-driven DMAIC framework enhances Lean Six Sigma project success by integrating structured problem-solving, leadership-driven decision-making, and continuous improvement into project execution. By combining data-driven insights with proactive leadership strategies, organizations can achieve:

#	Phase	Objective	Key Activities	Project Benefits
1	Define	Establish a clear strategic	- Develop Project Charter and	- Clear objectives and
		vision and project scope.	define Critical-to-Quality (CTQ)	stakeholder alignment
			factors	- Minimized ambiguity
			- Conduct SIPOC (Suppliers,	and scope creep
			Inputs, Process, Outputs,	
			Customers) analysis	
			- Align project goals with	
			business strategy	
2	Measure	Establish performance	- Define Key Performance	- Fact-based
		baselines through	Indicators (KPIs) and metrics	decision-making
		data-driven benchmarks.	- Apply Value Stream Mapping	- Early detection of
			(VSM) to identify inefficiencies	process inefficiencies
			- Conduct Failure Modes and	
			Effects Analysis (FMEA) for risk	
			assessment	
3	Analyze	Identify root causes of	- Conduct Root Cause Analysis	- Targeted
		inefficiencies and risks.	(RCA), 5 Whys, and Fishbone	problem-solving
			Diagrams	- Enhanced risk
			- Use Pareto Analysis to	mitigation
			prioritize high-impact issues	
			- Apply Regression Analysis and	
			Hypothesis Testing for	
			variability assessment	
4	Improve	Implement data-driven	- Apply Lean tools such as 5S,	- Optimized workflows
		solutions for efficiency	Kanban, and Just-in-Time (JIT)	and waste reduction

Table 9. DMAIC Framework of Strategic Lean Leadership in LSS Projects

		and quality.	- Conduct pilot tests and	- Increased project
			simulations to validate	agility and
			improvements	responsiveness
			- Leverage automation and	
			digital transformation	
5	Control	Sustain improvements	- Implement Standard Operating	- Ensures stability and
		and ensure long-term	Procedures (SOPs) and real-time	continuous
		project excellence.	monitoring systems	improvement
			- Use Control Charts and digital	- Strengthens
			dashboards for process tracking	governance and
			- Conduct regular audits,	compliance
			feedback loops, and leadership	
			training	

4.4 KPIs of Strategic Lean Leadership in LSS Projects

Key Performance Indicators (KPIs) are integral to measuring the effectiveness of Lean Six Sigma (LSS) in achieving manufacturing excellence and optimizing project management outcomes. These KPIs emphasize process improvement, waste reduction, quality enhancement, and overall project performance. Table 10, The table presents a comprehensive set of Key Performance Indicators (KPIs) designed to assess the success of Lean Six Sigma (LSS) projects. Each KPI focuses on improving project performance, streamlining processes, reducing waste, and increasing overall efficiency. Below is a refined explanation of each KPI:

- Project Cycle Time: The aim of this KPI is to reduce the duration of the project, ensuring faster delivery. It tracks the time from project initiation to completion, helping identify bottlenecks and inefficiencies. Streamlining project cycle time accelerates delivery, enhances productivity, and improves time management.
- 2) Cost Savings: Focused on reducing operational costs, this KPI measures the savings achieved through process improvements, waste reduction, and resource optimization. It demonstrates financial benefits and justifies the investment in Lean Six Sigma initiatives, enhancing overall cost control.
- 3) Defect Rate: This KPI aims to minimize defects and errors during project execution or in final outputs. It measures the frequency of defects per unit or as a percentage, with the goal of improving product and process quality. A lower defect rate leads to reduced rework, improved quality, and higher customer satisfaction.
- 4) Customer Satisfaction (CSAT): This KPI assesses how well the project meets customer expectations by gathering feedback through surveys or direct input. Ensuring high customer

satisfaction aligns the project outcomes with customer needs, fosters trust, and highlights areas for potential improvements.

- 5) Process Efficiency: The objective of this KPI is to optimize operational efficiency. It evaluates how well project processes perform against ideal or expected standards. Identifying inefficiencies through this KPI encourages continuous optimization and enhances overall performance.
- 6) Resource Utilization Rate: This KPI tracks the effectiveness of resource use—whether human, financial, or material—throughout the project. It aims to optimize resource allocation, minimize waste, and ensure that project goals are achieved efficiently.
- 7) Risk Mitigation: Focused on identifying and managing risks, this KPI measures how effectively potential risks—such as delays, cost overruns, and resource shortages—are addressed. Effective risk mitigation ensures the project stays on schedule, within scope, and on budget.
- 8) First Pass Yield (FPY): The objective here is to achieve high-quality results on the first attempt, with minimal or no need for rework. This KPI measures the percentage of deliverables completed correctly the first time. A high FPY reduces errors, waste, and rework, contributing to overall project efficiency.
- 9) On-time Delivery Rate: This KPI tracks the percentage of project milestones and deliverables completed according to the schedule. Timely delivery strengthens customer trust, improves project performance, and ensures that deadlines are met consistently.
- 10) Lean Waste Reduction: A core principle of Lean Six Sigma, this KPI measures the reduction of all forms of waste (time, materials, energy, etc.) within the project. It helps eliminate unnecessary steps and optimizes resource usage, leading to increased productivity, reduced costs, and improved efficiency.
- 11) Employee Engagement: This KPI measures the level of employee involvement in Lean Six Sigma initiatives and continuous improvement efforts. Engaged employees are more likely to contribute positively to the project, fostering a culture of collaboration, innovation, and shared ownership.
- 12) Sustainability Impact: The objective of this KPI is to measure the environmental and social impact of the project. It tracks factors such as carbon footprint, resource consumption, and waste generation. By incorporating sustainability, this KPI ensures that projects align with corporate social responsibility goals and contribute to positive environmental and social outcomes.

In summary, these KPIs are critical for driving project success in Lean Six Sigma initiatives. They provide measurable benchmarks to assess process optimization, quality improvement, waste reduction, and risk management, ensuring that projects are delivered on time, within budget, and aligned with organizational goals.

Table 10. KPIs of Strategic Lean Leadership in LSS Projects

#	KPI	Objective	Description	Project Benefits	

1	Project Cycle	Streamline project	Measures the total time	Identifies delays and
	Time	duration for faster	taken from project	inefficiencies, accelerates
		delivery.	initiation to completion.	delivery, and boosts
				productivity.
2	Cost Savings	Reduce operational	Tracks reductions in	Demonstrates financial
		costs through	project costs due to	benefits, justifies Lean
		efficiency	improved processes,	Six Sigma investments,
		improvements.	waste reduction, and	and enhances cost control
			resource optimization.	
3	Defect Rate	Minimize defects to	Measures the frequency	Improves process quality,
		improve process and	of defects or errors during	reduces rework, and
		product quality.	project execution or in the	enhances customer
			final output.	satisfaction.
4	Customer	Align project outcomes	Assesses the satisfaction	Ensures alignment with
	Satisfaction	with customer	level of customers or	customer needs, improves
	(CSAT)	expectations for better	stakeholders through	satisfaction, and identifies
		results.	surveys and feedback	areas for improvement.
			mechanisms.	
5	Process	Enhance operational	Evaluates how efficiently	Identifies process
	Efficiency	efficiency through	processes are performed	inefficiencies, promotes
		process optimization.	compared to expected or	continuous optimization,
			ideal standards.	and boosts overall
				performance.
6	Resource	Maximize resource	Measures the	Optimizes resource
	Utilization	efficiency to improve	effectiveness of resource	allocation, reduces waste,
	Rate	productivity.	use (human, financial,	and ensures project goals
			material) throughout the	are achieved efficiently.
			, 8	are define ved efficiently.
			project.	are demoved emotority.
7	Risk	Proactively address	· –	Minimizes risks, ensures
7	Risk Mitigation	Proactively address and manage potential	project.	-
7		-	project. Tracks how effectively	Minimizes risks, ensures projects stay on schedule,
7		and manage potential	project. Tracks how effectively risks (e.g., delays, cost	Minimizes risks, ensures
		and manage potential risks throughout the project.	project. Tracks how effectively risks (e.g., delays, cost overruns) are identified and managed.	Minimizes risks, ensures projects stay on schedule, within scope, and on budget.
7 8	Mitigation First Pass	and manage potential risks throughout the	project. Tracks how effectively risks (e.g., delays, cost overruns) are identified and managed. Measures the percentage	Minimizes risks, ensures projects stay on schedule, within scope, and on budget. Enhances efficiency,
	Mitigation	and manage potential risks throughout the project. Achieve high-quality	project. Tracks how effectively risks (e.g., delays, cost overruns) are identified and managed.	Minimizes risks, ensures projects stay on schedule, within scope, and on budget.

			rework.	
9	On-time	Ensure timely	Tracks the percentage of	Strengthens customer
	Delivery	completion of project	milestones and	trust, ensures deadlines
	Rate	deliverables and	deliverables completed as	are met, and improves
		milestones.	scheduled.	project performance.
10	Lean Waste	Eliminate waste in all	Measures the reduction of	Increases productivity,
	Reduction	forms (time, materials,	waste through streamlined	lowers costs, and boosts
		energy) for efficiency.	processes and resource	overall operational
			optimization.	efficiency.
11	Employee	Promote active	Measures the level of	Fosters a culture of
	Engagement	participation in	employee involvement	collaboration, innovation,
		continuous	and commitment to Lean	and shared ownership for
		improvement and Lean	Six Sigma activities.	success.
		Six Sigma initiatives.		
12	Sustainability	Integrate sustainable	Measures the	Supports sustainability
	Impact	practices into project	environmental and social	initiatives, reduces
		management.	impact of the project (e.g.,	environmental impact,
			carbon footprint, resource	and aligns with corporate
			consumption).	social responsibility
				goals.

4.5 Voice of Customer (VOC) Analysis in LSS Projects

Voice of Customer (VOC) analysis is a critical component of Lean Six Sigma (LSS) projects, ensuring that customer expectations are clearly defined and systematically addressed. As shown in Table 11, by focusing on key project dimensions—scope, schedule, quality, safety, and cost—organizations can align their LSS initiatives with customer needs, driving efficiency, quality, and overall satisfaction.

1) A well-defined scope is essential for project success, as customers expect a clear and specific scope of work aligned with their objectives. Poor scope definition can lead to scope creep, inefficiencies, and resource overuse. LSS tools such as SIPOC (Suppliers, Inputs, Process, Outputs, Customers) and Quality Function Deployment (QFD) help map customer needs into actionable project deliverables, ensuring focus and alignment with business goals.

2) On-schedule delivery is a top priority for customers, as delays can lead to operational disruptions and increased costs. Lean Six Sigma methodologies such as Value Stream Mapping (VSM), Critical Path Method (CPM), and Just-in-Time (JIT) help streamline workflows, eliminate bottlenecks, and improve cycle times. Metrics like on-time delivery rate and lead time reduction serve as key performance indicators (KPIs) for schedule adherence. 3) Customers also demand high-quality outputs with minimal defects. LSS methodologies such as DMAIC (Define, Measure, Analyze, Improve, Control), Statistical Process Control (SPC), and Failure Mode & Effects Analysis (FMEA) enhance process reliability and product quality. By reducing defects per million opportunities (DPMO) and improving Sigma levels, organizations ensure that products and services consistently meet or exceed customer expectations.

4) Safety and compliance are particularly critical in regulated industries, where customers expect zero safety incidents and full regulatory adherence. Lean tools such as 5S (Sort, Set in Order, Shine, Standardize, Sustain), Root Cause Analysis (RCA), and Bowtie Analysis help organizations identify and mitigate risks, fostering a safer work environment. Success in this area is measured through incident rate reduction and improved compliance adherence percentages.

5) Finally, cost optimization is a key concern, as customers seek cost-effective solutions without compromising quality. LSS tools such as Cost of Poor Quality (COPQ), Kaizen (Continuous Improvement), and Lean Waste Reduction (TIMWOOD – Transport, Inventory, Motion, Waiting, Overproduction, Over-processing, Defects) help minimize costs by eliminating inefficiencies and optimizing resource utilization. Effective implementation of these strategies results in measurable cost savings and improved return on investment (ROI).

In summary, VOC analysis ensures that LSS projects remain customer-focused, efficient, and high-quality, while proactively addressing risks and inefficiencies. By systematically managing scope, schedule, quality, safety, and cost, organizations can consistently deliver projects that exceed customer expectations, enhance operational performance, and sustain long-term business success.

#	Project	Customer	Objectives	Key LSS Tools	KPIs	Risk &
	Dimension	Requirements		& Techniques		Mitigation
1	Scope	Clear	Align	SIPOC, Kano	Scope	Risk: Scope
	Definition	deliverables &	scope with	Model, QFD	adherence %,	creep
		success criteria	customer	(Quality	Customer	Mitigation:
			needs &	Function	satisfaction	Iterative
			minimize	Deployment)		planning,
			deviations			customer
						validation
2	Schedule	On-time project	Improve	Value Stream	On-time	Risk:
	Adherence	completion	efficiency	Mapping	delivery %,	Bottlenecks
			&	(VSM),	Lead time	Mitigation:
			eliminate	Critical Path	reduction	Lean
			delays	Method		workflow

Table 11. Voice of Customer (VOC) Analysis for LSS Projects

				(CPM),		optimization
						optimization
				Just-in-Time		
				(JIT)		
3	Quality	High-quality	Reduce	DMAIC, SPC	DPMO,	Risk: Rework
	Assurance	output, minimal	variation &	(Statistical	Sigma level,	costs
		defects	enhance	Process	First-pass	Mitigation:
			defect	Control),	yield (FPY)	Six Sigma
			prevention	FMEA (Failure		quality
				Mode &		control
				Effects		
				Analysis)		
4	Safety &	Zero safety	Foster a	5S, Root Cause	Incident rate,	Risk: Safety
	Compliance	incidents,	risk-aware	Analysis	Compliance	hazards
		regulatory	culture &	(RCA), Bowtie	adherence	Mitigation:
		compliance	prevent	Analysis		Regular
			hazards			audits,
						predictive
						analytics
5	Cost	Cost-effective	Reduce	COPQ (Cost of	Cost	Risk: Budget
	Optimization	solutions	waste &	Poor Quality),	savings %,	overruns
			optimize	Kaizen, Lean	Waste	Mitigation:
			resource	Waste	reduction,	Lean
			use	Reduction	ROI	financial
				(TIMWOOD)		tracking

4.6 Integrating Agile Methodologies with LSS

Integrating Agile methodologies with Lean Six Sigma (LSS) presents a complex yet highly rewarding opportunity for organizations seeking to enhance efficiency, responsiveness, and continuous improvement. While both methodologies share the common goal of optimizing performance, their distinct principles—Agile's adaptability and iterative approach versus LSS's structured, data-driven methodology—can lead to integration challenges if not strategically addressed. To successfully merge these frameworks, organizations must navigate key obstacles and implement targeted solutions that maximize their complementary strengths. Table 12 explores the Key Challenges in Agile-LSS Integration.

1) Cultural Misalignment: Agile promotes rapid decision-making, flexibility, and decentralized authority, whereas LSS emphasizes structured, data-driven problem-solving. Aligning these

differing mindsets requires leadership-driven cultural transformation.

- 2) Process Rigidity vs. Flexibility: LSS follows a well-defined DMAIC (Define-Measure-Analyze-Improve-Control) framework, whereas Agile prioritizes adaptability to changing requirements. Establishing a hybrid structure that retains process discipline while allowing iterative refinements is critical.
- 3) Metrics and Performance Measurement: Agile focuses on customer-centric metrics such as velocity and working software, while LSS relies on statistical analysis, defect rates, and process efficiency KPIs. Developing a unified performance measurement system ensures alignment.
- 4) Role and Responsibility Conflicts: Agile's self-organizing teams (Scrum Master, Product Owner) contrast with LSS's hierarchical structure (Green Belts, Black Belts). Clearly defining roles within an integrated framework reduces redundancy and enhances collaboration.
- 5) Speed vs. Analytical Thoroughness: Agile encourages rapid iterations and quick deployments, while LSS prioritizes detailed data analysis before implementation. Organizations must balance agility with data-driven decision-making to avoid premature optimizations.
- 6) Integration with Digital Tools: Agile is widely used in software development, while LSS originates in manufacturing. Successfully applying LSS in digital environments requires leveraging automation, analytics, and AI-driven insights.
- Stakeholder Alignment and Buy-in: Agile's decentralized decision-making can clash with LSS's structured governance. Overcoming resistance requires transparent communication and executive sponsorship to ensure unified commitment.
- 8) Training and Skill Gaps: Agile practitioners may lack statistical expertise, while LSS experts may be unfamiliar with Agile workflows. Cross-training initiatives and competency development programs foster interdisciplinary collaboration.
- 9) Resistance to Change: Employees accustomed to either Agile or LSS may resist adopting a hybrid approach due to unfamiliarity or perceived complexity. Change management strategies and pilot implementations can facilitate smoother adoption.
- 10) Scalability Across Teams and Functions: Agile is best suited for small, autonomous teams, whereas LSS is traditionally implemented at an enterprise scale. Scaling Agile practices within structured organizations requires modular adaptation.
- 11) Data-Driven vs. Customer-Centric Approaches: LSS focuses on process optimization using statistical analysis, while Agile prioritizes direct customer feedback and rapid iterations. A well-integrated approach balances operational excellence with market responsiveness.
- 12) Short-Term vs. Long-Term Focus: Agile delivers quick, incremental results, while LSS ensures sustainable, long-term improvements. Aligning these perspectives prevents short-term gains from undermining long-term stability.
- 13) Compliance and Regulatory Constraints: Agile's iterative approach may pose compliance risks in highly regulated industries, whereas LSS provides robust governance. Organizations must embed

compliance checkpoints within Agile workflows.

- 14) Innovation vs. Standardization: Agile thrives on innovation, experimentation, and continuous evolution, while LSS emphasizes consistency, standardization, and process stability. An effective integration model should foster innovation while maintaining operational discipline.
- 15) Sustaining Continuous Improvement: Agile's iterative evolution may lead to transient improvements if not reinforced, while LSS ensures process sustainability. Establishing mechanisms to institutionalize Agile-driven enhancements safeguards long-term benefits.

In conclusion, successfully integrating Agile and Lean Six Sigma requires a sophisticated, adaptive approach that harmonizes rapid adaptability with analytical rigor. By addressing key challenges through structured change management, role redefinition, cross-functional training, and strategic alignment of metrics, organizations can unlock new levels of operational agility and resilience. The fusion of Agile's iterative innovation with LSS's process excellence enables enterprises to enhance responsiveness, drive sustainable growth, and maintain a competitive edge in an increasingly complex and fast-paced industrial environment.

#	Challenge	Description	Strategic Solution			
1	Cultural	Agile promotes flexibility, while LSS	Foster leadership alignment,			
	Misalignment	emphasizes structure, leading to	encourage a hybrid mindset and			
		resistance.	promote collaboration.			
2	Process Rigidity	LSS follows a structured DMAIC	Develop a framework balancing Agile			
	vs. Adaptability	cycle, while Agile focuses on	flexibility with LSS structure for			
		iterative progress.	seamless execution.			
3	Metrics	LSS prioritizes statistical validation,	Define unified KPIs blending Agile			
	Misalignment	whereas Agile values speed and	responsiveness with LSS process			
		feedback.	optimization.			
4	Role Conflicts	Agile roles (Scrum Master, Product	Clarify responsibilities and establish			
		Owner) contrast with LSS's	cross-functional collaboration.			
		structured Belt hierarchy.				
5	Speed vs.	Agile promotes rapid iterations, while	Synchronize Agile sprints with LSS			
	Thoroughness	LSS requires data-driven analysis	validation to balance speed with			
		before changes.	accuracy.			
6	Digital	Agile is widely used in software,	Utilize AI, IoT, and predictive			
	Integration	whereas LSS originated in	analytics to integrate Agile and LSS			
		manufacturing.	across digital and physical operations.			
7	Stakeholder	Agile supports decentralized	Align Agile roadmaps with			

Table 12. Challenges and Strategies for Integrating Agile Methodologies with LSS

	Resistance	decision-making, while LSS follows	LSS-driven process controls to secure
		structured governance.	buy-in.
8	Skill Gaps	Agile teams may lack statistical	Implement cross-training programs to
		expertise, while LSS practitioners	develop hybrid expertise.
		may not be familiar with Agile	
		workflows.	
9	Resistance to	Employees accustomed to either	Apply Lean Change Management and
	Change	Agile or LSS may resist a hybrid	pilot hybrid initiatives.
		approach.	
10	Scalability	Agile is suited for small teams, while	Integrate Agile-at-scale frameworks
	Challenges	LSS is often implemented at an	(e.g., SAFe) with LSS principles for
		enterprise level.	enterprise-wide alignment.
11	Customer vs.	Agile prioritizes direct customer	Balance Agile's customer-centricity
	Data Focus	feedback, while LSS relies on	with LSS's process-driven
		data-driven decisions.	optimization.
12	Short- vs.	Agile focuses on quick wins, while	Align Agile's short-term gains with
	Long-Term	LSS ensures sustainable	LSS's long-term stability.
	Goals	improvements.	
13	Regulatory	Agile's flexibility can create	Integrate compliance checks into
	Compliance	challenges in regulated environments	Agile sprints and align with LSS
		where LSS enforces structured	control phases.
		compliance.	
14	Innovation vs.	Agile fosters rapid innovation, while	Enable structured experimentation
	Standardization	LSS prioritizes process	within LSS-defined parameters.
		standardization.	
15	Sustaining	Agile supports continuous evolution,	Embed Agile retrospectives into LSS
	Improvements	while LSS ensures stability.	control mechanisms for sustained
			progress.

5. Conclusion and Future Work

This study highlights the essential role of Strategic Lean Leadership in successfully implementing Lean Six Sigma (LSS) initiatives, improving operational efficiency, and achieving manufacturing excellence. By combining LSS with Total Quality Management (TQM) principles and effective leadership practices, organizations can drive waste reduction, quality improvement, and data-driven decision-making. Lean leadership fosters cross-functional collaboration, and efficient resource allocation, and strengthens organizational agility to adapt to evolving market demands. Key leadership

competencies for LSS success, including strategic vision, change management, problem-solving, workforce empowerment, and adaptability, are identified through a thorough literature review.

The Structured Lean Leadership Framework is introduced as a strategic tool for leadership development and process optimization. It addresses common challenges in LSS adoption, such as weak leadership commitment, resistance to change, and communication gaps, and offers the LSS-DMAIC framework to ensure structured problem-solving and continuous performance improvement. By merging Lean's waste reduction principles with Six Sigma's precision, the study demonstrates how LSS project management enhances operational efficiency, resource utilization, and governance. The framework integrates Core LSS Principles, the DMAIC methodology, and Key Performance Indicators (KPIs), ensuring alignment with business goals, customer satisfaction, and continuous improvement. Additionally, the study explores how LSS integrates with Agile methodologies, enabling greater adaptability in a complex, technology-driven business environment.

Future research should focus on validating these frameworks through empirical studies and case applications, particularly in regulated industries. Exploring the integration of Agile and LSS will provide insights into overcoming implementation challenges. Furthermore, leveraging Industry 4.0 technologies such as AI, IoT, and big data analytics can optimize both LSS practices and leadership decision-making. Empirical studies should also assess the impact on leadership effectiveness, project outcomes, and long-term sustainability while exploring the role of digital transformation, sustainability-focused Lean practices, and organizational culture in advancing Lean leadership and operational excellence.

References

- Abdullahi, C., & Tembo, M. (2023). Improving the Efficiency and Effectiveness of Construction Project Planning and Scheduling Using Lean Principles. *International Journal of Construction Engineering and Management*, 12(3), 75-80.
- Aij, K. H., & Teunissen, M. (2017). Lean leadership attributes: A systematic review of the literature. Journal of Health Organization and Management, 31(7/8), 713-729.
- Al Farihi, A., Sumartini, S., Herdiman, L. (2023). Designing Lean Maintenance Using Total Productive Maintenance Method – A Case Study at Wiring Harness Production. E3S Web of Conferences, ICIMECE, 465, 02016, 1-9.
- Albalkhy, W., & Sweis, R. (2021). Barriers to adopting lean construction in the construction industry: A literature review. *International Journal of Lean Six Sigma*, *12*(2), 210-236.
- Albalkhy, W., Sweis, R., & Lafhaj, Z. (2021). Barriers to Adopting Lean Construction in the Construction Industry - The Case of Jordan. *Buildings*, 1(222), 1-17.
- Alnadi, M., & McLaughlin, P. (2021). Critical success factors of Lean Six Sigma fromleaders' perspective. *International Journal of Lean Six Sigma*, 12(5), 1073-1088.
- Altug, M. (2023). Application of six sigma through deep learning in the production of fasteners.

International Journal of Lean Six Sigma, 14(7), 1376-1402.

- Amjad, M. H. H., Shovon, M. S. S., & Hasan, A. M. (2024). Analyzing Lean Six Sigma Practices In Engineering Project Management: A Comparative Analysis. *Innovatech Engineering Journal*, 1(01), 245-255.
- Androniceanu, A., Enache, I.-C., & Valter, E.-N. (2023). Increasing energy efficiency based on the kaizen approach. *Energies*, 16(4), 1930.
- Condé, G. C. P., Oprime, P. C., & Pimenta, M. L. (2023). Defect reduction using DMAIC and lean six sigma: A case study in a manufacturing car parts supplier. *International Journal of Quality & Reliability Management*, 40(9), 2184-2204.
- Connor, D. O. (2022). Leading from the middle: How team leaders implement lean success factors. International Journal of Lean Six Sigma, 13(2), 253-275.
- Dombrowski, U., & Mielke, T. (2013). Lean leadership-fundamental principles and their application. *Procedia CIRP*, 7, 569-574.
- Dombrowski, U., & Mielke, T. (2014). Lean leadership-15 rules for a sustainable lean implementation. *Procedia CIRP*, 17, 565-570.
- Dursun, M., Goker, N., & Mutlu, H. (2022). Evaluation of Project Management Methodologies Success Factors Using Fuzzy Cognitive Map Method: Waterfall, Agile, And Lean Six Sigma Cases. International Journal of Intelligent Systems and Applications in Engineering. *IJISAE*, 10(1), 35-43.
- Eldeep, A., Farag, M., & El-hafez, L. (2022). Using BIM as a lean management tool in construction processes – A case study. *Ain Shams Engineering Journal*, 13(101556), 1-7.
- Enache, I. C., Chivu, O. R., & Rugescu, A. M. (2023). Reducing the scrap rate on a pro- duction process using lean six sigma methodology. *Processes*, 11(4), 1295.
- Erne, R. (2022). How to Apply Lean Thinking in Project Management. Springer.
- Gatell, I. S., & Avella, L. (2024). Impact of Industry 4.0 and circular economy on lean culture and leadership: Assessing digital green lean as a new concept. *European Research on Management* and Business Economics, 30(100232), 1-12.
- Gomaa, A. H. (2022). Improving Manufacturing Efficiency and Effectiveness Using Lean Six Sigma Approach. *International Journal of Technology and Engineering Studies, IJTES*, 8(1), 22-33.
- Gomaa, A. H. (2023a). A Systematic Review of Lean Six Sigma in Manufacturing Domain. Engineering Research Journal (ERJ), Faculty of Engineering at Shoubra, 52(4), 9-25.
- Gomaa, A. H. (2023b). Improving Supply Chain Management Using Lean Six Sigma: A Case Study. International Journal of Applied and Physical Sciences, IJAPS, 9(1), 22-33.
- Gomaa, A. H. (2023c). Maintenance Process Improvement Framework Using Lean Six Sigma: A Case Study. International Journal of Business and Administrative Studies, IJBAS, 9(1), 1-25.
- Gomaa, A. H. (2023d). Operational Excellence for Improving Manufacturing Performance Using Lean Six Sigma. *International Journal of Business and Administrative Studies, IJBAS, 9*(2), 1-19.

- Gomaa, A. H. (2024). Improving Productivity and Quality of a Machining Process by Using Lean Six Sigma Approach: A Case Study. Engineering Research Journal (ERJ). *Faculty of Engineering at Shoubra*, 53(1), 1-16.
- Gomaa, A. H. (2025a). Lean 4.0: A Strategic Roadmap for Operational Excellence and Innovation in Smart Manufacturing. International Journal of Emerging Science and Engineering (IJESE), 13(4), 1-14.
- Gomaa, A. H. (2025b). LSS 4.0: A Conceptual Framework for Integrating Lean Six Sigma and Industry 4.0 for Smart Manufacturing Excellence. *Indian Journal of Management and Language* (IJML), 5(1), 8-29.
- Habib, M. A., Rizvan, R., & Ahmed, S. (2023). Implementing lean manufacturing for improvement of operational performance in a labeling and packaging plant: A case study in Bangladesh. *Results* in Engineering, 17(100818), 1-14.
- Ikuabe, M., Aigbavboa, C., & Aghimien, D. (2022). Bolstering measures for adopting lean construction in the South African construction industry. *Int. J. Productivity and Quality Management*, 36(4), 589-603.
- Jason, A., Wedmore, J., Okunola, A., & Stacey, T. (2025). The Future of Lean Six Sigma: Innovations and Trends Impacting Engineering Project Management.
- Jiménez-Delgado, G., Quintero-Ariza, I., & Romero- Gómez, J. (2023). Implementation of lean six sigma to improve the quality and productivity in textile sector: A case study. International Conference on Human-Computer Interaction. Springer, 395-412.
- Jurewicz1, D., Dabrowska1, M., & Burduk, A. (2024). Implementation of Total Productive Maintenance (TPM) to Improve Overall Equipment Effectiveness (OEE) - Case Study. *ISPEM* 2023, LNME, 543-561.
- Krishnan, S., Mathiyazhagan, K., & Sreedharan, V. (2020). Developing a Hybrid Approach for Lean Six Sigma Project Management: A Case Application in the Reamer Manufacturing Industry. *IEEE Transactions on Engineering Management*, 69(6), 2897-2914.
- Kumar, P., Bhamu, J., Goel, S., & Singh, D. (2024). Interpretive structural modeling of lean six sigma critical success factors in perspective of industry 4.0 for Indian manufacturing industries. *International Journal of System Assurance Engineering and Management*, 15(8), 3776-3793.
- Lima, B., Neto, J., & Santos, R. (2023). A Socio-Technical Framework for Lean Project Management Implementation towards Sustainable Value in the Digital Transformation Context. Sustainability, 15(1756), 1-21.
- Macalinao, J. C. (2024). "Implementation of Total Productive Maintenance in a Local Pharmaceutical Manufacturing Company in the Philippines. *Matrix Science Pharma*, 7(4), 119-123.
- McDermott, O., ODwyer, K., & Noonan, J. (2024). The Development of a Lean Six Sigma and BIM Framework for Enhancing Off-site Manufacturing. *International Journal of Lean Six Sigma*, *15*(8), 50-69.

- Mittal, A., Gupta, P., & Kumar, V. (2023). The performance improvement analysis using six sigma DMAIC methodology: A case study on Indian manufacturing company. *Heliyon*, 9(3).
- Moradi, S., & Sormunen, P. (2024). Integrating lean construction with BIM and sustainability: A comparative study of challenges, enablers, techniques, and benefits. *Construction Innovation*, 24(7), 188-203.
- Oliveira, C., & Lima, T. M. (2023). Setup time reduction of an automotive parts assembly line using lean tools and quality tools. *Eng*, 4(3), 2352-2362.
- Rampasso, I. S. (2024). "Lean leadership: A bibliometric analysis. Benchmarking: An International Journal, 31(1), 265-277.
- Rodriguês, I., & Alves, W. (2025). A proposed conceptual model for linking Lean thinking and project management in the IT sector. *International Journal of Lean Six Sigma*.
- Sakr, A., & Nassar, A. (2022). Improving Project Management At the Design Phase By Applying Lean Six Sigma as a Troubleshooting System. *IEEE Engineering Management Review*, 50(3), 213-227.
- Sasikumar, A., Acharya, P., & Nair, M. (2023). Applying lean six sigma for waste reduction in a bias tyre manufacturing environment. *Cogent Business & Management*, 10(2), 1-22.
- Satolo, E. G., Ussuna, G. A., & MacLean, P. A. (2023). Lean six sigma tools for efficient milking processes in small-scale dairy farms. *Ingeniería e Investigación*, 43(3), 1-8.
- Shannon, N., Trubetskaya, A., & Iqbal, J. (2023). A Total Productive Maintenance & Reliability Framework for an Active Pharmaceutical Ingredient Plant Utilising Design for Lean Six Sigma. *Heliyon*, 9, e20516, 1-14.
- Singh, M., & Rathi, R. (2024). Implementation of environmental lean six sigma framework in an Indian medical equipment manufacturing unit: A case study. *The TQM Journal*, *36*(1), 310-339.
- Srimathi, K., & Narashiman, K. (2021). Leadership Styles and Their Impact on Lean Six Sigma Practices in Indian Industries. South African Journal of Industrial Engineering May, 32(1), 1-13.
- Srinivasan, K., Sarulkar, P., & Yadav, V. K. (2024). Operational excellence of the steel industry using the lean six sigma approach: a case study. *International Journal of Quality & Reliability Management*, 41(3), 826-849.
- Thakkar, H., & Shah, V. (2021). Barriers to Implementation of Lean Construction Techniques in Gujarat Construction Industry. International Journal of Engineering Technologies and Management Research, 8(4), 17-24.
- Toki, G. F. I., Ahmed, T., & Hossain, M. E. (2023). Single minute exchange die (SMED): A sustainable and well- timed approach for Bangladeshi garments industry. *Cleaner Engineering* and Technology, 12(100592), 1-9.
- Trubetskaya, A., Ryan, A., & Powell, S. (2024). Utilising a hybrid DMAIC/TAM model to optimise annual maintenance shutdown performance in the dairy industry: A case study. *International Journal of Lean Six Sigma*, 15(8), 70-92.

- Trubetskaya, A., McDermott, O., & Brophy, P. (2023). Implementing a customised lean six sigma methodology at a compound animal feed manufacturer in Ireland. *International Journal of Lean Six Sigma*, 14(5), 1075-1095.
- Trubetskaya, A., Ryan, A., & Powell, S., (2024). Utilising a hybrid DMAIC/TAM model to optimise annual maintenance shutdown performance in the dairy industry: A case study. *International Journal of Lean Six Sigma*, 15(8), 70-92.
- Tsarouhas, P., & Sidiropoulou, N. (2024). Application of six sigma methodology using DMAIC approach for a packaging olives production system: a case study. *International Journal of Lean Six Sigma*, 15(2), 247-273.
- Utama, D. M., & Abirfatin, M. (2023). Sustainable lean six-sigma: A new framework for improve sustainable manufacturing performance. *Cleaner Engineering and Technology*, *17*(100700), 1-14.
- West, A., & Okafor, B. (2023). "Implementation of Lean Six Sigma For Strategic Maintenance Management. *International Journal of Recent Scientific Research*, 14(05 (B)), 3159-3163.