
Journal of Business Theory and Practice 
ISSN 2372-9759 (Print) ISSN 2329-2644 (Online) 

Vol. 9, No. 1, 2021 

www.scholink.org/ojs/index.php/jbtp 

51 

Original Paper 

Stock Return Autocorrelation and Individual Equity Option 

Prices 

Fei Fang
1,2 

1
 Faculty of Finance, School of Management, Clark University, Worcester MA  

2
 Research Associate, Center for International Securities and Derivatives Markets, University of 

Massachusetts Amherst, Amherst, MA 

 

Received: December 27, 2020   Accepted: January 13, 2021   Online Published: February 14, 2021 

doi:10.22158/jbtp.v9n1p51             URL: http://dx.doi.org/10.22158/jbtp.v9n1p51 

 

Abstract 

This study demonstrates empirically the impact of stock return autocorrelation on the prices of individual 

equity option. The option prices are characterized by the level and slope of implied volatility curves, 

and the stock return autocorrelation is measured by variance ratio and first-order serial return 

autocorrelation. Using a large sample of U.S. stocks, we show that there is a clear link between 

stock return autocorrelation and individual equity option prices: a higher stock return autocorrelation 

leads to a lower level of implied volatility (compared to realized volatility) and a steeper implied 

volatility curve. The stock return autocorrelation is more important in explaining the level of implied 

volatility curve for relatively small stocks. The relation between stock return autocorrelation and 

option price structure is more pronounced when market is volatile, especially during financial crisis. 

The stock return autocorrelation is more important in explaining the level of implied volatility curve 

for relatively small stocks. Thus, stock return autocorrelation can help differentiate the price structure 

across individual equity options.  

Keywords 

Autocorrelation, Implied Volatility, Realized Volatility, Slope of Implied Volatility Curve 

 

1. Introduction 

Empirical studies have uncovered some intriguing features, among others, of index and individual 

equity option prices: (i) the option implied volatility is higher than the realized volatility (e.g., 

Rubinstein, 1994; Jackwerth & Rubinsten, 1996; Carr & Wu, 2009; Duan & Wei, 2009), and (ii) the 

implied volatility curve consistently exhibits pronounced smile effects (see Jackwerth & Rubinsten, 

1996; Bates, 2000; Bakshi et al., 2003; Yan, 2011; Xing et al., 2011). 

The asset returns are assumed to be distributed independently of each other, in various option pricing 

models, including (i) jump-diffusion model of Merton (1976), Bates (1991), etc., (ii)  the stochastic 

volatility models of Heston (1993), Hull and White (1987) etc., (iii) stochastic volatility and 

jump-diffusion models of Bates (1996), etc. However, the evidence of persistence autocorrelation in asset 

returns of both the short-term (see, for example, Lo and Mackinlay (1988, 1990), Conrad and Kaul 

(1988)) and long-term period (see, for example, Fama and French (1988) and Poterba and Summers 

(1988)) contradicts the assumption made in the option pricing models. Following this line of research, 

literature documents that stock return autocorrelation enters into the option pricing formula through 
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adjustments in volatility and/or expected asset price (Lo and Wang (1995), Jokivuolle (1998), Mezrin 

(2004), Liao and Chen (2006), etc.).  

It is an empirical question, as to the extent that stock return autocorrelation affects option prices. To the 

best of our knowledge, there exists no empirical studies exploring the relative contribution of stock 

return autocorrelation in option pricing. In this paper, we fill the gap by investigating the impact of stock 

return autocorrelation on the individual equity option price structure and demonstrate a clear link 

between them. Our hope is that a better understanding of the sources of option price structure will help 

guide us in the future as we work to improve option pricing models and option trading strategies. 

Following, Lo (2004), Griffin, Kelly, and Nardari (2010), and Cao et al. (2018), we employ two 

measures of stock return autocorrelation: variance ratios and first-order stock return autocorrelation. 

We start by testing the random walk hypothesis for optional stocks. At the 10% (5%) significance level, 

the random walk assumption is rejected for about one third (one quarter) of stocks in our sample, 

suggesting the discrepancy between the assumption of the option pricing model and the data. Using 

6,137 stocks from 01/1996 to 04/2016, we demonstrate a clear link between the stock return 

autocorrelation and individual equity option prices. Specifically, stocks with higher return 

autocorrelation exhibit a lower level of implied volatility (compared to realized volatility) and a steeper 

implied volatility curve. We find that the stock return autocorrelation is more important in explaining 

the level of implied volatility curve for relatively small stocks. We also find that the relation between 

stock return autocorrelation and option price structure is more pronounced when market is volatile, 

especially during financial crisis. The level of stock price autocorrelation can help differentiate the 

price structure across individual equity options.  

We contribute to the extant literature which documents the impact of stock return autocorrelation on 

option prices empirically. Lo and Wang (1995) demonstrate that option value is a function of the 

absolute value of the first-order autocorrelation coefficient, with the increase in autocorrelation 

decreasing Black-Scholes option prices. They also suggest that predictability also affects option prices 

nontrivially for option pricing models with stochastic volatility or jump component. By modeling the 

index autocorrelation by the ARMA model and incorporating the autocorrelation into Rubinsten (1996) 

results, Jokivuolle (1998) shows that the autocorrelation enters into the option pricing formula by 

adjusting volatility and underlying index value, both of which enters into option pricing models. 

Mezrin (2004) incorporates stock return autocorrelation into Black Scholes Model and demonstrate that 

return autocorrelation affects the volatility and expected asset price, therefore, the option prices. By 

allowing stock returns to follow a first order moving average process, Liao and Chen (2006) show that 

the impact of autocorrelation is significant to option prices even when the autocorrelation between asset 

returns is weak. 

Our paper also contributes to the strand of empirical studies that examine the factors or firm 

characteristics related to individual equity option prices. Duan and Wei (2009) illustrate the impact of 

the systematic risk of stocks on the option prices. With daily option quotes on the S&P 100 index and 

its 30 largest component stocks, they show that a higher amount of systematic risk leads to a steeper 

implied volatility curve and a higher level of implied volatility. Using data on 1,421 individual firms, 

Dennis and Mayhew (2002) find that firm size, β, and stock trading volume help explain the 

risk-neutral skewness. Chou et al. (2011) illustrate the impact of both spot and option liquidity levels 

on option prices using options on component stocks of the DJIA Index. With a decrease (increase) in 

stock (stock option) liquidity, there is an increase in the level of the implied volatility curve. Our 

empirical results demonstrate that even after controlling for those variables, a clear link remains 
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between the individual equity prices and stock return autocorrelation. 

The rest of the paper is organized as follows. Section 2 discusses variable definitions. Section 3 

presents our empirical results including univariate soring, Fama-Macbeth regressions and robustness 

checks. Section 4 concludes.  

 

2. Variable Construction 

2.1 Option Price Structure 

Following An et al. (2014) and Yan (2011), we use the interpolated volatility surface computed by 

OptionMetrics to construct individual equity option price structure. OptionMetrics computes option 

implied volatility using binomial trees and the interpolated volatility surface is then constructed using a 

kernel smoothing algorithm. One advantage of using the volatility surface is that it avoids having to 

make potentially arbitrary decisions on which strikes or maturities to include in computing an implied 

call or put volatility for each stock (see An et al., 2014). Since we are looking at the monthly frequency, 

we use the 30-day interpolated volatility surface at the last trading day of each month following An et 

al. (2014).  

Bollen and Whaley (2004) use the Black-Scholes deltas to measure moneyness. Based on their deltas, 

options are placed into five moneyness categories. Yan (2011) uses options whose deltas equal to the 

average of the upper and lower bound of each moneyness category, as in Bollen and Whaley (2004), to 

define the moneyness of options. Following Bollen and Whaley (2004) and Yan (2011), we use 

standard options on the implied volatility surface with deltas equal to 0.5, -0.5, and -0.25 as ATM calls, 

ATM puts, and OTM puts on the last trading day of each month. 

2.1.1          : Implied-Realized Volatility Spread 

The options implied volatility,        , for stock   in month  , is defined as the average implied 

volatility of ATM calls and ATM puts, with deltas equal to 0.5 and -0.5 on the implied volatility 

surface on stock   at the end of month  , respectively. Follow Bali and Hovakimian (2009) and Ang 

et al. (2006), the realized volatility,        , of each month is calculated as the annualized standard 

deviation of daily returns over the past 12 months. We then calculate the spread between implied and 

realized volatility as follows.  

                
       

            
    

 
         

2.1.2      : Slope of Implied Volatility Curve 

Following Xing et al. (2010), we define the slope of implied volatility curve,      , as the difference 

between the implied volatility of options of ATM calls and OTM puts. To be specific, we define the 

        , for stock   in month  , as the difference of the implied volatility of options with delta of 0.50 

(ATM calls) and -0.25 (OTM puts) on the implied volatility surface on stock   at the end of month  .  

                 
            

     

2.2 Measures of Stock Return Autocorrelation 

Following Lo and MacKinlay (1988), Lo (2004), Griffin, Kelly, and Nardari (2010), and Cao et al. 

(2018), we derive two measures of stock return autocorrelation from stocks’ daily quotes: variance 

ratios and first-order stock return autocorrelation. Those two measures capture patterns in stock returns 

discrepancies between the variance of long-term and short-term returns and serial dependency in stock 

returns, respectively.  

 

 



www.scholink.org/ojs/index.php/jbtp                Journal of Business Theory and Practice                 Vol. 9, No. 1, 2021 

54 
Published by SCHOLINK INC. 

2.2.1 Variance Ratio 

Our main measure of stock return autocorrelation is variance ratio, proposed by Lo and MacKinlay 

(1988). An important property of stock return independence is that the variance of its increments must 

be proportional to the time interval over which the returns are sampled. In line with Lo and MacKinlay 

(1988) and Cao et al. (2018), we compute the following main measure of stock return autocorrelation: 

              
  
 

   
                                (1) 

where   
  and   

  are the return variances measured over 2-weeks and 1-week intervals.  

The weekly stock returns are derived from the CRSP daily returns file. Following Lo and MacKinlay 

(1988), the weekly return of each security is computed as Wednesday-Wednesday return. If the 

following Wednesday’s closing price is missing, then Thursday’s closing price (or Tuesday’s if 

Thursday’s is also missing) is used. If both Tuesday’s and Thursday’s closing prices are missing, the 

return for that week is reported as missing. 

This measure captures the absolute deviation of the ratio of return variances measured over 2 weeks to 

those measured over 1 week from 1, which is the expected value of the ratio under the random walk 

hypothesis. Greater deviation of the variance ratio from 1 signals higher serial return autocorrelation. 

Balancing between estimation efficiency from a larger sample and the relatively shorter option 

maturities, we opt for a one-year (52 weeks) rolling window. Specifically, at the end of each month, we 

calculate variance ratio and the absolute deviation of variance ratio from 1 using return data in the past 

one year (52 weeks). 

2.2.2 First-order Stock Return Autocorrelation 

As an alternative measure of stock return autocorrelation, we also examine the absolute value of 

first-order monthly stock return autocorrelation with 3-year rolling windows, following Lo and Wang 

(1995), Lo (2004) and Cao et al. (2018). Following Lo and Wang (1995), we focus on the absolute 

value of the autocorrelation to avoid confusion in making comparisons between results for negatively 

autocorrelated and positively autocorrelated asset returns. Higher absolute value of autocorrelation 

proxies for greater deviation from random walk. 

2.3 Control Variables 

In order to rule out the possible effects on option prices from other firm-specific characteristics and 

factors, we include a number of control variables in our empirical tests. 

Duan and Wei (2009), Dennis and Mayhew (2002) and Chou et al. (2011) document that systematic 

variance risk ratio, firm size,  , stocks’ trading volume, spot and option liquidity can explain option 

prices. Following Duan and Wei (2009), we assume a standard one-factor market model for stock  . At 

the end of each month, we run daily, one-year rolling window OLS regression and estimate the 

systematic risk proportion as the   . We calculate a stock’s   by regressing the stock’s excess return 

on the excess return of S&P 500 for the past 24 months. Following Fama and French (1992), the firm 

size from July of year   to June of year     are measured based on the market equity in June of 

year  . Stock trading volume is defined as the total number of shares traded in the month. We adopt 

12-month moving average Amihud (2002) illiquidity ratio to proxy for stock illiquidity. For each firm, 

we sum the trading volumes of all options that meet our requirements from each day in each month, as 

our measure of option liquidity. 
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3. Empirical Results 

3.1 Summary Statistics 

Our sample runs from January 1996 to April 2016. Options data are from OptionMetrics. Stock data are 

from CRSP, and accounting data are from Compustat. We first calculate the summary statistics over 

the cross section for each month, and then average the statistics over the monthly time series. There are 

449,849 observations in our sample in total. The total number of stocks is 6,137 and the average 

number of stocks per month is 1,851. Table 1 presents the summary statistics of the variables used in 

our empirical tests over the sample period from January 1996 to April 2016. We first calculate the 

summary statistics over the cross section for each month, and then average the statistics over the 

monthly time series.  

Panel A reports the summary statistics on option price structures, namely           and      . 

Several observations are in order. First, implied volatility is about 1.60% greater than realized volatility 

on average, consistent with Duan and Wei (2009) and Carr and Wu (2009). Second, the volatility smile 

is clearly present for majority of stocks in our sample. The curve is mostly downward sloping. The 

sample average of slope is −4.81%, consistent with Xing et al. (2010), whose sample average       is 

6.4% in the period of January 1996 to December 2005. Panel B reports the summary statistics of 

measures of stock return autocorrelation. On average, the biweekly return variance is about 2.26 times 

of the weekly return variance. The mean and median of                   are 0.10 and 0.12 

respectively. Panel C describes the summary statistics on the control variables, including systematic 

risk proportion, firm     ,  , stock trading volume, Amihud illiquidity ratio and option trading 

volume. The mean and median systematic risk proportion is 0.22 and 0.20 respectively, consistent with 

Duan and Wei (2009). The mean/median firm size in our sample is $4.30/1.04 billion, whereas the 

mean/median firm size is $2.53/0.20 billion for all the stocks in CRSP. The mean and median stock 

trading volume for firms in our sample are 28.09 and 8.91 million shares, respectively, comparing with 

14.98 and 1.99 million shares for all stocks in CRSP. It is not surprising that firms in our sample are 

bigger and more liquid than the average firm trading in the stock market, since we utilize stocks with 

options. Firms in our sample have an average   of 1.3.  

 

Table 1. Summary Statistics 

Panel A: Option Price Structure 

 Mean 5% 25% 50% 75% 95% S.D. 

          (%).                    1.60         -22.39       

-4.99         0.93 

7.09 27.30 19.99 

      (%) -4.81 -22.08 -7.43 -3.50 -0.75 7.51 13.76 

Panel B: Measures of Stock Return Autocorrelation 

 Mean 5% 25% 50% 75% 95% S.D. 

Variance Ratio 1.13 0.62 0.82 0.97 1.11 1.34 8.07 

       0.34 0.01 0.07 0.15 0.25 0.44 8.00 

|Autocorrelation| 0.10 0.01 0.06 0.12 0.20 0.33 0.10 

Panel C: Control Variables 

 Mean 5% 25% 50% 75% 95% S.D. 

Systematic Risk 0.22 0.03 0.12 0.20 0.30 0.52 0.15 

Size ($ Billion) 4.30 0.11 0.39 1.04 2.98 16.70 13.30 
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  1.31 -0.04 0.68 1.19 1.83 3.11 1.02 

Stock Volume (in millions) 28.09 1.16 3.80 8.91 23.04 103.93 92.46 

Amihud Illiquidity (%) 0.03 0.00 0.00 0.00 0.01 0.08 0.29 

Option Volume 20286 18 212 1299 7977 77634 115599 

 

3.1 Variance Ratio Test 

We start our empirical studies with variance ratio tests. Following Lo and MacKinlay (1988) and Cao 

et al. (2018), we define the following estimator:  

       
  

 

   
    

Where   
  and   

  are the return variance measured over   weeks and 1 week intervals, respectively.  

In light of the Theorem 1 of Lo and MacKinlay (1988), for    , the   score is computed as  

     √  
     

√      
        

Where   is the maximum number of non-overlapping  -week returns. 

For each stock in our sample, we calculate the   score using all the daily data. Table 2 report the 

percentage of stocks for which the random walk hypothesis is rejected, for   from 2 to 16, with 

weekly stock returns from January 1996 to April 2016. At $10% significance level, the random walk 

(stock return is unpredictable) hypothesis is rejected for about one third of stocks in our sample. At 5% 

significance level, the random walk hypothesis is rejected for about one quarter of stocks in our sample. 

The discrepancy between the data and the assumption of the option pricing model and the data 

indicates that the measure of stock return autocorrelation may help explain the individual equity option 

price structure. 

 

Table 2. Variance Ratio Test 

   2 3 4 5 6 

Percentage of Stocks with  

Rejection of Random Walk (%) 

10% 34.16 36.28 34.37 33.58 32.89 

5% 26.96 28.11 26.52 25.89 24.91 

   7 8 9 10 11 

Percentage of Stocks with  

Rejection of Random Walk (%) 

10% 32.98 33.34 32.98 31.60 32.41 

5% 25.21 24.92 24.85 23.51 24.41 

   12 13 14 15 16 

Percentage of Stocks with  

Rejection of Random Walk (%) 

10% 31.16 31.68 33.40 30.86 33.11 

5% 23.81 23.74 23.81 23.31 24.20 

 

3.2 Fama-MacBeth Regressions 

In this part, we use the Fama-MacBeth (see Fama and Macbeth, 1973) regressions to examine the 

cross-sectional relation between stock return autocorrelation and the option price structure with or 

without control variables. Table 3 and 4 present the Fama-MacBeth regression results of           

and       on       , respectively, from January 1996 to April 2016. Column (1) of Table 3 and 

Table 4 report the univariate regression results of           and       on       . Column 

(2)-(5) report the regression results of           and       on        with control variables, 

including systematic risk proportion, firm size,   , stock trading volume, stock liquidity 
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(                  ) and option liquidity (             ).  

 

Table 3. Fama-MacBeth Regressions of Implied and Realized Volatility Spread (         ) on 

Measure of Stock Return Autocorrelation (      ) 

 (1) (2) (3) (4) (5) 

       -0.031 -0.032 -0.025 -0.033 -0.027 

 (-8.98) (-9.78) (-8.79) (-10.12)   

(-10.84) 

Systematic Risk  0.059 

(8.73) 

      0.012 

    

(2.02) 

Size 0.000   0.000 

 (9.75)  (7.93) 

  0.016  0.016 

 (6.86)  (6.78) 

Stock Volume 0.000  0.000 

 

Amihud Illiquidity 

    

(8.49) 

 

-0.086 

(6.71) 

-0.084 

    (-2.94)    

(-2.77) 

Option Volume    0.000    

-0.000 

    (8.31)    

(-3.07) 

Adjusted R
2
(%) 0.37 1.25 4.36 1.95 6.76 

 

Before we interpret the regression results of           on        in Table 3, please note that the 

implied volatility slope is negative for most stocks in our sample. When we regress           only 

on       , the coefficient estimate is -0.031 with a  -statistic of -8.98, indicating that a stronger 

stock return autocorrelation leads to a lower          , a lower option implied volatility compared 

to realized volatility. To separate the explanatory power of stock return autocorrelation from other firm 

characteristics, we consider 6 control variables in regression (2)-(5). Inclusion of the control variables 

does not reduce the explanatory power of stock return autocorrelation on          . When we 

regress       only on       , as in column (1) of Table 4, the coefficient estimate is -0.005 with a 

statistically significant  -statistic of -3.26. The coefficient of        remains negatively significant 

after we include control variables into the regressions, as in column (2)-(5). This indicates that a higher 

stock return autocorrelation leads to a steeper downward-sloping implied volatility curve. The 

coefficient of        remains negatively significant after we include control variables into the 

regressions.  
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Table 4. Fama-MacBeth Regressions of Implied Volatility Slope (     ) on Measure of Stock 

Return Autocorrelation (      ) 

 (1) (2) (3) (4) (5) 

       -0.005 -0.005 -0.004 -0.004 -0.004 

 (-3.26) (-3.34) (-2.96) (-3.24) (-2.97) 

Systematic Risk  0.000 

(0.09) 

  0.006 

(3.15) 

Size   0.000  0.000 

   (12.56)  (14.41) 

    0.000  -0.001 

   (0.03)  (-2.17) 

Stock Volume   0.000  0.000 

   (0.14)  (4.32) 

Amihud Illiquidity    -0.014 0.002 

    (-1.01) (0.19) 

Option Volume    -0.000 -0.000 

    (-1.07) (-6.87) 

Adjusted R
2
(%) 0.08 0.22 0.57 0.57 1.24 

 

3.3 Univariate Sorting 

To gauge the magnitude of impact of stock return autocorrelation on option price structure, we perform 

univariate sorting. On the last trading day of each month, stocks are ranked, in ascending order 

according to       , into quintiles, and five portfolios are formed by equally weighting the stocks 

within that quintile. We then record the implied and realized volatility spread and the slope of implied 

volatility curves. Repeating these steps for every month in the sample period of January 1996 to April 

2016 generates the time series of monthly options price structure for the five quintiles. We then 

calculate the time-series average of the monthly portfolio option prices and report them in Table 5. 

Each quintile portfolio has 370 stocks per month, on average. Portfolio Q1 contains stocks with lowest 

      , which is only 0.03 for Q1, indicating that the variance ratio for stocks in Q1 is very close to 1. 

Portfolio Q5 contains stocks with highest        of 1.19.  

 

Table 5. Quintile Portfolios of Option Price Structures Sorting on Measure of Stock Return 

Autocorrelation (      ) 

                          Size 

 %      

  % 

  ($ Billion) 

Q1 1.15 -4.43 0.03 1.29 4.60 

Q2 1.13 -4.48 0.08 1.31 4.34 

Q3 1.09 -4.50 0.15 1.31 4.33 

Q4 1.01 -4.47 0.23 1.31 4.20 

Q5 0.26 -4.64 1.19 1.33  4.03 

Q5-Q1 -0.90 -0.21    

t(Q5-Q1) -6.70 -3.10    
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With the increases of       , i.e., higher serial correlation of stock returns, the option implied 

volatility becomes smaller compared to realized volatility and the implied volatility curve becomes 

more negatively skewed. For example, portfolio Q1 has a monthly average           of 1.15% and 

a monthly average       of -4.43%, while portfolio Q5 has a monthly average           of 

0.26% and a monthly average       of -4.64%. The average difference of           between Q5 

and Q1 is -0.9%, statistically and economically significant. The       spread between Q5 and Q1 is 

-0.21% with a  -statistic of 3.1. The univariate regression results are consistent with the 

Fama-MacBeth regressions. The impact that the stock returns autocorrelation has on the level of 

implied volatility curve is stronger than that on the slope of the implied volatility curve. It is also 

noticeable that the patterns of monthly           and       are somewhat flat from Q1 from Q4. 

To make sure that our results are not driven by outliers, we eliminate the stocks whose        is in 

the top or bottom 1% for each month and the results remain quantitatively similar. 

3.4 Robustness Check 

We also perform several robustness checks. We start by replicating the Fama-MacBeth regressions 

using alternative measure of stock return autocorrelation, absolute value of first-order stock return 

autocorrelation and find that our main empirical results remain: stocks with strong return 

autocorrelation exhibit a lower level of implied volatility (compared to realized volatility) and a steeper 

implied volatility curve.  

We then repeat univariate sorting for different subsample. To visualize the results, we plot      

     and       and the corresponding t-values of the long-short stock portfolio formed on        

v.s. different subsamples in Figure 1. The solid blue lines show the           or the       spread 

between the top and bottom portfolio sorting by        within subsample and the solid read lines 

show the corresponding t values. The blue dotted lines represent the           or the       

spread between the top and bottom portfolio sorting by        for all stocks.  

 

       

Panel A Size: Small, Medium-Size and Big Stocks 

 
Panel B Before, During and After Financial Crisis 
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Panel C Volatile and Involatile Market 

Figure 1. The          ,       and the Corresponding T-Valuesof the Long-Short Stock 

Portfolio Formed on        Within Different Subsamples 

 

To check if our main results are driven by relatively small stocks (Note 1) in our sample, we repeat the 

univariate sorting within small, median and large stocks in our sample. We find that the relationship 

between           and stock return autocorrelation is most significant for smaller stocks in our 

sample. As in Panel A of Figure 1, the           spread between Q5 and Q1 increases from 

relatively small firms to big firms. For example, the           spread sorting by        is -1.90, 

and -0.60 for small and large stocks respectively. The measure of stock return autocorrelation is more 

important in explaining the level of implied volatility curve for relatively small stocks. The       

spread between top and bottom portfolio sorting by        is statistically significantly for 

medium-size and large stocks in our sample.  

We then perform the univariate sorting before, during and after financial crisis. Our main conclusions 

hold in all subsamples, with the results being most significant during financial crisis, followed by 

before crisis for           and after crisis for the      , as shown in Panel B of Figure 1. For 

example, the difference of           between Q5 and Q1 sorting by        is -1.01, -1.53, and 

-0.56 before, during and after crisis, with  -statistics of -7.84, -3.45 and -1.80, respectively. The 

difference of       between Q5 and Q1 are -0.09, -1.02, and -0.23 before, during and after crisis, with 

 -statistics of -0.79, -2.67, and -1.93 respectively.  

It is also interesting to see if the results differ under different market conditions, especially when 

market is volatile. We then separate our data into two subsamples by median VIX of our entire sample 

and repeat the univariate soring for both samples. We plot the           and       of the 

long-short stock portfolio formed on        for the two subsamples in Panel C of Figure 1. We 

find that the relation between stock return autocorrelation and implied-realized volatility spread is much 

stronger when market is volatile. The measure of stock return autocorrelation is more important in 

explaining the level of implied volatility curve when the market is volatile. The relations between the 

measure of stock return autocorrelation and implied volatility slope does not differ when market is 

volatile or not.  

 

4. Conclusions 

The asset returns are assumed to be distributed independently of each other, in various option pricing 

models. However, the evidence of persistence autocorrelation in asset returns of both the short-term and 

long-term period contradicts the assumption made in the option pricing models. Following theses 

researches, literature documents that stock return autocorrelation enters into the option pricing formula 

through adjustments in volatility and/or expected asset price.  
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It is an empirical question, as to the extent that stock return autocorrelation affects option prices. To the 

best of our knowledge, there exists no empirical studies exploring the relative contribution of stock 

return autocorrelation in option pricing. In this paper, we fill the gap by investigating the impact of stock 

return autocorrelation on the individual equity option price structure and demonstrate a clear link 

between them. With the increases of serial correlation of stock returns, the option implied volatility 

becomes smaller compared to realized volatility and the implied volatility curve becomes more 

negatively skewed. The relation between stock return autocorrelation and option price structure is more 

pronounced when market is volatile, especially during financial crisis. The stock return autocorrelation 

is more important in explaining the level of implied volatility curve for relatively small stocks. Our 

hope is that a better understanding of the sources of option price structure will help guide us in the 

future as we work to improve option pricing models and option trading strategies. 
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Note  

Note 1. Firms in our sample are relatively larger and more liquid stocks compared with average stocks 

trading in the U.S. stock market, since we utilize stocks with options.  
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