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Abstract 

This paper focus on establishing the demand forecasting model to optimize product assortments from a 

set of SKUs in the same category. The aim of the model is to achieve revenue maximization. Based on 

the attribute level, the demand model considers the consumers’ preference and the possibility of 

substitution between different attributes. Then it divides the product’s specific attributes and multiplies 

these attributes effects. Furthermore, one beverage case was applied to the demand model to do 

empirical analysis. Top beverage categories were selected and e-commerce sales data were collected to 

represent the pre-sale of whole categories. Moreover, a store named S with some beverage SKUs is 

assumed and applied to the model, which predicted sales volume of each existing SKU and the total 

revenue. 
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1. Introduction 

In the planning of product assortment, retailers need to consider the demand estimation of each 

stock-keeping unit (SKU) in a category and the price to get the expected revenue. The goal of retail 

assortment optimization is to maximize the revenue, which is the profit or the net profit after minus the 

cost of the store (Robert, Harald, & Tammo, 2013). Many retailers are exploring how to improve 

assortment localization for stores or similar store groups. Zimmerman (2006), O’Connell (2008) and 

McGregor (2008) studied Wal Mart, Macy’s and Best Buy respectively, they tried to lead a category 

change of each store according to the taste of local consumers, and the result suggested that all stores’ 

revenue has been increased (Zimmerman, 2006; O’Connell, 2008; McGregor, 2008). Therefore, 

regional factors should be considered when designing product assortment for one store or similar store 
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groups, and the structure of each existing category should be adjusted according to the local taste to tap 

the unmet demand. Moreover, the concept of geographical space is added to the local taste to consider 

the needs of regional consumers served by stores in a particular location. Assuming that the consumer’s 

choice of goods is based on their preference for attributes of goods, thus, the local taste can be viewed 

as a preferred attribute of local consumers (Robert, Harald, & Tammo, 2013). At the same time, the 

possibility of substitution between similar goods does exist. Consumers’ best preference for different 

attributes of goods generates the first choice of goods. It is assumed that consumers will buy the 

existing similar goods when their ideal goods are not available (Honhon, Gaur, & Seshadri, 2010). 

This article established a demand forecast model to help retailers select products efficiently and 

optimize the existing assortment. It maximizes the diversity of categories under the constraint of 

limited shelf space and achieves profit maximization. The pre-sale of the whole categories is used to 

estimate the market share of attributes and consumer preference, then the demand for every single 

product is predicted. Meanwhile, taking into account the probability of choosing similar products 

without the first choice, the possibility of substitution between two single products is predicted. Finally, 

this literature also applies the demand forecast model into beverage sales, and found several difficulties 

in the actual application of the model. 

 

2. Literature Review 

When retailers optimize the product assortment, they need to consider many factors comprehensively. 

The basic factors include price, demand, shelf-space restriction, commodity characteristics, and 

dynamic factors include new product introduction, commodity similarity, sales promotion, and 

commodity combination. Generally, there are four challenges in assortment optimization. 

2.1 New Product Demand Forecast 

The introduction of new products will have an impact on the demand for existing product groups. This 

impact includes the negative effect on similar competitive products and the positive effect on 

complimentary products, which increases the instability of the existing product demand. 

At the same time, from the perspective of the new product itself, its demand estimation also has high 

uncertainty. After classifying the attributes of a new product, the proportion of new products in the total 

demand for similar products in the same category could be foretasted. However, the consumers’ 

acceptance of new products, promotional activities and the early marketing effect will cause the 

inaccuracy of new product demand prediction (Deza, Huang, & Metel, 2015). 

2.2 Determination of Substitution Possibility 

Although many workers such as Parlar and Goyal (1984), Netessine and Rudi (2003) have studied the 

static substitution model, there are relatively little pieces of literature on dynamic substitution models. 

It is difficult to determine the possibility of substitution between products. Even if there are only two 

products in the substitution process, the change of substitution position will lead to a change in the 

possibility. Furthermore, the substitution possibility of different attributes of products is different, 
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consequently, we should pay attention to the consumer preference as far as possible in the attribute 

level division. Meanwhile, the product attributes have an interactive relationship and joint attributes 

may come into existence, so it is harder to determine the substitution possibility between attributes. 

What’s more, different types of consumers have different substitution possibilities when choosing the 

same similar product without the first choice (Dong & Tian, 2009). To get accurate substitution 

possibilities, consumer segmentation should be provided. 

2.3 Promotional Effect on Revenue Caused by Category Localization  

Continuous adjustment and planning of categories for local consumers not only cause higher operating 

costs but also request for an upgraded store information software. To meet the new demands of 

consumers, the overall operational risk will increase due to the cost of new product development and 

procurement. For most retailers, cost control is the priority, they need to evaluate the ratio of input and 

future output to decide whether or not to implement category localization. Alptekinoğlu and Grasas 

(2014) found that the optimal assortment always follows strict return policies that balance the risk and 

return (Aydın & Alex, 2014). At present, although many retailers have tried it, the degree of category 

localization still depends on the relationship between cost and revenue. 

2.4 Joint Consideration of Category Optimization and Pricing 

The price will affect consumer’s preference and demand, nevertheless, the ultimate goal of category 

optimization is to maximize revenue. Since revenue is multiplied by sales volume and price, category 

optimization and pricing need to be considered simultaneously. It is worthwhile to mention that 

category planning and price will affect each other. For revenue maximization, category selection, 

demand, and price should be incorporated at the same time. Hopp and Xu (2008), Aydin and Heese 

(2014), Federgruen and Hu (2015) solved this problem in an aggregate method of the whole market 

where price and category are both optimized. However, as possible results will increase exponentially 

after considering the combination of the three factors, it is necessary to take measures to reduce the 

large computing load. 

 

3. Demand Estimation Model 

The aim of the model is maximizing revenue through optimizing retailassortment. Meanwhile, it allows 

a constraint on the number of categories because of the limited shelf space in stores. 

We assume that SKUs in the same category may have different attributes and each attribute can be 

classified into several levels. Thus, for every product that contains A attributes, define𝑑 one particular 

attribute, so 𝑎 ∈ {1,2, ⋯ , 𝐴}. And a single attribute contains 𝑁𝑎 levels, define 𝑢 as one particular 

level, so 𝑢 ∈ {1,2, ⋯ , 𝑁𝑎}. 

One significant hypothesis in this model is that consumers prefer typical attribute levels before the 

selection process, regardless of the environmental effect, such as location and sales promotions. Under 

this hypothesis, we conduct a pre-sale for all categories and calculate the proportion of customer 

preference to each SKU. Meanwhile, after separating SKUs that in the same category by different 
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attribute levels, we could get the proportion of customer preference to each attribute level. 

For store S, we define customer preference to one particular attribute level as 𝑓𝑎𝑢
𝑠 , in order to signify 

the category of SKU𝑖, use 𝑓𝑎𝑖𝑎

𝑠  to constitute for 𝑓𝑎𝑢
𝑠 , where 𝑖𝑎 stands for𝑢. 

Finally, we consider the possibility of substitution, which means customers may choose other similar 

SKUs when their first choice is not available when he visits the store. Assume that 𝜋𝑎𝑢𝑣
𝑠  is the 

probability of substituting attribute level 𝑢 for 𝑣, 𝜋𝑖𝑗
𝑠  is the possibility of substituting product 𝑗 for 

𝑖. 

There are n possible SKUs in one particular category, the price of SKU is 𝑝𝑖. Define 𝐷𝑠 as the 

demand for each product category in store S and 𝐷𝑖
𝑠 as the demand for 𝑆𝐾𝑈𝑖. In the case of full 

category pre-sale, the preference ratio of consumers for different attribute level 𝑓𝑎𝑢
𝑠  is obtained. 

For a selected SKU𝑖 in a specific category, the preference probability of consumers for the selected 

SKU𝑖 is obtained by the algorithm of multiplication, that is, 

𝑓𝑖
𝑠 = ∏ 𝑓𝑎𝑖𝑎

𝑠𝑎=𝐴
𝑎=1                                    (1) 

Then, when the store 𝑆 does not sell product 𝑖, we calculate the possibility of using product 𝑗 to 

replace product 𝑖. According to the attribute levels, we use the arithmetic of multiplication to get the 

equation:  

𝜋𝑖𝑗
𝑠 = ∏ 𝜋𝑎𝑖𝑎𝑗𝑎

𝑠𝑎=𝐴
𝑎=𝑞                                  (2) 

The purchase probability of a SKU includes two parts: one is the consumer’s preference when the store 

𝑆 has product 𝑗, the other is the sum of all other similar single product substitution possibilities 

existing in store 𝑆  when store 𝑆  does not have product 𝑗 . Therefore, the purchase possibility 

equation of product 𝑗 is: 

𝐹𝑗(𝑆) = 𝑓𝑗 + ∑ 𝑓𝑖𝑖∉𝑠 𝜋𝑖𝑗                              (3) 

Add up the purchase probability of all products in the same category in the store 𝑆, and the equation is: 

𝐹(𝑆) = ∑ 𝐹𝑗𝑗∈𝑠 (𝑆)                               (4) 

Assume 𝑥 is the sales volume of each existing product in store 𝑆, and 𝑥𝑗 is the sales volume of 

SKU𝑗, 𝑗 ∈ 𝑠. Divide the sales volume of each SKU by the sum of the purchase possibility 𝐹(𝑆), the 

demand of products in a certain category is estimated, that is 

𝐷 = ∑
𝑥𝑗

𝐹(𝑆)𝑗∈𝑠                                  (5) 

Then the demand of SKU𝑗 in store 𝑆 is obtained: 

𝐷𝑗
𝑠 = 𝑓𝑗

𝑠𝐷                                 (6) 

The revenue of store 𝑆 is calculated as follows:  

𝑅𝑠 = (∑ 𝑝𝑖𝑖∈𝑠 𝐷𝑖
𝑠 + ∑ 𝑝𝑖𝑖∉𝑠 𝐷𝑖

𝑠𝜋𝑖𝑗
𝑠 )                         (7) 

The first part refers to the income earned from customers whose most preferred product is offered in the 

store and the second part is the substitution income from customers whose most preferred product was 

not in the store. 
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4. Empirical Analysis 

4.1 General Description  

We selected two best-selling beverage brands, Masterkong and Uni-president, and collected sales data 

of each beverage item of two brands in the Tmall supermarket, which is one of the biggest e-commerce 

platforms in China. These sales data were assumed as the data obtained from the pre-sale of the whole 

category. Based on the typical attributes of beverage, three key attributes can be divided: brand, taste, 

and package. The brand attribute contains two levels: Masterkong and Uni-president. There are 14 

kinds of beverage tastes, including 9 fruit tastes and 5 tea tastes. The package attribute also includes 

two types: large and small. The price of the large package is more expensive and the price of the small 

package is normal. In the following part, we use High Price and Normal Price to express these two 

terms respectively.  

In the case of whole category sales, we obtained the preference ratio of consumers for different taste 

levels. Then these data were divided into two beverage types to make a comparison. In the fruit 

beverage, the proportion of big packages is about 28%, while this figure is about 71% in a small 

package. However, this gap is relatively small in the tea beverage, which is about 54% and 46% 

respectively. Uni-president brand has the brand advantage in fruit beverage and accounts for 60% 

approximately, Nevertheless, in tea beverage, Masterkong has the brand advantage, and constitutes for 

58% approximately. At the same time, the following table is obtained: 

 

Table 1. Best Seller Price Comparison in Beverages 

 Normal Price High Price 

 Masterkong Uni-president Masterkong Uni-president 

Fruit beverage 26.18% 44.83% 13.93% 15.05% 

Tea beverage 29.45% 16.36% 28.68% 25.51% 

 

Since different attributes are not necessarily independent of each other, there is likely a certain 

interactive relationship between two attributes. Therefore, considering joint attributes in the 

establishment of attributes is necessary. In this case, the brand and package are combined to get a new 

joint attribute called brand-package and the consumer preference ratios are in the table above. Now the 

three attributes are reduced to two: taste and brand-package, resulting in 14×4 = 56 different possible 

SKUs. The preference ratio of fruit and tea beverage are calculated respectively because of the unique 

characteristics of the two types. 

Now the substitution possibility between attributes is considered. Since different consumers have 

different preferences for tastes, we assumed that the substitution possibility is zero in each taste. Thus, 

substitution possibility exists in brand-package merely. Furthermore, consumers can’t substitute a big 

package for small package and vice versa. Consequently, we can only consider the substitution 
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possibility between different brands with the same package and the possibility ration is stipulated as 

follows: 

 

Table 2. Substitution Possibility between Different Brands with Same Package 

Fruit beverage 

 
Masterkong-Normal 

Price 

Uni-president-Normal 

Price 

Masterkong-High 

Price 

Uni-president-High 

Price 

Masterkong-Normal Price  75% 0 0 

Uni-president-Normal Price 3%  0 0 

Masterkong-High Price 0 0  65% 

Uni-president-High Price 0 0 33%  

Tea beverage 

 
Masterkong-Normal 

Price 

Uni-president-Normal 

Price 

Masterkong-High 

Price 

Uni-president-High 

Price 

Masterkong-Normal Price  13% 0 0 

Uni-president-Normal Price 20%  0 0 

Masterkong-High Price 0 0  38% 

Uni-president-High Price 0 0 22%  

Note. Horizontal attributes substitute for vertical attributes. 

 

4.2 Demand and Revenue Forecast 

In this section, a store that offers 36 beverage SKUs is assumed. And the total 56 possible SKUs can be 

divided into existing and unsold items of store. At first, use Equation (3) and combine with the 

preference ratio of each attribute level and substitution possibility, the purchase probability of all 

existing SKUs can be obtained. By adding up these data, the total purchase probability is 87.90%. 

Secondly, add the sales volume of each SKU in store S to get total demand and divide it by the total 

purchase probability. The total estimated demand is 2564. Then the estimated demand for each existing 

SKU in store S can be calculated using Equation (6). At last, the revenue of this store is estimated by 

Equation (7), which is 11176 yuan. The detailed data and calculation process are shown in Figure 1. 

 

5. Model Limitations  

5.1 Seasonality and Promotion Factors 

This model assumed that consumers’ preference to specific attribute level is constant regardless of the 

environmental effect. This hypothesis may violate the actual situation. Many factors could affect this 

figure, and typical examples are seasonality factor and promotion factor. Sales of products like 

beverage, cloth, refrigerator and air conditioner fluctuate with the season, which means that consumers’ 
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preference fluctuate with the season. Furthermore, the purchase intention and preference could be 

changed by promotional mechanisms. For instance, many retailers will implement a clearance price 

that is far lower than normal situation. Caused by this motivation, more consumers prefer the product 

with lower price, leading to inaccurate estimation results of the model. 

5.2 Repeated Arithmetic Operation of an Optimal Decision  

On the basis of the existing products, this model can quickly determine whether a particular item or 

combination of items should be added, subtracted or replaced. However, each time when making a 

decision, the total revenue of the store after the decision should be recalculated and compared with the 

previous revenue. The total number of possible SKUs in any category is very large, and the 

combination of individual items is more likely to be even huge. Therefore, it takes a lot of calculation 

to find the category decision that can achieve the maximum benefit after making decisions, the model 

still needs to be optimized. At the same time, the model can estimate the demand of each existing item, 

which is very meaningful to the operation of the retailer. 

5.3 Model Difficulties 

Consumers may not be able to form a stable attribute preference for any category, even if they are very 

familiar with the category. There are two possibilities for the change of consumer feature preferences. 

Firstly, the attribute preference will change with time, but there will be many short stable periods of 

feature preference. Secondly, consumers will return to their stable attribute preferences after changing 

their preferences at some time. Different types of consumers for different types of goods for the 

changes in the characteristics of preferences are different. Consequently, we need to identify and 

describe the time period of change. At present, the model can only be used to predict the final demand. 

In order to improve the accuracy of the prediction, we still need to introduce the time variable and find 

consumer preferences for product features that vary along the timeline. Moreover, since the purchase 

decision is random, Bayesian random wave distribution can be used. At the same time, consumers have 

different possibilities of substitution, so we need to classify the consumers and realize that the same 

type of consumers has the same possibility of substitution.  

 

6. Conclusion  

This paper establishes a commodity feature-based demand forecasting model with the goal of revenue 

maximization, with the final output of the demand driven forecast of the individual SKUs. In this paper, 

beverage sales data are taken to apply for the practical model both for on line and off line sales. In the 

empirical analysis, the interrelation between features have taken into considerations. Using the demand 

forecast model, the predicted demand is obtained and the revenue of the retail store is obtained. 

However, the forecast can not be 100% complete accurate due to the limitation of the model setup. 

Under most circumstances, the forecast of aggregated items is more accurate than individual items, 

aggregate estimation results are more reliable for decision-making. Therefore the beverages 

manufactures should focus on the differentiation of semi-finished products at the push-pull boundary 
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and achieve production postponement. By cooperating these strategies with the product assortment 

selection, the competitiveness of products will be enhanced.  

 

Figure 1. Application in Beverage Sales 

Taste Brand Package Preference ratio Substitution possibility Purchase possibility Purchase possibility(Adjusted) Sales volume Sales(Sales volume/100) Predicted demand
1 Snow pear Masterkong Normal Price 5.78% 3.00% 5.78% 6.58% 6218 62 169

2 Orange Masterkong Normal Price 1.07% 3.00% 1.07% 1.22% 1804 18 31

3 Mango Masterkong Normal Price 0.74% 3.00%
4 Lenmon Masterkong Normal Price 0.41% 3.00%
5 Grape Masterkong Normal Price 1.20% 3.00% 1.20% 1.37% 2028 20 35

6 Honey peach Masterkong Normal Price 0.77% 3.00% 0.77% 0.88% 1881 19 22

7 Plum Masterkong Normal Price 1.39% 3.00% 1.39% 1.58% 2347 23 41

8 Wild jujube  Masterkong Normal Price 0.09% 3.00%
9 Grapefruit Masterkong Normal Price 1.64% 3.00% 1.64% 1.87% 2766 28 48

10 Snow pear Uni-president Normal Price 9.90% 75.00% 9.90% 11.26% 16652 167 289

11 Orange Uni-president Normal Price 1.83% 75.00% 1.83% 2.08% 2251 23 53

12 Mango Uni-president Normal Price 1.26% 75.00% 1.81% 2.06% 1551 16 53

13 Lenmon Uni-president Normal Price 0.71% 75.00% 1.02% 1.16% 872 9 30

14 Grape Uni-president Normal Price 2.06% 75.00% 2.06% 2.34% 2530 25 60

15 Honey peach Uni-president Normal Price 1.32% 75.00% 1.32% 1.50% 2347 23 39

16 Plum Uni-president Normal Price 2.38% 75.00% 2.38% 2.71% 2929 29 69

17 Wild jujube  Uni-president Normal Price 0.16% 75.00%
18 Grapefruit Uni-president Normal Price 2.81% 75.00% 2.81% 3.20% 3452 35 82

19 Snow pear Masterkong High Price 3.08% 33.00% 3.08% 3.50% 4992 50 90

20 Orange Masterkong High Price 0.57% 33.00%
21 Mango Masterkong High Price 0.39% 33.00%
22 Lenmon Masterkong High Price 0.22% 33.00%
23 Grape Masterkong High Price 0.64% 33.00%
24 Honey peach Masterkong High Price 0.41% 33.00%
25 Plum Masterkong High Price 0.74% 33.00% 0.74% 0.84% 1320 13 22

26 Wild jujube  Masterkong High Price 0.05% 33.00%
27 Grapefruit Masterkong High Price 0.87% 33.00% 1.18% 1.34% 528 5 34

28 Snow pear Uni-president High Price 3.32% 65.00% 3.32% 3.78% 4427 44 97

29 Orange Uni-president High Price 0.61% 65.00% 0.98% 1.11% 899 9 29

30 Mango Uni-president High Price 0.42% 65.00%
31 Lenmon Uni-president High Price 0.24% 65.00%
32 Grape Uni-president High Price 0.69% 65.00% 1.11% 1.26% 1011 10 32

33 Honey peach Uni-president High Price 0.44% 65.00%
34 Plum Uni-president High Price 0.80% 65.00% 0.80% 0.91% 1170 12 23

35 Wild jujube  Uni-president High Price 0.05% 65.00%
36 Grapefruit Uni-president High Price 0.94% 65.00%
37 Black tea Masterkong Normal Price 2.98% 20.00% 2.98% 3.39% 13474 135 87

38 Green tea Masterkong Normal Price 2.35% 20.00%
39 Jasmine tea Masterkong Normal Price 4.90% 20.00%
40 Oolong tea  Masterkong Normal Price 0.17% 20.00%
41 Milk tea Masterkong Normal Price 4.32% 20.00% 4.32% 4.91% 9110 91 126

42 Black tea Uni-president Normal Price 1.66% 13.00% 1.66% 1.89% 8743 87 48

43 Green tea Uni-president Normal Price 1.31% 13.00% 1.61% 1.83% 6787 68 47

44 Jasmine tea Uni-president Normal Price 2.72% 13.00% 3.36% 3.82% 8689 87 98

45 Oolong tea  Uni-president Normal Price 0.09% 13.00%
46 Milk tea Uni-president Normal Price 2.40% 13.00% 2.40% 2.73% 9364 94 70

47 Black tea Masterkong High Price 2.90% 22.00% 2.90% 3.30% 7699 77 85

48 Green tea Masterkong High Price 2.29% 22.00% 2.74% 3.12% 8963 90 80

49 Jasmine tea Masterkong High Price 4.77% 22.00% 4.77% 5.43% 18521 185 139

50 Oolong tea  Masterkong High Price 0.16% 22.00% 0.20% 0.23% 645 6 6

51 Milk tea Masterkong High Price 4.21% 22.00% 4.21% 4.79% 23883 239 123

52 Black tea Uni-president High Price 2.58% 38.00% 2.58% 2.94% 12262 123 75

53 Green tea Uni-president High Price 2.04% 38.00%
54 Jasmine tea Uni-president High Price 4.24% 38.00% 4.24% 4.82% 14552 146 124

55 Oolong tea  Uni-president High Price 0.15% 38.00%
56 Milk tea Uni-president High Price 3.74% 38.00% 3.74% 4.25% 18765 188 109

Total 99.98% 87.90% 225432 2254 2564
Total demand=Total sales/Total purchase possibility 2564
Note:Existing SKUs in store S are in Red
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