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Abstract 

Composite Stock Price Index (CSPI) can be used as a reflection of the national economic condition of a 

country because it is an indicator to know the development the capital market in a country. Therefore, the 

movement in the future needs to be forecast. This study aims to build a model for the time series 

forecasting of Indonesia Composite Index (ICI) using the ARIMA model. The data used is the monthly 

data of ICI in Indonesia Stock Exchange (IDX) from January 2000 until December 2017 as many as 

216 data. The method used in this research is the Box-Jenkins method. The autocorrelation (ACF) and 

partial autocorrelation function (PACF) are used for stationary test and model identification. The 

maximum estimated likelihood is used to estimate the parameter model. In addition, to select a model 

then used Akaike’s Information Criterion (AIC). Ljung-Box Q statistics are used for diagnostic tests. In 

addition, to show the accuracy of the model, we use Root Mean Squared Error (RMSE), Mean Absolute 

Error (MAE) and Mean Absolute Percentage Error (MAPE) and the most appropriate model is ARIMA 

(0, 1, 1). 
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1. Introduction 

In general, investment managers need to accurately predict the CPSI in order to minimize the risk of 

the decision. Furthermore, most of the central banks in the world generally use CPSI data as one of the 

considerations to determine monetary policy. In other words, monetary policy was decided by 

considering the upcoming CPSI value. One tool to predict the CPSI value is to use a time series model. 

Capital market is the part of the financial system concerned with raising capital by dealing in shares, 

bonds, and other long-term investments. Where, it can support the development of the national 
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economy, because it can support the financing of national development. The ups and downs of the 

capital market stretching can be reflected in the movement of the Composite Stock Price Index (CSPI), 

in other words, that the CSPI is one indicator of the condition of a market. JCI is a series of historical 

information about joint stock price movements up to a certain time. Where, it is able to reflect a value 

that can be used as a performance indicator of a joint stock in the stock exchange. Therefore, when 

investment managers take a financial decision, they need to predict JCI accurately to reduce the risk of 

loss from the decision. The Autoregressive Integrated Moving Average (ARIMA) model developed by 

Box and Jenkins (1976) and has been widely used in various fields as a statistical model, especially 

related to forecasting problems. Time series model forecasting is a type of forecasting that uses past 

observational data, investigates its behavior and is extrapolated into the future. This paper focuses on 

constructing a time series forecasting model with the ARIMA model to be applied to CSPI data 

forecasting. 

 

2. Method 

The material used in this study consisted of CPSI data and a number of theories in statistics and 

mathematics. CPSI data is a monthly data from January 2000 to December 2017 as many as 216 data 

and Autoregressive Integrated Moving Average model written ARIMA (p, d, q), with the general 

formula: 

                tqt
d

p a)B(Z)B1)(B(   
                                 

 (1)  

Where d ≠ 0 is the level of differentiation, then the method used is the Box-Jenkins method.  

The ARIMA model was first popularized by Box and Jenkins (1976), known as the Box-Jenkins 

method or the Box-Jenkins model. This research is based on Box-Jenkins modeling. Where, the steps 

are: stationary test based on behavior from ACF graph, identical model using ACF and PACF, 

parameter estimation using maximum likelihood method, model selection using AIC, diagnostic test 

using Ljung-Box Q statistics, and test model accuracy using RMSE, MAE and MAPE. 

Definition 2.1  

For the time series Zt;Yt  , the ACF is ,2,1,0k,ˆ k  , where 
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Definition 2.2 

If the time series  Zt;Yt  , then the PACF is  ,2,1,0k,ˆ
kk  , where 
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Moreover, the identification of models is determined based on the characteristics of ACF and PACF, 

shown as in following Table 1: 

 

Table 1. Characteristics of ACF and PACF 

Model ACF k  PACF kk  

AR(p) 
Damped exponential and/or  

sine functions 
kk =0 for k>p 

MA(q) k = 0 for k >q 
Dominated by damped exponential and/or sine 

function 

ARMA(p,q) 
Damped exponential and/or  

sine functions after lag (q-p) 

Dominated by damped exponential and/or sine 

function after lag (p-q) 

 

Definition 2.3 

The joint density function of n random variables X1, X2, … , Xn evaluated at x1, x2, … , xn say f(x1, x2, … , 

xn; θ), is referred to as a likelihood function. For fixed x1, x2, … ,xn the likelihood function is a function 

of θ and often denoted by L(θ). If X1, X2, … , Xn represents a random sample from f(x;θ), then the 

likelihood function is: 
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                           (4)  

The maximum likelihood method is the method used to determine the minimum value. The AIC is 

defined are as follows (Wei, 2006): 

                                    M2ˆlnnAIC 2
a                              (5) 

Where n is the number of observations, 2
a̂  is the maximum likelihood estimate of 2

a  and M is the 

number of parameters. The best model is given by the model with the lowest AIC value. An overall 

check of model adequacy is provided by the Ljung-Box Q statistics. The test statistic Q (Wei, 1994) is:  
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If  qpKQ 1
2    the adequacy of the model is rejected at the level α. Where n is the sample size, 

2
k̂  is the autocorrelation of residuals at lag k and K is the number of lags being tested. 

There are measures to determine the accuracy of a forecasting model in this research is RMSE, MAE 

and MAPE defined respectively as follows:  
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ŶY

MAE

n

1t
tt






                
                   (8) 

                   %100x
n

Y

ŶY
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Where tY =The actual value at time t; tŶ =The forecast value at time t; n=The number of observations 

and ESS=the error sum of square.  

 

3. Results 

Based on the original data plot x in Figure 1, the graph shows an increasing trend, this indicates that the 

time series data is not stationary. Furthermore, this is confirmed by the ACF plot in Figure 2 which 

shows a slow decline. Therefore, it was concluded that the time series x data set was not stationary. To 

overcome this non-stationary condition, it is transformed to y; y is the first differences of x: 

                                            1ttt xxy                                  (10) 

The data plot in Figure 3 indicates that the time series data is stationary, confirmed by the ACF plot in 

Figure 4 with a muffled sine wave shape. Furthermore, it was concluded that this set of data y was 

stationary. 

 

 

Figure 1. Plot of x 
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Figure 2. Plot ACF of x 

 

 

Figure3. Plot of y 

 

 

Figure 4. Plot ACF of y 
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Figure 5. Plot PACF of y 

 

3.1 Model Identification  

According to the ACF plot in Figure 4 and the PACF plot in Figure 5, they are interrupted after lag 1, 

then the possible models for data on time series Y are ARMA (1, 0), ARMA (0, 1) or ARMA (1, 1). 

3.2 Parameter Estimation and Model Selection 

Furthermore, to estimate parameters, the maximum likelihood method is used, as shown in the following 

Table 2. 

 

Table 2. The Values of Parameter and AIC 

 

The results in Table 2 show that the smallest AIC value is found in ARMA (0, 1) which reaches 

2745.19. Therefore, it can be concluded that the most appropriate model for y data is the ARMA (0, 1) 

model. 

3.3 Diagnostic Test 

Furthermore, to find out the appropriate model, the diagnostic check is performed with the basic 

assumption that the residual is a white noise process; is a random variable that is not mutually correlated 

with zero mean and constant variance in Figure 6, by examining residual autocorrelation through 

hypotheses: Testing with Ljung-Box Q Statistics, with the calculation of Chi-squared=0.0633, df=1, 

p-value=0.8014 shows that Chi-squared<p-value, therefore, it can be concluded that the ARMA (0, 1) 

model is considered sufficient to be used as a forecasting model for the Indonesia composite stock price 

index. 
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MODEL 1̂  ̂  AIC 

ARMA(1,0) 0.1444 - 2745.32 

ARMA(0,1) - 0.1449 2745. 19 

ARMA(1,1) 0.4770 −0.3424 2746. 92 
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Figure 6. Plot of Residual Diagnostic Test 

 

3.4 Model Accuracy 

The measurements used to see the level of accuracy of the model are Root Mean Squared Error (RMSE), 

Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE), as in Table 3 below: 

 

Table 3. The Values of RMSE, MAE and MAPE 

 

Based on Table 4 it can be concluded that the best model for stationary data y is the ARMA model 

(0.1). As for the reason is because it has the smallest AIC value and the accuracy of RMSE, MAE and 

MAPE is also smallest compared to other models. If returned to the original data of x in equation (1), 

then the model is ARIMA (0, 1, 1) model as follows: 

                t1t
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Furthermore, by substituting the parameter value to equation (11), the following model is obtained: 

                                   t1t1tt aa1449.0xx                              (12)  
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ARMA(1,0) 445.3735 383.0598 6.5621 % 

ARMA(0,1) 444.3502 382.3258 6.5499 % 

ARMA(1,1) 455.1833 392.7058 6.7291 % 
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4. Conclusions 

Indonesia’s Monthly Stock Price Index data taken from January 2000 to December 2017 is time series 

data which is not stationary, while the data on the only level difference is stationary. Therefore, the data 

analyzed is the one-level difference data. The model obtained was returned to the original data through 

the research stages on autocorrelation function, partial autocorrelation function, parameter estimation 

and diagnostic check with Ljung-Box Q statistics. It was concluded that the appropriate model was 

ARIMA (0, 1, 1) model. 
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