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Abstract 

To predict the exchange rate EUR / MAD & USD / MAD in Morocco we used two most answered 

methods in the theory: the Box-Jenkins econometric model and the stochastic model of Vasicek then the 

comparison of the forecasted data for the month of March 2018 of the two methods with the exchange 

rates actually observed allowed us to retain the econometric the autoregressive integrated moving 

average model ARIMA (2,1,2) for EUR / MAD and (3,1,2) for USD / MAD rather than the Vasicek 

model. 
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1. Introduction 

The exchange rate is a tool of the economic policy of any country, open to the outside world, it is 

considered both a means of monetary regulation and an ideal instrument of external competitiveness, it 

is in this sense that Morocco has opted for a more flexible exchange rate regime which presents a risk 

to be managed by the banks and the insurance companies following an indexation of their results on 

exchange rates or elements of the assets or liabilities which are denominated in currency. may manifest 

itself in the form of capital losses as a result of the interconnection of international markets, 

exacerbating the volatility of foreign exchange markets. 

To help policymakers and ALM committee choose the best model for predicting USD / MAD and EUR 

MAD exchange rate developments we have performed an empirical study of the two best-regarded 

models in the field of exchange rate prediction namely the Box-Jenkins model and the Vasicek model. 
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2. Literature Review 

2.1 Box-Jenkins (Econometric) Model 

The use of the econometric model to predict the exchange rate has been a subject of considerable 

academic scrutiny over the past few decades. A study by Alam (2012) that in case of in-sample the 

ARMA (1,1) model, whereas both the ARMA (1,1) and AR(1) models are capable to add value 

significantly to the forecasting and trading BDT/USD exchange rate in the context of statistical 

performance measures. (Ghalayini, 2013) has construct an econometric models capable to generate 

consistent and rational forecasts for the dollar/euro exchange rate; (Liuwei, 2006) use different methods, 

such as AR, MA, and ARIMA to forecast the exchange rate of US Dollar / Euro in the month of 

February 2005. And a lot of other works like (Al-Hamidy, 2010; Alam, 2012; Cheung & Lai, 2008; 

Etuk, 2012; Ghalayini, 2013; Liuwei, 2006; Olatunji & Bello, 2015; Reddy SK, 2015; Weisang & 

Awazu, 2008). 

2.2 Stochastic Model (Vasicek) 

Amini (2012) uses the vasicek model to calibrate stochastic interest rate model Ayranci and Özgürel 

(2014) modeled time series of TRLIBOR interest rates with Vasicek Model and calibrated through OLS 

method, Hamilton and James (2001), and many other works discuss the Vasicek models. 

 

3. Data and Estimation Techniques 

3.1 Data 

In order to compare the two models ( Box-Jenkins and Vasicek) for predicting the exchange rate we use 

two time series EUR/MAD and USD/MAD can be taken directly from Casablanca Stock Exchange url 

http://www.casablanca-bourse.com/bourseweb/index.aspx the period covered is from 03/01/2000 to 

09/03/2018( 4742 observations) 

3.2 Model Specification 

For the Box-Jenkins model  

A time series has the property that neighboring values are correlated. This tendency is called 

autocorrelation. It is said to be stationary if it has a constant mean, constant variance and 

autocorrelation that is a function of the lag separating the correlated values. The autocorrelation 

expressed as a function of the lag is called the autocorrelation function (ACF). 

A stationary time series {Xt} is said to follow an autoregressive moving average model of orders p and 

q (denoted by ARMA(p,q) ) if it satisfies the following difference equation (Note 1) 

1 1 2 2 1 1 2 2... ...t t t p t p t t t q t qX X X X                                   (1) 

Or 

( ) ( )t tA L X B L                              (2) 



www.scholink.org/ojs/index.php/ijafs        International Journal of Accounting and Finance Studies           Vol. 1, No. 1, 2018 

56 
Published by SCHOLINK INC. 

where  t  is a system of uncorrelated random variables with zero mean and constant variance, 

called a white noise process, and the αi’s and βj’s constants; 

 

and 

2
1 2( ) 1 ... q

qB L L L L        

and L is the backward shift operator defined by 
k

t t kL X X  . 

If p = 0, model (1) becomes a moving average model of order q (denoted by MA(q)). If, however, q=0 

it becomes an autoregressive process of order p (AR(p)). An AR(p) model of order p may be defined as 

a model for which a current value of the time series Xt depends on the immediate past p values: 

1 1, ,....t t t pX X X   . On the other hand, an MA(q) model of order q is whereby the current value 

Xt is a linear combination of the  immediate past q values of the white noise process: 

1 1, ,....t t t q     . 

An AR(p) can be modeled by: 

1 1 2 2 ...t p t p t pp t p tX X X X           

Then the sequence of the last coefficients { ii } is called the partial autocorrelation function of (PACF) 

(Note 2) of {Xt}. The ACF of an MA(q) model cuts off after lag q whereas that of an AR(p) model is a 

mixture of sinusoidals tailing off slowly. On the other hand, the PACF of an MA(q) model tails off 

slowly whereas that of an AR(p) model tails off after lag p. 

AR and MA models are known to have some duality characteristics. These include: 

1) A finite order of the one type is equivalent to an infinite order of the other type. 

2) The ACF of the one type exhibits the same behavior as the PACF of the other type. 

3) An AR model is always invertible but is stationary if (L) = 0 has zeros outside the unit circle. 

4) An MA model is always stationary but is invertible if (L) = 0 has zeros outside the unit circle. 

Parametric parsimony consideration in model building entails preference for the mixed ARMA fit to 

either the pure AR or the pure MA fit. Stationarity and invertibility conditions for model (1) or (2) 

are that the equations A(L) = 0 and B(L) = 0 should have roots outside the unit circle respectively. 

If a time series is non-stationary, Box and Jenkins (1976) proposed that differencing of an appropriate 

order could render a non-stationary series {Xt} stationary. Suppose the degree of differencing 

necessary for stationarity is equal to d. Such a series {Xt} may be modelled as 

2
1 2( ) 1 ... p

pA L L L L      
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1

(1 ) ( )
p

i d
i t t

i

a B X B L 


                                   (3) 

where 1 L    and in which case 
1

( ) (1 ) 0
p

i d

i

A L aiB


     shall have unit roots d times. 

Then differencing to degree d renders the series stationary. The model (3) is said to be an 

autoregressive integrated moving average model of orders p, d and q and denoted by ARIMA(p, d, q). 

For the vasicek model  

( )t tdx xt dt dW                                       (4) 

Where: 

  : the Mean reversion speed 

  : Long term mean/mean reversion parameter 

 : Standard deviation that determines the volatility of the rate of exchange 

tW : Wiener process that models the risk factor of random market 

Solving the Ornstein-Uhlenbeck Stochastic Differential Equation includes taking the derivative of which 

yields so:  

The conditional mean and variance of tx  given 0x (see Appendix 1 for demonstration) 

        0 0( ) t
t tE x x e        and  

2
2

0 (1 ); 0
2

t
tVar x e  


    

The conditional mean and variance of tx  given sx  

  ( )
0 0( ) t s

t tE x x e        and  
2

2 ( )
0 (1 ); 0

2
t s

tVar x e  


     

If time increases the mean tends to the long-term value and the variance remains bounded, implying 

mean reversion. The long-term distribution of the Ornstein-Uhlenbeck process is stationary and is 

Gaussian with mean  and variance
2

2


  

3.3 Vasicek Model calibration: Ordinary Least Squares Estimation 

The linear relationship between two consecutive observations 1tix   and tix  is linear with 

independent identical random values   such that: 

1ti tix ax b      
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Where: 
ta e    ; (1 )tb e      ; 

21

2

t

sd

e 

 


 
  

Express these equations in terms of the parameters  , and  which yield: 

 

ln( )a

t
  

  , 1

b

a
 

  et 2

21 ( )

(1 )sd

n a

t a
  


   

The following formulas are used to simplify further calculations: 

1
1

i

n

x t
i

S x




  ,
1

i

n

y t
i

S x


   

2
1

1

n

xx i
i

S x 


  , 
2

1
i

n

yy t
i

S x


   et 1
1

i i

n

xy t t
i

S x x




   

The ordinary least square (OLS) estimates ̂ ,̂ and ̂ are 

2ln

ˆ

xy x y

xx x

nS S S

nS S

t


 
  

  , 

2

2

ˆ

1

xx x y
y x

xx x

xy x y

xx x

nS S S
S S

nS S

nS S S
n

nS S



 
  
  
    

, 

2

2

2

2ln

ˆˆ

1

xy x y

xx x
sd

xy x y

xx x

nS S S

nS S

nS S S
t

nS S

 

 
   
  
      

 

 

4. Empirical Results 

4.1 Model Estimation  

The involvement of the white noise terms in an ARIMA model necessitates a nonlinear iterative 

process in the model estimation. An optimization criterion like the least squares, maximum likelihood 

or maximum entropy is used. An initial estimate is usually used and each iteration is expected to be an 

improvement of the previous one until the estimate converges to an optimal one. However, for pure AR 
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and pure MA models linear optimization techniques exist (See for example Box and Jenkins (1976), 

Oyetunji (1985)). There are attempts to propose linear methods to estimate ARMA models (See for 

example, Etuk (1987, 1998)). We shall use Eviews software which employs the least squares approach 

to analyze the data.  

4.2 Diagnostic Checking  

The model that is fitted to the data should be tested for goodness-of-fit. The automatic order 

determination criteria AIC and SIC are themselves diagnostic checking tools. Further checking can be 

done by the analysis of the residuals of the model. If the model is correct, the residuals would be 

uncorrelated and would follow a normal distribution with mean zero and constant variance. 

4.3 Results and Discussion  

 

7

8
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2000 2002 2004 2006 2008 2010 2012 2014 2016

eurmad usdmad  

Figure 1. Graph EUR/MAD & USD/MAD from 2000 to 2018 

Source: Established by as data from Casablanca Stock Exchange from 03/01/2000 to 09/03/2018 

 

Figure 1 shows that the two series EUR / MAD and USD / MAD apparently are not stationary to the 

correlogram and the unit root test confirm the non-stationarity of the two series and none of them 

contain a trend as it confirmed in the ADF test (see Appendix 2). So, we move to differentiation as 

proposed by Box and Jenkins (1976) and covariance analysis shows the result of a negative correlation) 

that’s explain the movement in the two curves in the opposite directions and TABLE1 shows that the 

covariance of the two series EUR / MAD and USD / MAD are < 0. 

 

Table 1. Covariance analysis EURMAD and USD MAD 
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Figure 2. Unit Root Test of D(USD/MAD) 

Source: Established by as data from Casablanca Stock Exchange from 03/01/2000 to 09/03/2018 

 

The series D(USD/MAD) is stationary we have 7 2 .4 6 2 .5 6T s ta t is t ic    and the 

probability p = 0.0001, so we accept the hypothesis of the stationarity of D(USD/MAD) series. 

 

 

Figure 3. Unit Root Test of D(EUR/MAD) 

Source: established by as data from Casablanca Stock Exchange from 03/01/2000 to 09/03/2018 
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We have a 8 0 .2 9 2 .5 6T s ta t is t ic   and the probability p = 0.0001, so we accept the 

hypothesis of the stationarity of D(EUR/MAD series. 

 

 

Figure 4. Graph of D(EUR/MAD) 

 

 

 

Figure 5. Graph of D(EUR/MAD) 

 

The two series are DS  

From 4.3 the two series (EUR/MAD & USD/MAD) are a nonstationary stochastic trend (random walk) 

and hence, they should be modeled as a first difference stationary (DS) process.  

The Augmented Dickey-Fuller tests, approve the stationarity of each series D(USD/MAD) et 

D(EUR/MAD) 
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Figure 6. Correlogram of DEURMAD 

 

From the Correlogram the ARIMA model (2,1,2) may be the appropriate model of DEURMAD that 

we will validate by adopted estimates tests 

 

Figure 7. Correlogram of DUSDMAD 

 

From the Correlogram the ARIMA model (3,1,3) may be the appropriate model of DUSDMAD series 

that we will validate by adopted estimates tests. 
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Figure 8. D(EUR/MAD) ARMA Estimation 

 

The estimation of the ARIMA model as shown in Figure 8 of the series D(EUR/MAD) gives us 

AR(p=2) and MA(q=2) so the model to adopt is the ARIMA(2.1, 2) model 

 

 

Figure 9. D(USD/MAD) ARMA Estimation 

 

The estimation of the ARIMA model as shown in Figure 8 of the series D(USD/MAD) gives us 

AR(p=3) and MA(q=2) so the model to adopt is the ARIMA(3.1, 2) model 
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Figure 10. Historgam of Residuals D(USD/MAD) 
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Figure 11. Historgam of Residuals D(USD/MAD) 

 

 

Figure 12. Correlogram of Residuals D(EUR/MAD) 

 

The correlogram shows the adequacy of the model. All the residual autocorrelations are not 

significantly different from zero. 
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Figure 13. Correlogram of Residuals D(USD/MAD) 

 

4.4 Coefficients Estimation of the ARIMA Models 

4.4.1 Estimation Equation D(EUR/MAD) 

DEURMAD = 0 + 

[AR(1)=-0.58278181639,AR(2)=0.205236868879,MA(1)=0.424683530653,MA(2)=-0.303315313536,

] 

4.4.2 Estimation Equation D(USD/MAD) 

DUSDMAD = 0 + 

[AR(1)=-0.701591508377,AR(2)=-0.674835386612,AR(3)=-0.0453531674099,MA(1)=0.6514825193

37,MA(2)=0.655361306839,] 

4.4.3 Forecasting 

 

Table 2. Forecasting Series D(EUR/MAD) & D(USD/MAD) then Calculating EUR/MAD & 

USD/MAD Using ARIMA Model 

date EUR/MAD D(EUR/MAD) USD/MAD D(USD/MAD) 

11/03/2018 11,3400 0.005500000000001393 9,1648 -0.009399999999999409 

12/03/2018 11,3455 0.0215999999999994 9,1418 -0.03300000000000125 

13/03/2018 11,3671 0.004699999999999705 9,1324 -0.001299999999998747 

14/03/2018 11,3718 -0.04030000000000023 9,0994 0.04089999999999883 
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15/03/2018 11,3315 -0.00569999999999915 9,0981 -0.0008999999999996789 

16/03/2018 11,3258 0.002087441845087116 9,1390 0.0005895270463517412 

17/03/2018 11,3279 0.0009614052273731249 9,1381 -0.001468107683193019 

18/03/2018 11,3288 -0.000131869456443679 9,1387 0.0006729926488323415 

19/03/2018 11,3287 0.0002741669199422857 9,1372 0.0004918304261723635 

20/03/2018 11,3290 -0.0001868439699393336 9,1379 -0.0007326391646313851 

21/03/2018 11,3288 0.0001651584283818826 9,1384 0.0001515845566671418 

22/03/2018 11,3290 -0.0001345986002437702 9,1377 0.000365755039911644 

23/03/2018 11,3288 0.0001123382154436759 9,1378 -0.0003256769756746357 

24/03/2018 11,3289 -9.309326451579342e-05 9,1382 -2.520801593100877e-05 

25/03/2018 11,3289 7.730900538129428e-05 9,1378 0.0002208760303806963 

26/03/2018 11,3289 -6.416045270235321e-05 9,1378 -0.0001231824807965163 

 

4.5 EUR/MAD Exchange Rate Vasicek Model Estimation 

 =0,17829335           =11,056921         =0,02 

0,17829335(11,056921 ) 0,02tdx xt dt dw  
 

3) USD/MAD exchange rate Vasicek model estimation : 

 =0,09753359         =8,967795           =0,05 

0,09753359(8,967795 ) 0,05tdx xt dt dw  
 

 

Table 3. Estimation EUR/MAD & USD/MAD Using VASICEK Model 

date EUR/MAD USD/MAD 

11/03/2018 11,6867 9,1998

12/03/2018 11,7351 9,6985

13/03/2018 11,7814 9,7595

14/03/2018 11,6847 9,6420

15/03/2018 11,7087 9,6088

16/03/2018 11,6694 10,0807

17/03/2018 11,8001 10,0063

18/03/2018 11,7602 9,9375

19/03/2018 11,8304 10,2888

20/03/2018 11,8071 10,0260

21/03/2018 11,5899 9,7898

22/03/2018 11,6712 9,3991
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23/03/2018 11,7225 10,0347

24/03/2018 11,7145 10,3075

25/03/2018 11,4489 9,8897

26/03/2018 11,5920 9,9114

 

 

Figure 14. Comparison between VASICEK and ARIMA(2,1,2) EUR/MAD Predicting 

 

 

Figure 15. Comparison between VASICEK and ARIMA(2,1,2) EUR/MAD Predicting 

 

Both in Figure 14 and 15 the econometric(ARIMA) model gives a best estimation than the Vasicek 

model (we see that the red line is closer than the blue one) 

 

5. Concluding Remarks 

First, we have successfully fitted an ARIMA(2,1,2) model to EUR/MAD Moroccan exchange rate and 
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ARIMA(3,1,2) model to USD/MAD. Its adequacy has been established and, on its basis, we have made 

forecasts. 

Second, we calibrated the Vasicek model and we estimated their parameter and we used it to forecast 

USD/MAD & EUR/MAD series then we compared the values of each model to the real values and we 

concluded that the Box-Jenkins model is best and it is more performant to estimate Moroccan exchange 

rate than the Vasicek model who overestimates values!  

 

References  

Alam, M. Z. (2012). Forecasting the BDT/USD Exchange Rate using Autoregressive Model. Global 

Journal of Management and Business Research. 

Alam, Z. (2012). Forecasting the BDT/USD Exchange Rate using Autoregressive Model. Global 

Journal of Management and Business Research, 12(19). 

Al-Hamidy, A. (2010). Monetary policy and the measurement of inflation: Prices, wages and 

expectations. 

Amin, H. H. N. (2012). Thesis Calibration of Di_erent Interest Rate Models for a Good Fit of Yield 

Curves. Delft University of Technology. 

Amini, H. (2012). Calibration of different interest rate models for a good fit of yield curves (MSc 

Thesis, Delft University).  

Cheung, Y. W., & Lai, K. S. (2008). Nominal exchange rate flexibility and real exchange rate 

adjustment: New evidence from dual exchange rates in developing countries. Japan and the World 

Economy. https://doi.org/10.1016/j.japwor.2007.01.002 

Etuk, E. H. (2012). Predicting Inflation Rates of Nigeria Using A Seasonal Box-Jenkins Model. Journal 

of Statistical and Econometric Methods. 

Ghalayini, L. (2013). Modeling and Forecasting the US Dollar/Euro Exchange Rate. International 

Journal of Economics and Finance. https://doi.org/10.5539/ijef.v6n1p194 

Ghalayini, L. (2014). Modeling and Forecasting the US Dollar/Euro Exchange Rate. International 

Journal of Economics and Finance. 

Herrala, N. (2009). Vasicek Interest Rate Model. Lappeenranta University of Technology. 

Liu, W. (2006). Forecasting the US Dollar / Euro Exchange rate Using ARMA Models. 

Meng, C. (2008). Stochastic and Copula Models for Credit Derivatives. Harvard Review of Psychiatry. 

Olatunji, O. M., & Bello, A. A. (2015). Suitable Model for the Forecast of Exchange Rate in Nigeria 

(Nigerian Naira versus US Dollar ). International Journal of Science and Research. 

Reddy SK, B. A. (2015). Exchange Rate Forecasting using ARIMA, Neural Network and Fuzzy 

Neuron. Journal of Stock & Forex Trading. https://doi.org/10.4172/2168-9458.1000155 

Rossi, B. (2013). Exchange Rate Predictability. University of Southern California. 

Vasicek, N. H. (2009). Interest rate model: Parameter estimation, evolution of the short term interest 

rate and term structure. Lappeenranta University of Technology. 



www.scholink.org/ojs/index.php/ijafs        International Journal of Accounting and Finance Studies           Vol. 1, No. 1, 2018 

69 
Published by SCHOLINK INC. 

Weisang, G., & Awazu, Y. (2008). Vagaries of the Euro: An Introduction to ARIMA Modeling. Case 

Studies in Business Industry. 

 

Notes. 

Note 1. See P. Newbold et al. / Journal of Economics and Business 53 (2001) 85-102 Trend-stationarity, 

difference-stationarity, or neither: further diagnostic tests with an application to U.S. Real GNP, 

1875-1993. 

Note 2. For more details between the autocorrelation and the partial autocorrelation function of (PACF) 

see Appendix 1. 

 

Appendix 1. (These definitions are tacked from EVIEWS documentation) 

Autocorrelations (AC) 

The autocorrelation of a series where Y  at lag k  is estimated by: 
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Where Y  is the sample mean of Y . This is the correlation coefficient for values of the series k  

periods apart. If 1  is nonzero, it means that the series is first order serially correlated. If k  dies off 

more or less geometrically with increasing lag k , it is a sign that the series obeys a low-order 

autoregressive (AR) process. If k  drops to zero after a small number of lags, it is a sign that the series 

obeys a low-order moving-average (MA) process. 

Partial Autocorrelations (PAC) 

The partial autocorrelation at lag k  is the regression coefficient on t kY   when tY  is regressed on a 

constant, 1,...,t t kY Y   . This is a partial correlation since it measures the correlation of Y  values 

that are k periods apart after removing the correlation from the intervening lags. If the pattern of 

autocorrelation is one that can be captured by an autoregression of order less than k , then the partial 

autocorrelation at lag k will be close to zero. 

The PAC of a pure autoregressive process of order p, AR(p), cuts off at lag p, while the PAC of a pure 

moving average (MA) process asymptotes gradually to zero.  
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Appendix 2. Unit Root Test Eur/Mad (Augumented Dukey Fuller) 

 

We have a 0 .8 2 5 2 1T s ta t is t ic   and the probability p = 0.4091 > 0.05 so we reject the 

hypothesis of a deterministic non-stationarity, or that the process TS (Trend stationary) of EUR/MAD 

series and the series is not stationary. 

 

In the same way we have a 0 .0 4 2 3 0 3T s ta t is t ic   and the probability p = 0.9663 > 

0.05 so we reject the hypothesis of a deterministic non-stationarity, or that the process TS (Trend 

stationary) of USD/MAD series and the series is not stationary. 

 


