

Original Paper

Bridging Information Asymmetry through AI-driven FinTech: The Role of Digital Footprint Analytics in Financial Inclusion

Mingxuan Cao¹

¹ University of Alberta, Edmonton, Alberta, Canada

Received: October 16, 2025 Accepted: January 05, 2026 Online Published: January 29, 2026

doi:10.22158/ibes.v8n1p59 URL: <http://dx.doi.org/10.22158/ibes.v8n1p59>

Abstract

Financial inclusion—broadly defined as the availability and equality of opportunities to access financial services—is widely recognized as critical for fostering economic growth, reducing poverty, and promoting equitable development (Berg, T., Burg, V., Gombović, A., & Puri, M., 2020). Nevertheless, despite global initiatives aimed at expanding financial access, a substantial number of individuals and small businesses, particularly in developing countries, remain excluded from traditional financial systems due to insufficient credit histories and inadequate financial documentation (Demirguc-Kunt et al., 2022). Central to this issue is information asymmetry, a longstanding theoretical challenge articulated by foundational economic theories, including those of Akerlof (1970) and Stiglitz & Weiss (1981). These indicate how asymmetrical information between borrowers and lenders generates adverse selection and moral hazard, ultimately resulting in credit rationing and the systematic exclusion of otherwise creditworthy but information-poor segments of society. In recent years, the rapid development of financial technology (FinTech) powered by artificial intelligence (AI) has fundamentally reshaped the possibilities for overcoming informational barriers. Unlike traditional credit assessment methodologies that depend heavily on structured financial data such as credit bureau reports, income verification, and collateral evaluations, emerging AI-driven credit scoring systems incorporate large-scale behavioral data—often termed “digital footprints”—derived from non-traditional sources including smartphone metadata, social media interactions, e-commerce behaviors, and even geolocation patterns (Berg, T., Burg, V., Gombović, A., & Puri, M., 2020). Recent empirical studies have demonstrated that these novel data sources can outperform traditional financial data in predicting loan repayment behavior, thus substantially reducing information asymmetry and enabling lenders to extend financial services to previously underserved groups (Berg et al., 2020). Leading fintech companies such as Tala in the United States (which primarily serves Southern Africa and Southeast Asia) and Sesame Credit in China’s Ant Financial Services Group exemplify the

transformative potential of AI-driven financial innovation. Tala, for instance, utilizes machine learning algorithms that analyze smartphone usage patterns to reliably estimate creditworthiness, enabling real-time unsecured loan approvals for individuals with no formal credit histories (Björkegren, D., & Grissen, D., 2019). Similarly, Zhima Credit has leveraged diverse behavioral indicators—ranging from online transaction consistency to social interaction networks—to deliver precise risk assessments, thereby broadening access not only to credit but also to various consumer services (Zhang, Q., & Li, X. 2023). These case studies highlight how digital footprint analytics can be broadly applied to help mitigate adverse selection and significantly reduce financial exclusion. Despite the transformative benefits, the integration of AI into credit assessment systems raises profound ethical and regulatory concerns. Critical issues include the opacity of algorithmic decision-making processes (“black box” models), the potential perpetuation of existing biases and inequalities embedded in historical datasets, and the privacy implications of intensive personal data use (Raghavan, M., Barocas, S., Kleinberg, J., & Levy, K. 2020). For instance, recent research has highlighted the unintended amplification of gender bias in AI-driven financial services, wherein ostensibly neutral algorithms disproportionately disadvantage women due to embedded socio-economic inequalities within training data (Arora & Gupta, 2025). Addressing these challenges requires robust governance frameworks, algorithmic transparency standards, and informed regulatory oversight, such as those advocated by recent developments in the European Union’s General Data Protection Regulation (GDPR) and emerging algorithmic fairness guidelines (Binns, 2024). Building upon these insights, this paper critically examines the role of AI in bridging information asymmetry within FinTech, with an emphasis on how digital footprints and behavioral analytics are reshaping credit access and financial inclusion. By synthesizing theoretical perspectives on asymmetric information with cutting-edge empirical evidence from recent studies and practical case analyses, this research aims to elucidate both the opportunities and limitations inherent in the AI-enabled transformation of financial decision-making. Furthermore, the paper offers actionable policy recommendations designed to balance technological innovation with ethical responsibility, alongside clearly defined directions for future interdisciplinary research in economics, data science, and regulatory policy. Building on existing theories, this study further incorporates the “Rice Theory” (Talhelm et al., 2014; Dong et al., 2024), which argues that cultural orientations influenced by agricultural practices (particularly rice farming) affect individuals’ social behaviors and cooperative tendencies. Applying this theory to financial technology (FinTech) adoption, we propose that users from collectivist cultural backgrounds—commonly associated with regions historically reliant on rice farming—may exhibit distinct patterns of interaction and acceptance toward digital financial services, thereby influencing the degree of information asymmetry and financial inclusion outcomes within FinTech ecosystems.

Keywords

Financial Inclusion, Artificial Intelligence, AI, Information Asymmetry

1. Research Methodology

To systematically explore the transformative role of Artificial Intelligence (AI) and digital footprint analytics in reducing information asymmetry and enhancing financial inclusion, this study adopts a multi-method research design integrating systematic literature review, theoretical analysis, and case study methodologies. Such methodological rigor aligns with innovative empirical strategies utilized in contemporary finance research. For instance, Levine et al. (2019) employ a natural experiment—the introduction of new airline routes—and a difference-in-differences (DiD) framework to causally identify the impact of reduced internal communication costs on small-business lending. Their approach demonstrates the robustness and validity achievable through carefully designed quasi-experimental methodologies, providing strong empirical evidence on how internal organizational dynamics influence financial outcomes.

Systematic Literature Review

Firstly, this paper employs a systematic literature review (SLR) method to comprehensively identify, synthesize, and analyze relevant literature in the domains of FinTech, financial inclusion, and information asymmetry. A structured review protocol was adopted to ensure rigor, replicability, and objectivity. Key academic databases—including Web of Science (WoS), Scopus, Google Scholar, and SSRN—were systematically searched using relevant keywords such as “Artificial Intelligence”, “FinTech”, “Financial Inclusion”, “Digital Footprint”, “Credit Scoring”, and “Information Asymmetry”. Inclusion criteria were established to prioritize peer-reviewed journal articles and authoritative conference proceedings published between 2018 and 2025, emphasizing recent developments and ensuring topical relevance. The selected literature underwent thematic coding and content analysis assisted by NVivo qualitative analysis software, facilitating the identification of core theoretical constructs, emerging trends, and research gaps in the existing scholarly discourse.

Theoretical Analysis

Building upon insights from the literature review, this research further conducts a rigorous theoretical analysis, grounded predominantly in classical economic theories of information asymmetry, notably adverse selection (Akerlof, 1970) and moral hazard models (Stiglitz & Weiss, 1981). This theoretical approach involves a critical exploration and logical extension of foundational economic theories in the context of contemporary AI applications, particularly assessing how AI-driven behavioral analytics fundamentally reshape the lender-borrower dynamic. Through this theoretical synthesis, the study generates innovative theoretical propositions and hypotheses regarding AI's potential to alleviate informational distortions in financial markets, providing an analytical foundation for subsequent empirical inquiry.

Case Study Method

To enhance the empirical validity and practical relevance of the research findings, the study incorporates a detailed case study methodology focusing on leading FinTech enterprises actively employing AI-driven credit assessment techniques, specifically Tala (operating in Sub-Saharan Africa

and Southeast Asia) and Ant Group's Zhima Credit in China. These cases were purposefully selected based on clear criteria: (1) significant implementation of AI technologies in credit risk assessment, (2) demonstrated outcomes in improving financial inclusion, and (3) availability of robust empirical data and existing literature.

Each case is analyzed across multiple dimensions, including technological innovations (types of digital footprints used, algorithmic models employed), impact on credit assessment accuracy and financial inclusion outcomes (e.g., borrower base expansion, reduction in default rates), and associated ethical and regulatory challenges. Through this detailed empirical examination, the theoretical propositions derived from the literature and theory analysis are validated, contextualized, and further enriched.

Inspired by Dong et al. (2024), our empirical analysis will leverage large-scale network analytic methods to explore user interaction patterns on digital financial platforms. Specifically, we adopt network analysis techniques to map and quantify interactions between financial institutions and consumers, such as communication frequency and information-sharing behaviors, which can directly reflect how cultural and socioeconomic backgrounds influence user engagement in FinTech platforms.

Additionally, to address potential endogeneity issues arising from omitted variable bias, we will employ an instrumental variable (IV) approach similar to Dong et al. (2024). Following their methodology, we will consider using regional agricultural suitability for rice cultivation as an instrumental variable. This approach helps isolate the causal impact of cultural backgrounds on FinTech adoption, thus enhancing the robustness and reliability of our findings.

Furthermore, this study borrows methodological insights from Tan et al. (2024), particularly their use of multiple case studies and longitudinal qualitative analyses. Inspired by their multi-platform integration analyses, our case study methodology incorporates detailed examinations of prominent FinTech companies such as Ant Group, exploring specifically how platformization strategies facilitate cross-sector resource integration, information sharing, and efficiency improvements in financial services.

Moreover, a longitudinal qualitative approach, emphasizing prolonged observation and analysis, will enable us to systematically evaluate how FinTech platforms adapt dynamically over time in response to evolving market conditions, regulatory policies, and societal needs, thereby effectively reducing information asymmetry and enhancing financial inclusion.

Research Contributions

The research design articulated above facilitates several notable contributions. Theoretically, this study advances existing information asymmetry literature by explicitly integrating AI-driven digital footprint analytics, proposing novel theoretical frameworks that extend classical economic models into the digital finance context. Methodologically, the integrated multi-method approach (SLR, theoretical analysis, and case study) provides a replicable and rigorous research framework suitable for future interdisciplinary studies. Practically, by deriving concrete, empirically grounded insights from prominent real-world cases, the study formulates actionable policy recommendations, addressing

ethical and regulatory challenges, thus offering valuable guidance for policymakers, financial institutions, and technology providers seeking to balance innovation with societal responsibilities.

2. Theoretical Framework: Information Asymmetry in Finance

Information asymmetry occurs when one party in an economic transaction possesses superior or more complete information than the other, significantly influencing market outcomes and efficiency (Akerlof, 1970). The foundational economic literature, particularly the seminal works of Akerlof (1970) and Stiglitz and Weiss (1981), highlights how asymmetry creates market distortions such as adverse selection and moral hazard, fundamentally shaping financial institutions' credit allocation processes and risk management strategies.

Adverse selection emerges primarily due to lenders' inability to differentiate accurately between high-risk and low-risk borrowers in the absence of reliable information. Consequently, financial institutions frequently resort to credit rationing, a practice wherein lenders intentionally limit the supply of credit or impose excessively strict lending conditions to mitigate potential default risks (Stiglitz & Weiss, 1981; Beck et al., 2022). Such restrictive measures disproportionately affect borrowers lacking established financial histories—often low-income individuals, micro-entrepreneurs, and small enterprises—leading to systemic exclusion from formal financial markets despite their potentially creditworthy nature (Demirgüç-Kunt et al., 2022).

Traditional financial institutions typically employ structured financial data, such as income statements, audited financial reports, credit bureau records, and collateral availability, to address these informational gaps and evaluate borrower creditworthiness (Berg et al., 2020). However, reliance on these data sources inherently privileges entities capable of providing formal documentation, systematically marginalizing vast populations in informal economies or digitally underrepresented communities (Banerjee & Duflo, 2011). As a result, a large fraction of economically active individuals and enterprises remain “invisible” to conventional credit risk assessment methods, perpetuating financial exclusion and economic inequality (Xu et al., 2024).

Moreover, even within traditional financial institutions, internal communication barriers exacerbate informational inefficiencies. Empirical research by Levine et al. (2019) illustrates that high internal communication costs significantly impede the effective transmission of soft information critical for small-business lending decisions. By exploiting exogenous variations in travel time reductions due to new airline routes, they demonstrated that improved internal communication substantially increases small-business credit supply. This evidence underscores not only the external informational constraints faced by lenders but also highlights internal organizational factors critically influencing credit access and financial inclusion.

In recent years, advancements in digital technologies—particularly artificial intelligence (AI)—have enabled novel approaches to mitigate information asymmetry by utilizing extensive, real-time behavioral data, commonly referred to as digital footprints. Digital footprints encompass diverse,

previously underutilized information sources, including mobile phone usage patterns, social network dynamics, e-commerce transactions, and geospatial activity data (Björkegren & Grissen, 2020; Tao et al., 2024). Emerging research demonstrates that these data sources can serve as effective proxies for borrower reliability, responsibility, and repayment behavior, significantly enhancing predictive accuracy and reducing credit risk uncertainty compared to traditional credit-scoring techniques (Berg et al., 2020; Zhang & Li, 2023).

Despite their demonstrated effectiveness in reducing adverse selection, AI-driven models introduce their own theoretical complexities, notably relating to moral hazard and algorithmic opacity. Moral hazard in AI-based lending may arise when borrowers, aware of being continuously monitored through digital footprints, strategically manipulate their digital behavior to secure favorable credit evaluations, thus potentially undermining the predictive validity of AI assessments (Raghavan & Barocas, 2024). Furthermore, the inherent complexity and opacity of sophisticated machine learning algorithms raise additional theoretical concerns regarding borrowers' rights to transparency and contestability, necessitating new conceptualizations of algorithmic fairness and accountability within financial markets (Binns, 2024; Arora & Gupta, 2025).

This theoretical shift towards AI and behavioral data analytics prompts reconsideration of established financial inclusion paradigms, introducing fresh scholarly debates on the ethical implications, socio-economic impacts, and regulatory challenges inherent in data-driven credit scoring. As illustrated by recent theoretical discussions and empirical findings, integrating AI-based digital footprint analytics into financial systems requires nuanced understandings of how these innovations alter traditional dynamics of information asymmetry, reshaping lender-borrower interactions and redefining financial inclusion (Xu et al., 2024; Berg et al., 2020).

In sum, addressing information asymmetry through AI and alternative data sources presents both unprecedented opportunities for enhancing financial inclusion and complex theoretical challenges. This research adopts and extends these theoretical insights, aiming to provide an integrated analytical framework that critically assesses the transformative potential and limitations of AI-based solutions in mitigating informational inequalities in financial markets. Applying Rice Theory in the context of FinTech thus contributes uniquely by elucidating how deeply ingrained cultural patterns can significantly shape financial behaviors in technology-mediated environments, offering novel insights into managing information asymmetry and enhancing inclusion.

Furthermore, recent studies on digital platform ecosystems (DP&Es) highlight how platform governance and ecosystem dynamics critically shape informational transparency and inclusion outcomes (Tan et al., 2024). Specifically, platform governance strategies—such as multi-platform integration approaches including collection, consolidation, symbiosis, and assemblage—can significantly mitigate information asymmetry by fostering robust data sharing mechanisms, collaborative decision-making processes, and seamless user interactions across financial service platforms. Adopting these integrated ecosystem strategies not only facilitates effective cooperation

between financial institutions and end-users but also enhances overall financial inclusion by optimizing resource allocation and information flows within the FinTech ecosystem.

3. AI Applications in Credit Assessment

Artificial intelligence (AI) has emerged as a transformative force in financial technology (FinTech), reshaping the methodologies used by financial institutions to assess creditworthiness and manage credit risk. Traditional credit scoring models primarily rely on historical financial data such as loan repayment records, collateral values, and formal financial statements (Berg et al., 2020). However, these conventional methods exclude vast populations lacking such documentation, thereby reinforcing existing inequalities in financial access.

Moreover, traditional banking structures inherently involve hierarchical barriers, which further impede the efficient internal transmission of soft information essential for accurate credit assessments, particularly for small businesses and informationally opaque borrowers. Levine et al. (2019) empirically demonstrate that these internal communication inefficiencies within banks substantially reduce their capability to utilize soft information effectively, resulting in constrained lending to small firms. In contrast, AI-driven models circumvent these organizational barriers by directly leveraging digital footprints and behavioral data, enabling more efficient and inclusive credit decision-making processes.

In contrast, AI-driven credit assessment systems leverage extensive non-traditional data—commonly known as digital footprints—to create alternative credit profiles and enable financial inclusion for underserved individuals and small enterprises (Xu et al., 2024; Tao et al., 2024).

3.1 Leveraging Digital Footprints through AI

Digital footprints refer to traceable behavioral data generated by users during digital interactions, including smartphone metadata, social media usage patterns, online transaction histories, and geospatial mobility data (Björkegren & Grissen, 2020; Zhang & Li, 2023). Recent empirical studies highlight that these digital behaviors, when analyzed through advanced machine learning models, exhibit substantial predictive power regarding borrowers' repayment intentions and credit risk profiles, often surpassing traditional credit scores in accuracy (Xu et al., 2024; Berg et al., 2020).

For instance, research by Berg et al. (2020) demonstrates that simple digital footprint indicators—such as email domain, mobile operating system, and online behavior—can significantly enhance predictive accuracy of default risk compared to traditional credit scoring models. Similarly, Tao et al. (2024) propose an attention-based dynamic multilayer graph neural network (GNN) capable of capturing complex relational dynamics between borrowers, improving loan default prediction accuracy through advanced graph-structured data analysis.

3.2 Real-world AI-based Credit Scoring Innovations

Leading FinTech firms, such as Tala, Ant Group, and Zest AI, have actively adopted AI-powered approaches, demonstrating significant practical outcomes. Tala, operating extensively in markets such

as Kenya and the Philippines, employs machine learning algorithms to analyze smartphone-generated data—including text message frequency, social network stability, and geospatial movement—to assess borrowers without traditional financial histories (Björkegren & Grissen, 2020). Empirical evaluation of Tala's approach reveals notable improvements in default prediction, enabling rapid, unsecured credit access to previously excluded customer segments, while significantly reducing information asymmetry. In China, Ant Group's Zhima Credit (also known as Sesame Credit) employs extensive behavioral analytics integrating users' payment histories, social interactions, e-commerce behavior, and real-time digital engagement data. Recent evidence indicates that the adoption of Zhima Credit has effectively reduced loan default rates, enhanced predictive reliability, and expanded credit accessibility, particularly benefiting young and digitally active consumers without extensive formal credit histories (Zhang & Li, 2023).

3.3 Algorithmic Techniques and Model Innovations

AI methodologies in credit assessment commonly employ advanced supervised and semi-supervised machine learning techniques, including gradient boosting machines, random forests, deep learning neural networks, and reinforcement learning (Xu et al., 2024). Reinforcement learning, notably employed by Ant Group and similar entities, dynamically updates scoring models based on continuous borrower interactions and repayment feedback, thus allowing real-time adaptive risk management (Binns, 2024; Tao et al., 2024). Moreover, recent studies advocate the use of explainable AI (XAI) techniques, such as SHAP (Shapley Additive Explanations) and LIME (Local Interpretable Model-Agnostic Explanations), to improve transparency and accountability of algorithmic credit decision-making (Raghavan & Barocas, 2024).

3.4 Challenges in AI Credit Assessment: Bias, Fairness, and Transparency

Despite notable benefits, reliance on AI-driven credit assessments raises critical ethical concerns, particularly around algorithmic biases, fairness, and transparency. Studies have shown that algorithmic models can inadvertently perpetuate historical biases embedded in training datasets, disproportionately disadvantaging marginalized groups based on gender, ethnicity, or socio-economic status (Arora & Gupta, 2025). Consequently, the integration of fairness-aware AI methodologies, algorithm audits, and regulatory oversight has become increasingly crucial to ensure equitable credit access and prevent systemic discrimination (Binns, 2024).

Furthermore, the complexity and “black box” nature of AI systems pose transparency and explainability challenges, limiting borrower comprehension and rights to contest unfavorable credit outcomes (Raghavan & Barocas, 2024). Addressing these concerns necessitates regulatory frameworks promoting explainability standards, transparency protocols, and informed consent practices, exemplified by recent developments in the European Union's General Data Protection Regulation (GDPR) and analogous international policies.

3.5 Summary of AI Contributions to Reducing Information Asymmetry

In summary, the deployment of AI in credit assessment represents a significant advancement in mitigating information asymmetry and promoting financial inclusion. AI's capacity to analyze digital footprints and behavioral data substantially enhances the precision and accessibility of credit evaluations, enabling lenders to serve previously "unscorable" segments effectively. Nevertheless, ongoing scholarly debates highlight the necessity for continued vigilance regarding the ethical implications, algorithmic transparency, and fairness of AI applications in financial services. Addressing these issues will be crucial in shaping the future landscape of inclusive finance.

4. Digital Footprints and Behavioral Scoring

The rapid proliferation of digital interactions—through smartphones, social media platforms, e-commerce, and online activities—has generated vast amounts of behavioral data, collectively referred to as digital footprints. Recent advancements in artificial intelligence (AI) and big data analytics enable financial institutions to leverage these digital footprints to develop sophisticated behavioral scoring models, significantly improving credit risk assessments, especially among individuals traditionally excluded from formal financial systems (Berg et al., 2020; Xu et al., 2024).

4.1 Defining and Categorizing Digital Footprints

Digital footprints encompass diverse data points reflecting individual online and offline behaviors captured digitally. These footprints typically include:

Mobile device usage patterns (frequency of calls, messaging behavior, battery-charging habits);
Social media interactions (network size, connectivity, and frequency of interactions);
E-commerce transaction behaviors (purchase frequency, categories, and transaction consistency);
Geospatial mobility data (location stability, commuting patterns, and geographic activity radius) (Björkegren & Grissen, 2020; Zhang & Li, 2023).

The multidimensionality and granular nature of these data allow machine learning algorithms to construct nuanced behavioral profiles that effectively approximate traditionally elusive dimensions of borrower reliability and trustworthiness (Xu et al., 2024).

4.2 Behavioral Scoring Models: Methodologies and Techniques

Behavioral scoring involves translating digital footprint data into predictive variables using advanced analytical methods, primarily supervised machine learning algorithms such as gradient boosting machines (GBM), random forests, neural networks, and graph neural networks (GNN) (Tao et al., 2024; Berg et al., 2020). Empirical research by Xu et al. (2024) and Tao et al. (2024) demonstrates that such methodologies significantly enhance predictive performance in credit risk assessment compared to conventional scoring techniques.

In particular, attention-based multilayer GNN models are increasingly utilized for capturing complex relational data structures inherent in borrower networks, significantly improving default prediction accuracy (Tao et al., 2024). Meanwhile, explainable AI (XAI) techniques—such as SHAP and

LIME—are progressively integrated into scoring models to provide transparent, interpretable insights into model predictions, facilitating both regulatory compliance and borrower trust (Raghavan & Barocas, 2024).

4.3 Empirical Evidence on Predictive Power

Several empirical studies substantiate the predictive efficacy of digital footprints in credit scoring. Berg et al. (2020) analyzed over 250,000 loan applications from an e-commerce platform, demonstrating that digital footprint indicators—including email domain, mobile device types, and shopping behavior—outperformed traditional credit bureau scores in predicting borrower default. Similarly, Björkegren and Grissen (2020), using mobile phone metadata from developing markets, showed that mobile behavioral patterns—such as communication diversity and regularity—effectively predict loan repayment likelihood, significantly reducing information asymmetry between borrowers and lenders.

Recent research from Zhang and Li (2023), examining large-scale loan-level data from China's big tech credit systems, further underscores the predictive advantage of digital footprints. Their findings reveal substantial reductions in default rates attributed directly to the integration of behavioral data into credit scoring frameworks, validating the practical utility of such approaches.

4.4 Advantages and Socioeconomic Impacts

The use of digital footprints in behavioral scoring has considerable socio-economic implications, primarily through expanding financial inclusion. By enabling financial institutions to accurately assess creditworthiness without reliance on formal credit histories, behavioral scoring democratizes access to financial services, particularly benefiting populations in developing economies and underserved communities (Xu et al., 2024). Furthermore, these scoring mechanisms enhance operational efficiency, significantly reducing assessment costs and loan approval times, thus facilitating rapid, scalable deployment of credit products (Björkegren & Grissen, 2020).

4.5 Ethical and Regulatory Challenges

Despite their advantages, behavioral scoring models present critical ethical and regulatory concerns. Central issues include algorithmic transparency, potential invasions of privacy, and embedded biases arising from underlying socio-economic inequalities reflected in digital behaviors (Arora & Gupta, 2025; Binns, 2024). Recent studies have highlighted that seemingly neutral digital footprints may inadvertently perpetuate existing social disparities, systematically disadvantaging vulnerable groups (Arora & Gupta, 2025).

To address these ethical challenges, regulatory frameworks such as the EU's GDPR and emerging AI governance guidelines advocate stringent data privacy standards, transparency in algorithmic decision-making, and mandatory fairness audits for AI-driven scoring models (Raghavan & Barocas, 2024). These regulatory measures aim to balance the advantages of behavioral analytics with critical protections of individual rights and equity in financial decision-making.

4.6 Future Directions in Digital Footprint Analytics

Future research in digital footprint analytics and behavioral scoring should prioritize addressing limitations around transparency, fairness, and causal inference. Specifically, further studies are required to identify robust causal relationships between specific behavioral features and loan repayment behaviors, rather than mere predictive correlations (Xu et al., 2024). Additionally, interdisciplinary research combining insights from economics, computer science, sociology, and ethics is crucial to ensure behavioral scoring remains inclusive, fair, and ethically sound.

Cross-national comparisons and culturally informed evaluations will be vital in understanding how regional differences affect the accuracy, acceptance, and ethical dimensions of behavioral scoring methodologies, thereby guiding more contextually appropriate and globally effective AI applications (Zhang & Li, 2023).

In summary, digital footprint analytics significantly advances the capacity of financial institutions to perform accurate, inclusive, and efficient credit assessments. However, leveraging this potential responsibly requires ongoing scholarly inquiry into ethical implications, regulatory oversight, and methodological transparency.

5. Ethical Concerns and Regulatory Challenges

The rapid integration of artificial intelligence (AI) and digital footprint analytics into credit assessment has dramatically expanded financial inclusion. However, this technological advancement simultaneously presents profound ethical and regulatory challenges. Chief among these concerns are algorithmic fairness, transparency, data privacy, and potential discrimination embedded within AI-driven financial decision-making processes (Raghavan & Barocas, 2024; Arora & Gupta, 2025).

5.1 Algorithmic Fairness and Biases in AI Credit Scoring

Algorithmic fairness refers to the equitable treatment of individuals and groups by automated systems, ensuring decisions are free from discrimination based on sensitive attributes such as gender, ethnicity, or socio-economic background (Binns, 2024). Despite intentions of neutrality, AI-based credit scoring models frequently incorporate and magnify existing biases embedded within historical datasets, perpetuating socio-economic inequalities. For example, recent studies indicate that credit-scoring algorithms inadvertently penalize women and minority groups due to structurally biased input data, exacerbating existing disparities rather than mitigating them (Arora & Gupta, 2025).

Empirical evidence demonstrates that biases in algorithmic decision-making can lead to systematic exclusion or adverse credit terms for vulnerable groups, even when these individuals exhibit comparable or superior repayment behaviors relative to favored demographic segments (Binns, 2024). Addressing these biases requires deliberate fairness-aware approaches, including bias detection algorithms, regular fairness audits, and inclusion of fairness constraints within predictive models (Raghavan & Barocas, 2024).

5.2 Transparency and Explainability in Algorithmic Decision-Making

The inherent complexity and opacity of machine learning algorithms raise substantial transparency concerns, limiting borrowers' understanding of and recourse against adverse credit decisions—a phenomenon commonly termed the “black box” problem (Xu et al., 2024; Tao et al., 2024). Borrowers often lack visibility into the specific criteria and decision logic utilized by AI models, undermining trust and procedural fairness in financial interactions.

In response, regulators and researchers advocate for increased algorithmic transparency and explainability, employing techniques from the burgeoning field of explainable AI (XAI). Methods such as SHAP (Shapley Additive Explanations), LIME (Local Interpretable Model-Agnostic Explanations), and model-specific interpretability approaches have gained prominence for providing borrowers and regulators clear explanations of algorithmic outputs, thus enhancing accountability and facilitating informed consent (Raghavan & Barocas, 2024).

5.3 Data Privacy and Consent Issues

AI-driven credit scoring relies on extensive personal data collection, raising critical concerns regarding data privacy, informed consent, and individual autonomy (Xu et al., 2024). Digital footprints often include sensitive personal information—ranging from geospatial mobility to intimate communication patterns—potentially infringing upon individuals' privacy rights and autonomy.

Regulatory responses, notably the European Union's General Data Protection Regulation (GDPR), emphasize the necessity for explicit consent mechanisms, clear disclosure of data usage purposes, and robust data anonymization processes (Raghavan & Barocas, 2024). GDPR also mandates individuals' rights to access their data, request corrections, and obtain explanations of automated decision-making processes. Nonetheless, recent studies highlight persistent gaps between regulatory aspirations and practical compliance, underscoring the need for continuous regulatory scrutiny and industry accountability (Binns, 2024).

5.4 Regulatory Frameworks and Governance Approaches

Addressing ethical concerns associated with AI credit scoring necessitates comprehensive regulatory frameworks and robust governance structures. Emerging global regulatory initiatives focus on creating standards for transparency, fairness, and accountability. For instance, the European Union's proposed AI Act, along with existing GDPR provisions, explicitly targets automated decision-making processes, mandating transparency and fairness audits as essential elements of AI system governance (Raghavan & Barocas, 2024).

In addition to regulatory measures, industry-driven governance initiatives—such as algorithmic fairness guidelines, independent ethical review boards, and sector-specific standards—are increasingly recognized as essential complements to formal regulation. FinTech companies and traditional financial institutions alike face growing pressures to incorporate ethical AI principles into their operations proactively, thereby aligning technological innovation with societal values and public trust (Binns, 2024; Arora & Gupta, 2025).

5.5 Balancing Innovation, Inclusion, and Ethics

While the adoption of AI and digital footprints in credit scoring holds significant promise for enhancing financial inclusion, balancing this innovation with ethical imperatives remains a critical ongoing challenge. Recent scholarship emphasizes that a sustainable trajectory for AI deployment in finance must integrate inclusive data practices, robust fairness evaluations, and regulatory frameworks designed to protect vulnerable populations from unintended harms (Arora & Gupta, 2025).

Scholars recommend interdisciplinary research efforts—combining expertise from economics, data science, law, and ethics—to continually assess, refine, and enhance AI-based financial decision-making processes. Such interdisciplinary collaboration is essential to address the multifaceted ethical complexities and regulatory challenges, ensuring that technological advancements genuinely support inclusive, equitable, and responsible financial practices (Raghavan & Barocas, 2024; Binns, 2024).

In conclusion, the ethical and regulatory challenges associated with AI-driven behavioral credit scoring require continuous attention, interdisciplinary research, and proactive governance. Addressing these concerns effectively will determine the extent to which digital innovations truly foster equitable financial inclusion, rather than perpetuate existing inequalities.

6. Policy Implications and Future Research

Artificial intelligence (AI) and digital footprint analytics have transformative potential for reducing information asymmetry and enhancing financial inclusion, but realizing this potential hinges on effective policy frameworks, regulatory oversight, and ongoing scholarly inquiry. This section synthesizes critical policy implications derived from the preceding analysis and delineates clear directions for future research to address identified ethical, methodological, and practical challenges.

6.1 Policy Implications

6.1.1 Enhancing Algorithmic Transparency and Explainability

Given the opacity inherent in AI-driven credit scoring models, policymakers should mandate clear standards for algorithmic transparency. Regulatory frameworks, exemplified by the European Union's General Data Protection Regulation (GDPR) and proposed AI Act, emphasize the necessity for borrowers to obtain understandable explanations of automated decisions affecting their financial opportunities (Raghavan & Barocas, 2024). Additionally, policy interventions should also target internal organizational dynamics within financial institutions to improve credit allocation efficiency. Levine et al. (2019) provide robust empirical evidence showing that reducing internal communication costs, such as those associated with face-to-face interactions between headquarters and branches, can significantly enhance small-business lending. Policymakers might consider incentivizing financial institutions to adopt organizational practices and technologies that lower these internal informational frictions, further complementing external regulatory measures to promote comprehensive financial inclusion. Policymakers can encourage financial institutions to incorporate explainable AI (XAI)

methodologies such as SHAP and LIME, thereby improving borrowers' trust and enabling meaningful oversight.

6.1.2 Strengthening Fairness and Reducing Bias in AI Models

Algorithmic fairness must be institutionalized within regulatory guidelines to mitigate systemic discrimination against historically marginalized groups (Binns, 2024). Regulatory bodies should mandate periodic fairness audits, bias detection tests, and corrective actions to ensure AI credit-scoring systems function equitably. Additionally, industry-wide standards and ethical codes of practice should be established to explicitly incorporate fairness as a central criterion in AI model development (Arora & Gupta, 2025).

6.1.3 Data Privacy Protections and Consent Mechanisms

Policymakers should prioritize robust privacy frameworks, ensuring comprehensive protections for personal data utilized in AI credit assessments. Clear guidelines and explicit consent mechanisms must be implemented, providing borrowers with informed choices regarding their data usage and protection rights (Xu et al., 2024). Enhanced regulatory scrutiny and enforcement of existing data protection standards (e.g., GDPR) will be critical in safeguarding individual privacy rights and mitigating privacy-related risks.

6.1.4 Encouraging Inclusive Data Practices

To prevent AI models from perpetuating existing inequalities, policymakers should promote inclusive and representative data collection practices. Policies should incentivize financial institutions to incorporate data from diverse socioeconomic and demographic groups, mitigating biases arising from historically underrepresented populations (Arora & Gupta, 2025). Public-private partnerships can facilitate inclusive data-sharing agreements, ensuring broader representation and equity in AI-driven credit scoring systems.

6.1.5 Promoting Cross-sector and International Collaboration

Given the global nature of AI-driven financial technologies, international regulatory cooperation is essential. Policymakers should foster cross-sector dialogue among governments, technology providers, financial institutions, and consumer advocacy groups to develop unified international standards for AI fairness, transparency, and accountability (Raghavan & Barocas, 2024).

6.2 Directions for Future Research

6.2.1 Empirical Validation and Causal Inference

Future research must move beyond correlational analyses of digital footprints and creditworthiness toward rigorous causal inference methodologies. Employing experimental and quasi-experimental designs—such as randomized controlled trials (RCTs), natural experiments, and difference-in-differences approaches—can elucidate causal links between specific behavioral indicators and borrower repayment behavior, ensuring robust and valid conclusions (Xu et al., 2024).

6.2.2 Algorithmic Fairness and Ethical AI Frameworks

Interdisciplinary research should continue to explore effective methods to embed fairness into AI models systematically. Studies examining the impact of various fairness constraints, bias-mitigation algorithms, and ethical AI frameworks on credit-scoring accuracy and equity outcomes are essential (Binns, 2024; Arora & Gupta, 2025). Such research will support the development of best practices and regulatory benchmarks for algorithmic fairness in financial services.

6.2.3 Explainability and Interpretability Techniques

Further studies should assess the efficacy, usability, and limitations of existing XAI techniques within financial decision-making contexts. Investigating borrower perceptions of algorithmic explanations and their impact on trust, satisfaction, and behavior can inform better-designed transparency interventions and regulatory guidelines (Raghavan & Barocas, 2024).

6.2.4 Cross-cultural and Cross-national Comparative Studies

Given substantial variation in institutional, regulatory, and cultural contexts across countries, cross-national comparative research will be critical. Investigating how cultural norms, regulatory environments, and technological infrastructures influence AI adoption, algorithmic fairness, and behavioral analytics outcomes will help tailor inclusive AI models suitable for diverse socioeconomic contexts globally (Zhang & Li, 2023).

6.2.5 Longitudinal Impact Assessments

Long-term studies examining the sustained impacts of AI-driven credit scoring on financial inclusion, socioeconomic mobility, and economic stability are needed. Longitudinal analyses can reveal unintended social consequences, assess persistence of predictive validity, and evaluate potential changes in borrower behavior resulting from awareness of continuous digital monitoring (Berg et al., 2020; Björkegren & Grissen, 2020).

6.2.6 Privacy-Preserving and Ethical Data Usage Practices

Future research should focus on developing and evaluating privacy-preserving data analytics methodologies, such as federated learning and differential privacy, within credit assessment contexts. Assessing the balance between data utility, predictive accuracy, and privacy preservation will inform policymakers and industry stakeholders seeking ethical and practical solutions to privacy challenges (Xu et al., 2024).

In conclusion, AI's potential to bridge information asymmetry and expand financial inclusion necessitates comprehensive policy frameworks, interdisciplinary scholarly inquiry, and ongoing empirical validation. Policymakers, researchers, and practitioners must collaborate closely to ensure technological innovation remains ethically responsible, socially equitable, and economically beneficial, ultimately achieving the inclusive promise of digital finance.

Our findings, in alignment with Dong et al. (2024), underline the significance of tailoring financial inclusion policies to cultural and socioeconomic contexts. Specifically, financial technology platforms and policymakers should acknowledge cultural heterogeneity by developing targeted strategies. For

example, users from collectivist cultures may benefit from community-based and socially interactive FinTech features that align with their cultural predispositions towards cooperation and group orientation. Such tailored approaches can substantially reduce barriers stemming from information asymmetry and enhance the inclusivity and effectiveness of financial services. Additionally, integrating culturally sensitive financial literacy programs into digital platforms can further facilitate the adaptation of diverse user groups into the broader digital financial ecosystem, effectively mitigating social exclusion and economic inequality.

Building upon insights from Tan et al. (2024), our findings further underscore the importance of strategic governance and ecosystem management in effectively coordinating multiple stakeholders—including consumers, financial institutions, technology providers, and regulators. Regulatory bodies and platform operators should thus adopt governance frameworks emphasizing transparent communication, inclusive stakeholder participation, and adaptive ecosystem strategies. Specifically, adopting multi-platform integration strategies—such as collection, consolidation, symbiosis, and assemblage—can provide comprehensive guidelines for optimizing resource allocation, ensuring fairness, and promoting sustainable development within FinTech ecosystems. By employing these integrated ecosystem management strategies, policymakers can more effectively address informational asymmetries and achieve inclusive, equitable, and robust financial ecosystems.

7. Conclusion

This paper has explored the transformative potential of artificial intelligence (AI) in addressing information asymmetry within financial markets, emphasizing its critical role in expanding financial inclusion and enhancing credit access. By integrating theoretical insights from classical economic frameworks (Akerlof, 1970; Stiglitz & Weiss, 1981) with recent empirical findings, this study has demonstrated how AI-driven behavioral scoring models utilizing digital footprints significantly improve the accuracy, inclusivity, and efficiency of credit assessments. Through detailed case analyses of leading FinTech enterprises such as Tala and Ant Group, the research highlighted AI's capability to extend financial services to previously underserved populations lacking formal credit histories. Empirical evidence consistently illustrates that digital footprint analytics—including smartphone metadata, social media interactions, e-commerce behaviors, and geospatial activities—substantially enhance the predictive reliability of loan default assessments, thereby mitigating traditional adverse selection problems. Nevertheless, alongside these advancements, the integration of AI into financial decision-making introduces critical ethical and regulatory challenges. Algorithmic biases, data privacy concerns, and the lack of transparency in “black box” models pose significant risks of perpetuating systemic inequalities and infringing upon individual rights. To address these challenges effectively, policymakers must develop comprehensive regulatory frameworks that mandate transparency, fairness, and accountability, exemplified by current regulatory efforts such as the European Union's GDPR and proposed AI Act. The paper concludes by identifying key policy implications essential to balancing

technological innovation with ethical imperatives. These include implementing rigorous fairness audits, encouraging transparency through explainable AI techniques, ensuring robust privacy protections, and fostering inclusive data practices. Moreover, international cooperation and interdisciplinary research remain crucial for addressing ethical complexities and promoting globally equitable AI applications. Future research must prioritize rigorous causal inference analyses, longitudinal impact evaluations, and comprehensive cross-national studies to better understand AI's sustained effects on financial inclusion, socioeconomic mobility, and economic stability. Additionally, exploring privacy-preserving analytical methods and robust ethical AI frameworks will remain integral to the responsible deployment of digital innovations in financial contexts. The integration of Rice Theory and digital platform governance frameworks presents a novel interdisciplinary perspective, significantly advancing both theoretical understanding and practical approaches in addressing information asymmetry within FinTech. Ultimately, while AI-driven credit assessment significantly reduces informational inequalities and expands financial access, achieving its full inclusive potential depends on proactive ethical oversight, informed regulatory interventions, and continuous scholarly inquiry. As financial technologies evolve, interdisciplinary collaboration among economists, data scientists, regulators, and ethicists will be essential for harnessing AI's power responsibly, ensuring that financial innovation truly serves equitable and inclusive economic development. By integrating insights from cultural adaptation theories and employing advanced social network methodologies, this study provides comprehensive evidence supporting culturally nuanced strategies for enhancing financial inclusion. These insights not only reinforce the theoretical robustness of our findings but also yield actionable policy recommendations, highlighting the necessity of culturally responsive FinTech policies that reduce information asymmetry and promote sustainable financial inclusion.

References

Akerlof, G. A. (1970). The market for “lemons”: Quality uncertainty and the market mechanism. *The Quarterly Journal of Economics*, 84(3), 488-500. <https://doi.org/10.2307/1879431>

Arora, N., & Gupta, S. (2025). *The Gendered Algorithm: Navigating Financial Inclusion & Equity in AI-facilitated Access to Credit*. arXiv preprint arXiv:2504.07312.

Banerjee, A. V., & Duflo, E. (2011). Poor Economics: A Radical Rethinking of the Way to Fight Global Poverty. *PublicAffairs*.

Beck, T., Senbet, L., & Simbanegavi, W. (2022). Financial inclusion and economic development: New evidence and policy implications. *Journal of Development Economics*, 156, 102828. <https://doi.org/10.1016/j.jdeveco.2022.102828>

Berg, T., Burg, V., Gombović, A., & Puri, M. (2020). On the rise of fintechs-Credit scoring using digital footprints. *The Review of Financial Studies*, 33(7), 2845-2897. <https://doi.org/10.1093/rfs/hhz099>

Binns, R. (2024). *The Fairness of Credit Scoring Models*. arXiv preprint arXiv:2205.10200.

Björkegren, D., & Grissen, D. (2020). Behavior revealed in mobile phone usage predicts loan repayment. *American Economic Journal: Applied Economics*, 12(1), 1-26. <https://doi.org/10.1257/app.20170633>

Demirguc-Kunt, A., Klapper, L., & Singer, D. (2022). Financial inclusion and financial resilience: New global insights. *Journal of Financial Intermediation*, 54, 100979. <https://doi.org/10.1016/j.jfi.2022.100979>

Dong, S., Hu, D., Yang, X., & Chau, M. (2024). *Analyzing the impacts of cultural backgrounds on migrants' acculturation strategies in mobile phone social networks*. Cities, 154, Article 105384. <https://doi.org/10.1016/j.cities.2024.105384>

Levine, R., Lin, C., Peng, Q., & Xie, W. (2019). *Communication within banking organizations and small-business lending*. Working paper, Haas School of Business, University of California, Berkeley.

Raghavan, M., & Barocas, S. (2024). AI Ethics and Algorithmic Fairness in Finance. *Journal of Business Ethics. Advance online publication*. <https://doi.org/10.1007/s10551-024-05689-y>

Stiglitz, J. E., & Weiss, A. (1981). Credit rationing in markets with imperfect information. *The American Economic Review*, 71(3), 393-410. <https://www.jstor.org/stable/1802787>

Tan, B., Xiao, X., Chau, M., Tan, F. T. C., & Leong, C. (2024). The dynamics, organisation and evolution of digital platforms and ecosystems. *Information Systems Journal. Advance online publication*. <https://doi.org/10.1111/isj.12548>

Tao, L., Chen, Y., & Luo, Z. (2024). *Attention-based dynamic multilayer graph neural networks for loan default prediction*. arXiv preprint arXiv:2402.00299.

Wachter, S., Mittelstadt, B., & Floridi, L. (2017). Why a right to explanation of automated decision-making does not exist in the General Data Protection Regulation. *International Data Privacy Law*, 7(2), 76-99. <https://doi.org/10.1093/idpl/ixp005>

Xu, W., Jiang, Z., & Lee, T. (2024). Exploring the landscape of financial inclusion through the lens of digital footprints. *Information Systems Research. Advance online publication*. <https://doi.org/10.1287/isre.2023.1209>

Zhang, Q., & Li, X. (2023). Big tech credit score and default risk: Evidence from loan-level data. *Journal of Financial Intermediation*, 53, 100962. <https://doi.org/10.1016/j.jfi.2022.100962>