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Abstract 

Instruction in the expectile regression estimation method for semiparametric partially linear models 

(PLMs) with monotonic constraints is a crucial component of graduate statistics courses. This paper 

demonstrates the R programming implementation of this estimation method using monotone B-spline 

approximation and provides a Monte Carlo simulation example for practical teaching purposes. 
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1. Introduction 

In the realm of complicated data analysis, linear models are often inadequate for characterizing 

relationships between responses and predictors, leading to model misspecification or high prediction 

variability, therefore many useful statistical tools have been developed for addressing these concerns. 

Examples of these tools include semiparametric partially linear models (PLMs). The PLMs, introduced 

by Engle et al. (1986), take the form: 

𝑌 = 𝑋𝑇𝛽 + 𝑓(𝑈) + 𝜀, 

where 𝑌  is the response variable, 𝑋 = (𝑋1, … , 𝑋𝑝)
𝑇  is the 𝑝  -dimensional covariate vector, 𝛽 

denotes the corresponding linear regression coefficients, 𝑓(⋅) is an unknown univariate link function, 

𝑈 ranges over a non-degenerate compact interval, 𝜀 represents the random error term, and “𝑇” denotes 

the transpose of a vector or matrix throughout this paper. Various estimating approaches have been 

proposed for PLMs, including least squares, penalized splines, quantile regression, principal components 

regression, and relative error minimization (Liang, 2006; Du et al., 2013; Liu et al., 2016; Chen & Liu, 

2023). 

In statistics, expectile regression (Newey & Powell, 1987) applied to PLMs with monotonic constraints 
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offers a powerful paradigm for comprehensive distributional modeling. This integration makes it a 

pedagogically rich topic for advanced graduate courses in statistics, econometrics, and related fields. Its 

instructional value stems from synthesizing several critical concepts: (I) The interpretability of 

parametric effects within PLMs. (II) The flexibility of nonparametric function estimation. (III) The 

necessity of monotonicity constraints (which are ubiquitous in fields such as dose-response and economic 

behavior). (IV) The distributional insights provided by expectiles (generalizing quantile regression). (V) 

Associated constrained optimization techniques. Teaching this methodology equips students with a 

powerful toolkit for analyzing complex real-world relationships where standard mean regression or 

unconstrained nonparametric methods fail, thereby fostering deeper understanding of modern 

semiparametric estimation and statistical inference. 

Our teaching framework comprises three components: (I) Conceptual Foundations, including review of 

PLMs and expectile regression fundamentals, interpretation of monotonicity constraints for 

identifiability and realism, and case studies used to demonstrate the performance of expectile regression 

with monotonic constraints. (II) Model implementation, including detailed model specification and 

estimation framework, constrained B-spline estimation, R-based computational algorithms, applied case 

studies, and performance evaluation via Monte Carlo simulations. (III) Theoretical exploration.  

This paper focuses specifically on R-based algorithmic development for expectile regression in 

monotonic PLMs. The included simulation studies enable students to comprehend the significance of R 

programming for solving statistical modeling challenges.  

 

2. B-spline Approximation and Design of R Programming 

2.1 B-spline Approximation 

The challenge lies in estimating 𝑓(⋅)without assuming a parametric form. In our instructional approach, 

we first show students how to estimate the monotone nonparametric function 𝑓(⋅). Due to the desirable 

numerical stability and fast computation of B-spline basis functions approximation, we approximate the 

unknown function 𝑓(⋅) by a linear combination of B-spline basis functions. Specifically, let 

(𝑋𝑖 , 𝑈𝑖 , 𝑌𝑖),  𝑖 = 1,… , 𝑛 be independent and identically distributed realizations of (𝑋, 𝑈, 𝑌), which are 

generated from PLMs. Let 𝐵(𝑈) = (𝐵1(𝑈), … , 𝐵𝐽(𝑈))
𝑇be a set of B-spline basis functions of the order 

of 𝑞 with 𝑁 internal knots, where the order 𝑞 ≥ 2 and 𝐽 = 𝑁 + 𝑞. Then the nonparametric function 

𝑓(⋅)can be approximately expressed as 𝑓(𝑈) ≈ 𝐵(𝑈)𝑇𝛾, where 𝛾 = (𝛾1, … , 𝛾𝐽)
𝑇  is the vector of spline 

coefficients. To ensure the nondecreasing property of function 𝑓(⋅) on the compact support 𝑈 ∈ 𝑆𝑈 , 

following Schumaker (1981), we impose a nondecreasing constraint on the coefficients 𝛾 = (𝛾𝑚: 1 ≤

𝑚 ≤ 𝐽)𝑇, i.e., 𝛾1 ≤ 𝛾2 ≤ ⋯ ≤ 𝛾𝐽. Thus, the sample version of PLMs can be written as 𝑌𝑖 ≈ 𝑋𝑖
𝑇𝛽 +

𝐵(𝑈𝑖)
𝑇𝛾 + 𝜀𝑖. The parameters 𝛽 and 𝛾 are estimated by minimizing the objective function:  

𝑄𝑛(𝛽, 𝛾) = ∑ 𝜌𝜏
𝑛
𝑖=1 (𝑌𝑖 − 𝑋𝑖

𝑇𝛽 − 𝐵(𝑈𝑖)
𝑇𝛾), 

where 𝜌𝜏(⋅) is a convex loss function with the form 𝜌𝜏(𝑠) = |𝜏 − 𝐼(𝑠 < 0)| ⋅ 𝑠2 for any fixed value 

𝜏 ∈ (0,1). Clearly, the above formulation transforms the problem into a tractable constrained convex 
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optimization via B-spline approximation and linear coefficient constraints. 

2.2 Design of R Programming 

We solve this optimization using the constrOptim package in R, which natively enforces the monotonicity 

constraints 𝛾1 ≤ 𝛾2 ≤ ⋯ ≤ 𝛾𝐽 . The implementation requires specifying the analytical gradient of the 

objective function. Let ∏𝑖 = (𝑋𝑖
𝑇 , 𝐵(𝑈𝑖)

𝑇)𝑇 and 𝜃 = (𝛽𝑇 , 𝛾𝑇)𝑇, the gradient can be formulated as  

∂𝑄𝑛(𝜃)/ ∂𝜃=-2∑ ∏𝑖
𝑇𝑛

𝑖=1 𝑊𝑖(𝑌𝑖 − 𝑋𝑖
𝑇𝛽 − 𝐵(𝑈𝑖)

𝑇𝛾), 

where 𝑊𝑖 = 𝜏  if 𝑌𝑖 − 𝑋𝑖
𝑇𝛽 − 𝐵(𝑈𝑖)

𝑇𝛾 ≥ 0  else 𝑊𝑖=1-𝜏 . The following R code implements this 

constrained optimization: 

 

RERest <- function(q,N,y,z,u,tau){ 

# B-spline basis construction 

  tmp <- rep(0, N); p <- ncol(z)   

  for(j in 1:N){ tmp[j] <- quantile(sort(u), j/(N+1))} 

  b <- max(u) + 10^(-10) 

  a <- min(u) - 10^(-10) 

  ku <- c(rep(a,q),t(tmp),rep(b,q)) 

# Create B-spline basis matrix 

  bpu  <- splineDesign(knots = ku, x=u, ord = q) 

 

  Phi <- cbind(bpu, z) 

  gamma.old <- lm(y ~ Phi + 0)$coef  # OLS initialization (unconstrained) 

  gamma.old <- c(sort(gamma.old[1:(q+N)]),gamma.old[-c(1:(q+N))]) 

# Define optimization functions 

    fn<-function(zz){ 

      resid <- y - Phi %*% zz  

      weights <- ifelse(resid >= 0, tau, 1 - tau) 

      Ln <- sum( weights * resid^2 ) 

      Ln 

    } 

# Gradient function 

    gr <- function(zz){ 

      resid <- y - Phi %*% zz  

      weights <- ifelse(resid >= 0, tau, 1 - tau) 

      Lnprime <- (-2) * Phi*((weights * resid) %*% seq(1,1,length=ncol(Phi))) 

      Lnprime <- colSums(Lnprime) 

      Lnprime 

    } 
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# Monotonicity constraints 

    Amat <- matrix(0, nrow = (p+q+N), ncol = (p+q+N)) 

    for(i in 2:(q+N)){Amat[i,(i-1)] = -1} 

    for(i in 2:(q+N)){Amat[i,i] = 1} 

    bvec <- rep(0, (p+q+N))  - 1e-10 

# Constrained optimization      

    RR <- constrOptim(theta=gamma.old, f=fn, grad = gr, ui = Amat, ci = bvec, method = "BFGS") 

    theta_hat <- RR$par 

# Extract results 

  ddd1 <- theta_hat[1:(q+N)] 

  fnew <- as.vector(bpu %*% ddd1) 

  beta_new <- theta_hat[-c(1:(q+N))] 

# Return results 

  list(beta_new = beta_new, fnew=fnew, bpu=bpu) 

} 

For comparative analysis, we also provide the R implementation without monotonicity constraints: 

 

ERest <- function(q,N,y,z,u,tau){ 

# B-spline basis construction 

  tmp <- rep(0, N); p <- ncol(z)   

  for(j in 1:N){ tmp[j] <- quantile(sort(u), j/(N+1))} 

  b <- max(u) + 10^(-10) 

  a <- min(u) - 10^(-10) 

  ku <- c(rep(a,q),t(tmp),rep(b,q)) 

# Create B-spline basis matrix 

  bpu  <- splineDesign(knots = ku, x=u, ord = q) 

  Phi <- cbind(bpu, z) 

  gamma.old <- lm(y ~ Phi + 0)$coef  # OLS initialization (unconstrained) 

# Define expectile loss function 

    fsn<-function(zz){ 

      resid <- y - Phi %*% zz  

      weights <- ifelse(resid >= 0, tau, 1 - tau) 

      Ln <- sum( weights * resid^2 ) 

      Ln 

} 

# Optimization without monotonicity constraints 

    RR <- optim(par=gamma.old, fn = fsn, method = "BFGS") 
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    theta_hat <- RR$par 

# Extract results 

  ddd1 <- theta_hat[1:(q+N)] 

  fnew <- as.vector(bpu %*% ddd1) 

  beta_new <- theta_hat[-c(1:(q+N))] 

# Return results 

  list(beta_new = beta_new, fnew=fnew, bpu=bpu) 

} 

 

3. Numerical Examples for Practical Teaching 

We provide Monte Carlo simulations to evaluate the feasibility of the proposed algorithm. Suppose the 

sample datasets come from the model 𝑌𝑖 = 𝑋𝑖1𝛽1 + 𝑋𝑖2𝛽2 + 𝑓(𝑈𝑖) + 𝜀𝑖  with sample size 𝑛 = 500 , 

𝑋𝑖 = (𝑋𝑖1, 𝑋𝑖2)
𝑇 , 𝑋𝑖1 and𝑋𝑖2  follow a bivariate normal distribution with mean 0, variance 1, and 

covariance 0.3, the true parameters𝛽1 = 1and𝛽2=3.5, set𝑓(𝑈𝑖)=1.2(𝑈𝑖 − 1)3and 𝜏 = 0.5, the variable 

𝑈𝑖 follows the uniform distribution on [0,2], 𝜀𝑖 follows 𝑡(5) distribution. To implement the proposed 

algorithm, we use cubic splines and set 𝑁 = 2for simplicity. This choice of 𝑁 is small enough to avoid 

overfitting in typical problems with sample size not too small and big enough to flexibly approximate 

many smooth functions. The R code implementing these simulations is presented below: 

 

library(MASS) 

library(splines) 

# Define the true nonparametric function 

# This cubic function is monotonically increasing on [0,2] 

Gfun <- function(x){ 

1.2*(x-1)^3 

} 

# Simulation parameters 

n <- 500    # Number of observations 

tau <- 0.5   # Expectile level 

p <- 2      # Dimension of linear covariates 

q <- 4      # Order of B-splines (q=4 for cubic splines) 

N <- 2      # Number of interior knots for splines 

set.seed(134)  # Set random seed for reproducibility 

# Create covariance matrix for X covariates 

covMa <- matrix(1, p, p) 

  for (i in 1 : p){ 

    for (j in 1 : p){ 
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      covMa[i, j] <- 0.3^(abs(i-j)) 

    } 

  } 

 # Generate predictor variables 

 X <- mvrnorm(n, rep(0, p), covMa)   # Multivariate normal covariates 

  U <- sort(runif(n,0,2))             # Uniform covariate (sorted for plotting) 

# Generate error term from t-distribution (heavy-tailed errors) 

error <- rt(n,5)    # t-distribution with 5 degrees of freedom 

# True regression coefficients 

beta <- c(1, 3.5)   # Parameters for linear part 

# Generate response variable 

Y <- X%*% beta + Gfun(U) + error 

# RERest: Monotonic constrained regression using constrOptim 

rer_result <- RERest(q,N,Y, X, U, tau)   

# ERest: Unconstrained regression using standard optim 

er_result <- ERest(q,N,Y, X, U, tau) 

# Create plot to compare results 

plot(U, Gfun(U), type = "l") 

points(U, rer_result$fnew,  type = "l", lty=5, col="red") 

points(U, er_result$fnew,  type = "l", lty=4, col="blue") 

Execution of the provided R code generates the simulation results displayed in Figure 1. The true function 

is represented by the solid black line, while the unconstrained estimate (without monotone B-spline 

approximation) appears as the blue dashed line. The red dashed line depicts the constrained estimate 

obtained through our proposed methodology. Figure 1 demonstrates the effectiveness of both the 

estimation method and its computational implementation in R. 

 

 

Figure 1. Estimated Nonparametric Curves with Sample Size 𝑛 = 500 
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4. Conclusion 

The integration of expectile regression for monotonic PLMs into postgraduate curricula provides a 

powerful pedagogical framework that unites advanced statistical theory, computational methodologies, 

and applied data analysis skills. This structured approach—synthesizing algorithmic principles, software 

implementation, and critical evaluation through simulation studies—effectively prepares students to 

master and deploy sophisticated semiparametric modeling techniques for contemporary research 

challenges. 

 

References 

Chen, Y., Liu, H. (2023). A new relative error estimation for partially linear multiplicative model. 

Communications in Statistics-Simulation and Computation, 52, 4962-4980. 

Du, J., Sun, Z., & Xie, T. (2013). M-estimation for the partially linear regression model under monotonic 

constraints. Statistics & Probability Letters, 83, 1353-1363. 

Engle, R., Granger, C., Rice, J., & Weiss, A. (1986). Semiparametric estimates of the relation between 

weather and electricity sales. Journal of the American Statistical Association, 81, 310-320. 

Liang, H. (2006). Estimation in partially linear models and numerical comparisons. Computational 

Statistics & Data Analysis, 50, 675-687. 

Liu, C., Guo, S., & Wei, C. (2016). Principal components regression estimator of the parameters in 

partially linear models. Journal of Statistical Computation and Simulation, 86, 3127-3133. 

Newey, W., & Powell, J. (1987). Asymmetric least squares estimation and testing. Econometrica, 55, 

819-847. 

Schumaker, L. (1981). Spline Functions: Basic Theory. Wiley. 

 

 

 


