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Abstract 

Artificial intelligence is a strategic technology driving the new round of technological revolution and 

industrial transformation, providing significant impetus for China's high-quality development. This 

paper employs a two-way fixed effects model and a mediation effect model to empirically analyze AI's 

impact on regional low-carbon transformation using provincial-level data from China between 2013 and 

2022. The findings reveal that AI effectively curbs total carbon emissions while simultaneously boosting 

green total factor productivity. This conclusion remains robust across a series of stability tests. AI 

facilitates regional low-carbon transformation by enhancing energy efficiency, accelerating green 

technological innovation, and accelerating industrial upgrading. The study's conclusions offer 

significant policy implications for further advancing AI development, leveraging its role in regional 

emission reduction and efficiency gains, and accelerating high-quality economic development. 

Keywords 

Artificial Intelligence, Low-Carbon Transition, Energy Efficiency, Green Technology Innovation, 

Industrial Structure Upgrading 

 

1. Introduction 

The Decision of the Central Committee of the Communist Party of China on Further Comprehensively 

Deepening Reform and Advancing Chinese Modernization, adopted at the Third Plenary Session of the 

20th CPC Central Committee, states: “High-quality development is the primary task in building a modern 

socialist country in all respects.” Regional low-carbon transformation is not only an essential path to 

achieving high-quality development but also a crucial approach to building a community of life for 

humanity and nature. Since the reform and opening-up, China has leveraged its endowment advantages 
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to actively integrate into the global value chain, upgrading its industrial structure and improving 

infrastructure such as transportation and communications. This has enabled historic leaps in economic 

strength, with growing comprehensive national power and international influence. In 2010, China's GDP 

surpassed Japan's, making it the world's second-largest economy after the United States. However, 

precisely because China primarily undertook labor-intensive industries at the lower end of the global 

value chain—transferred from developed nations—and because most of these transferred industries were 

characterized by high energy consumption and heavy pollution, coupled with an initial focus on 

economic growth over environmental pollution control during China's early development phase, issues 

such as compromised sustainability and environmental degradation have emerged. This demonstrates 

that China's economic development faces immense pressure for carbon emission reduction and 

constraints from resource and environmental limitations. At the 75th session of the United Nations 

General Assembly, General Secretary Xi Jinping made a solemn commitment and for the first time 

proposed the strategic goals of achieving carbon peak before 2030 and carbon neutrality before 2060. 

The 2025 Government Work Report also stated: "We will synergistically advance carbon reduction, 

pollution control, and green growth, accelerating the comprehensive green transformation of economic 

and social development. Further deepen reforms in the ecological civilization system, coordinate 

industrial restructuring, pollution control, ecological conservation, and climate change response, and 

advance development that prioritizes ecology, promotes resource conservation and intensive use, and 

embraces green and low-carbon practices." Against this backdrop, advancing a comprehensive low-

carbon transformation of the economy and society and establishing a green, low-carbon model of high-

quality development have become fundamental solutions to ensure achieving carbon peak and carbon 

neutrality. 

Simultaneously, with the continuous innovation of information and communication technologies, 

artificial intelligence—as a key driver of the new round of technological revolution and industrial 

transformation[1]—exhibits the spillover characteristics of infrastructure[2]. It not only optimizes capital 

structure[3], enhances knowledge combination efficiency[4], and mitigates the impact of aging 

populations[5] to promote economic growth[6], but also boosts corporate productivity by improving factor 

allocation efficiency, reducing business costs, and strengthening R&D capabilities[7]. Furthermore, AI 

propels industrial development from deepening division of labor toward mutual integration[8], narrowing 

the gap in global value chain (GVC) positions between developing and advanced economies while 

reshaping GVCs in a manner more favorable to developing nations[9]. The Stanford University-published 

“2025 Artificial Intelligence Index Report” indicates that China maintains dominance in industrial 

robotics, with 276,300 units installed in 2023—six times Japan's volume and 7.3 times that of the United 

States—accounting for 51.1% of global market share. China's AI industry reached 404.1 billion yuan in 

2021 and surpassed 700 billion yuan in 2024, sustaining over 20% annual growth for consecutive years. 

This demonstrates the deepening integration of AI across socioeconomic sectors, where its“value creation 

effect”is reshaping China's economic landscape and emerging as a new driver for structural 
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transformation. 

Therefore, how to effectively unleash the propulsive force of AI for regional low-carbon transformation 

has become an urgent issue to address. Assuming this effect is validated, what differences in 

characteristics does AI's low-carbon transformation effect exhibit? Furthermore, how does AI empower 

regional low-carbon transformation, and what are the underlying mechanisms? Answering these 

questions will help explore feasible pathways for achieving regional low-carbon transformation. Building 

upon this, accelerating AI development will provide valuable theoretical support for achieving high-

quality development in the digital economy era. In light of this, this paper adopts a dual perspective of 

“carbon reduction” and “efficiency enhancement,” employing an “energy-technology-industry” 

analytical framework to conduct an in-depth study on the core proposition of AI empowering regional 

low-carbon transformation. It aims to provide policy basis and theoretical guidance for the Chinese 

government to develop AI and achieve its “dual carbon” goals amid the new round of technological 

revolution. 

 

2. Literature Review 

2.1 The Impact of Artificial Intelligence on Carbon Emissions 

Early research on artificial intelligence tended to approach the subject from the perspective of 

technological progress. Based on conclusions drawn from existing literature, technological progress 

exerts a dual effect on carbon emissions. On one hand, technological progress exhibits structural effects. 

As technology advances, it drives industrial restructuring from energy-intensive, high-carbon sectors 

toward service-dominated tertiary industries. This transition facilitates low-carbon, high-efficiency 

industrial evolution, thereby reducing carbon emissions. Such studies highlight the positive externalities 

of technological progress on the environment. Zhang Bingbing[10] and Han Chuan[11] both confirmed 

through provincial panel data samples in China that technological progress can promote carbon emission 

reductions. Wang[12] found that energy technology progress lowers carbon intensity by improving energy 

efficiency and optimizing energy structures. He Bin [13] argued that imitative innovation, as a“follow-

up”form of innovation, yields better carbon reduction effects than autonomous innovation. Shen Meng[14] 

concluded that technological progress has contributed to China's carbon reduction efforts to a certain 

extent, with eastern and central regions experiencing greater promotion effects than western regions. Wei 

Weixian[15] demonstrated that coastal areas possess relatively higher technological levels, superior 

resource distribution, and stronger economic foundations than inland regions, resulting in greater carbon 

reduction effects from technological progress in eastern coastal areas compared to inland regions. On the 

other hand, technological progress may also exhibit negative rebound effects on carbon emissions. While 

it promotes carbon reduction by optimizing resource allocation and enhancing energy efficiency, the 

efficiency gains generated by technological progress simultaneously create new energy demands. These 

new demands can even fully offset the energy savings achieved through improved efficiency, ultimately 

leading to increased carbon emissions. Li Qiang[16] explicitly demonstrate that technological progress 
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enhances energy efficiency, conserving energy consumption and promoting carbon reduction, yet a 

significant rebound effect persists. Zhang Jiangshan[17], using provincial panel data, found that 

technological progress failed to reduce energy consumption or lower carbon emissions, instead leading 

to counterintuitive increases in energy consumption. 

Clearly, the impact of technological progress on carbon emissions depends on the combined outcome of 

these dual effects. Consequently, empirical studies have found the relationship between the two to be 

uncertain or nonlinear. For instance, Li Kaijie[18] employed a vector error correction model to examine 

that, in the short term, there is no causal relationship between technological progress and carbon 

emissions; however, in the long term, technological progress contributes to reducing carbon emissions. 

Yang Jun[19] analyzed Chinese agricultural data and found that technological progress increases total 

carbon emissions while reducing carbon intensity. Moreover, the carbon reduction effect of technological 

progress gradually strengthens as human capital levels rise. Zhang Hua[20] empirically demonstrated an 

inverted U-shaped relationship between technological progress and carbon emissions in China. 

Regarding the primary focus of this paper—the impact of artificial intelligence on carbon emissions—

relevant literature remains scarce both domestically and internationally. Xue Fei[21] examined the effects 

of AI technology on carbon emissions using data from 30 provincial-level regions in China from 2006 to 

2019. They found that as AI technology develops, carbon emissions exhibit a distinct pattern of initial 

increase followed by reduction. Energy utilization efficiency is the primary factor driving the inverted 

U-shaped relationship between AI technology and carbon emissions. Studies by Zhou[22] and Zhao 

Yuhan[23] concur that AI facilitates carbon emission reduction, with energy efficiency improvements, 

green technological advancements, and industrial structure upgrades serving as key mechanisms for 

promoting carbon emission reduction.。 

2.2 The Impact of Artificial Intelligence on Green Total Factor Productivity 

Since Solow introduced the renowned “Solow Paradox” in 1987, scholars have engaged in heated debates 

over whether artificial intelligence enhances productivity. Some researchers adopt a positive stance on 

this relationship. Yao Jiaquan[24] empirically demonstrated using micro-enterprise data that AI boosts 

corporate productivity by reducing demand for routine low-skill labor while increasing demand for non-

routine high-skill labor. Du Chuanzhong[7] employed overlapping DID and dual machine learning models 

to examine that AI significantly enhances China's total factor productivity (TFP) at both macro and micro 

levels. Li Jincheng[25] research similarly indicates AI boosts TFP without triggering the Solow Paradox. 

However, some scholars hold a different view, arguing that an “Solow Paradox” exists between AI and 

TFP. Specifically, during the early stages of diffusion of general-purpose technologies, productivity 

growth may experience a prolonged period of stagnation. Cheng Wen[26] examined this from the 

perspective of general-purpose technology diffusion and found that while AI exhibits a short-term 

“Solow Paradox,” it effectively boosts TFP in the long run. Sun[27] using Chinese manufacturing data, 

indicate that AI enhances TFP in traditional manufacturing but has no effect on high-end manufacturing. 

This review reveals that existing literature has extensively explored the relationship between carbon 
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emissions and green TFP from an AI perspective. However, several limitations remain: First, theoretical 

and empirical research has yet to integrate carbon emissions and green TFP within a unified framework. 

Logically, as a new factor of production, AI's positive externalities and spillover effects can improve 

energy efficiency, facilitate green technological innovation, and accelerate industrial upgrading, thereby 

reducing carbon emissions and boosting TFP. Therefore, integrating carbon emissions and green TFP 

into a unified analytical framework would undoubtedly facilitate a more comprehensive understanding 

of the intrinsic mechanisms through which AI enables low-carbon transformation. Second, while existing 

studies have examined the singular channel effects of green technological innovation, energy efficiency, 

or industrial upgrading on AI's environmental impacts, they have not integrated these three mechanisms 

into a unified analytical framework to investigate AI's multi-pathway mechanisms for low-carbon 

transformation. Third, there is a lack of literature exploring the differential characteristics of AI's impact 

on regional low-carbon transformation from heterogeneous dimensions such as environmental 

regulations and industrial structure. Based on this, this study constructs a systematic analytical 

framework for AI's influence on regional low-carbon transformation, with carbon emissions and green 

TFP as core explanatory variables. It delves into the mechanisms through which AI affects regional low-

carbon transformation and examines its heterogeneity at the levels of environmental regulations and 

industrial structure, thereby addressing gaps in existing literature. This paper's potential contributions lie 

in three aspects: First, unlike existing studies that separately analyze AI's impact on carbon emissions or 

green TFP, it comprehensively examines AI's influence on regional low-carbon transformation from both 

“carbon reduction” and “efficiency enhancement” dimensions, supplementing existing research gaps. 

Second, it examines AI's role in advancing regional low-carbon transformation through three pathways—

energy efficiency, green technological innovation, and industrial upgrading—and empirically tests these 

mechanisms to identify precise pathways for effective regional low-carbon transition. Third, it addresses 

the heterogeneity of AI's impact on regional low-carbon transformation, providing decision-making 

references for formulating targeted low-carbon transition policies. 

 

3. Theoretical Analysis and Research Hypotheses 

3.1 Energy Utilization Effects of Artificial Intelligence 

As a representative of next-generation information technology, artificial intelligence can optimize the 

allocation of energy resources and enhance energy utilization efficiency, thereby promoting regional low-

carbon transformation. From a carbon reduction perspective: First, AI addresses the challenge of 

decoupling carbon emissions from energy inputs in production processes through precise, dynamic 

localized control. By leveraging real-time equipment data, energy consumption metrics, and production 

parameters, it identifies high-carbon segments within energy systems to reduce unnecessary carbon 

emissions. Second, through systematic, coordinated global optimization, AI enhances renewable energy 

forecasting accuracy and increases the share of renewable energy, thereby lowering overall carbon 

emissions at the energy supply end, improving regional energy structures, and achieving structural 
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reductions in regional carbon emissions. From the perspective of “efficiency enhancement”: First, AI can 

analyze enterprise production data in real time, precisely identify misallocations of energy factors, 

improve output efficiency per unit of energy input, prevent energy waste, and consequently boost 

enterprises' green total factor productivity. Second, AI can effectively permeate traditional production 

sectors, reconfiguring the allocation of factors such as energy, capital, labor, and technology. It further 

strengthens intelligent monitoring and precise forecasting of energy consumption fluctuations and carbon 

intensity in high-energy-consumption processes. This promotes efficient utilization and green 

development in industrial production, directing factors like energy, capital, and labor toward high-

efficiency, low-carbon sectors. Consequently, it optimizes the structure of factor allocation and ultimately 

drives regional low-carbon transformation. Based on this, the following research hypotheses are 

proposed. 

Hypothesis 1: Artificial intelligence can promote regional low-carbon transformation by enhancing 

energy utilization efficiency. 

3.2 The Green Technology Impact of Artificial Intelligence 

Technological advancement serves as a crucial means to address economic and environmental challenges. 

As a cutting-edge technology of the new generation technological revolution, artificial intelligence 

possesses both green and technological attributes. The technological progress it brings facilitates 

pollution reduction, carbon emission cuts, and sustainable development, driving green technological 

innovation and supporting regional low-carbon transitions. On one hand, AI delivers technological 

dividends to traditional industries, disrupting conventional industrial R&D models. Enterprises can 

efficiently integrate innovation factors, accelerate the development and implementation of low-carbon 

technologies, and shorten their R&D cycles. Simultaneously, with AI assistance, enterprises can optimize 

application scenarios for low-carbon technologies, reduce reliance on fossil fuels, shift energy structures 

toward clean sources, and achieve precise carbon reduction. On the other hand, while traditional 

technological innovation relies on marginal optimization within existing frameworks, AI propels 

innovation from incremental improvements to breakthrough advancements. By identifying novel 

innovation points elusive to conventional methods, it directly transforms core production paradigms, 

enabling qualitative leaps in green total factor productivity. Furthermore, AI accelerates the diffusion and 

conversion efficiency of innovation outcomes, breaking down information barriers between industries. 

This facilitates rapid adoption of innovations by enterprises, reduces resource waste from redundant R&D, 

maximizes the contribution of technological innovation to green TFP, and emphasizes “efficiency gains.” 

Based on this, the following research hypothesis is proposed: 

Hypothesis 2: Artificial intelligence can promote regional low-carbon transformation by facilitating 

green technological innovation. 

3.3 Industrial Structure Effects of Artificial Intelligence 

As a strategic general-purpose technology driving a new wave of technological revolution and industrial 

transformation, artificial intelligence can effectively promote industrial convergence and the upgrading 
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of industrial structures[8], unlock structural dividends, and advance regional green and low-carbon 

transitions. From a carbon reduction perspective: First, enterprises can leverage AI-driven intelligent 

production processes to shift industrial operations from factor-driven to efficiency-driven models. By 

dynamically regulating production through machine learning algorithms, they reduce redundant energy 

consumption and unnecessary carbon emissions, thereby advancing industries toward greater efficiency 

and lower carbon footprints. Second, AI can break down traditional industrial boundaries, fostering cross-

sector collaboration and integration to build low-carbon industrial ecosystems. Third, leveraging AI's 

predictive analytics capabilities, policymakers can train models correlating industrial development trends 

with carbon emissions to forecast the carbon reduction effects of different industrial adjustment plans. 

This enables governments and enterprises to effectively avoid resource wastage and carbon emission 

fluctuations caused by blind transformation, ensuring industrial upgrading consistently advances along a 

low-carbon trajectory. From an “efficiency enhancement” perspective: On one hand, AI can precisely 

identify differences in marginal returns to factors across industries and within industrial segments, 

eliminating information asymmetry in traditional factor allocation. This guides capital, labor, and 

technology from inefficient sectors to higher-efficiency ones with greater marginal returns, reducing 

factor misallocation. Underutilized factors are redirected to high-efficiency production activities, 

boosting total output with fixed factor inputs. On the other hand, AI can dissolve boundaries between 

industries and promote integrated upgrading, breaking down traditional sectoral silos. This fosters new 

forms of industrial convergence like “AI+,” reconfiguring value distribution within industrial value 

chains. The industrial structure shifts from labor- and capital-intensive to technology- and knowledge-

intensive sectors, driving overall improvements in green total factor productivity. Based on the above 

analysis, this paper proposes the following hypothesis: 

Hypothesis 3: Artificial intelligence can accelerate regional low-carbon transformation by promoting 

industrial structure upgrading. 

 

4. Empirical Research Design 

4.1 Construction of the Measurement Model 

This paper constructs the following econometric model to empirically examine the impact of artificial 

intelligence on regional low-carbon transformation: 

𝑌𝑖𝑡 = 𝛼0 + 𝛼1𝐴𝐼𝑖𝑡 + 𝛽𝑋𝑖𝑡 + 𝜇𝑖 + 𝛾𝑡 + 𝜀𝑖𝑡                  (1) 

Here, i denotes province, t denotes year, Y represents the explained variable—total carbon emissions and 

green total factor productivity—measuring regional low-carbon transition from both carbon reduction 

and efficiency enhancement dimensions. AI indicates the level of artificial intelligence development. X 

represents the control variable, 𝜇𝑖 denotes the province fixed effect, 𝛾𝑡 indicates the year fixed effect, 

and 𝜀𝑖𝑡 signifies the random error term. 
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4.2 Variable Declaration 

4.2.1 Dependent Variables 

Selecting total carbon emissions and green total factor productivity as dependent variables, regional low-

carbon transition is measured from two dimensions: “carbon reduction” and “efficiency enhancement.” 

On one hand, the natural logarithm of total carbon dioxide emissions serves as a proxy indicator for the 

“carbon reduction” aspect of regional low-carbon transition. Numerous scholars have proposed various 

carbon emission calculation methods. Following the 2006 IPCC National Greenhouse Gas Inventory 

Guidelines, this study adopts the internationally prevalent IPCC methodology: total carbon emissions are 

represented by the sum of the products of energy consumption and carbon emission factors. This includes 

nine representative energy sources: raw coal, coke, crude oil, gasoline, kerosene, diesel, fuel oil, liquefied 

petroleum gas (LPG), and natural gas. On the other hand, this study incorporates energy input and carbon 

emissions into the traditional TFP framework to measure green total factor productivity as the explained 

variable at the “efficiency gain” level of regional low-carbon transition. Following the methodology of 

Liu Zhuankuo and Xin Li [28], the GML index based on the SBM directional distance function is used to 

measure the total factor productivity of China's 30 provinces. Drawing on the research of Li Zhanfeng 

and Su Wenyuan [29], labor, capital, and energy are selected as input factor indicators. For labor input, the 

year-end employment figures of each province were used as the measure. For capital input, capital stock 

was employed as the measure. Drawing on Shan Haojie [30] perpetual inventory method, capital stock was 

estimated using 2000 as the base year and a depreciation rate of 10.96%. For energy input, the total 

energy consumption of each province served as the measure. For output indicators, expected output is 

measured by GDP deflator-adjusted real GDP; unwanted output is measured by each province's carbon 

dioxide emissions. 

4.2.2 Core Explanatory Variable 

Industrial robots serve as the primary vehicle for artificial intelligence technology in production 

processes, providing a relatively accurate reflection of AI application status. Therefore, drawing upon the 

research of Wang Yongqin[31], this paper constructs a regional industrial robot penetration index using 

2004 as the base year, guided by the principles of Bartik's instrumental variables method. The specific 

formula is as follows: 

𝐴𝐼𝑖𝑡 = ∑
𝐿𝑎𝑏𝑜𝑟𝑖𝑗

2004

𝐿𝑎𝑏𝑜𝑟𝑖
2004

𝑁
𝑗=1 ∗

𝑅𝑜𝑏𝑜𝑡𝑗𝑡

𝐿𝑎𝑏𝑜𝑟𝑗
2004                         (2) 

In Equation (2), AIit denotes the industrial robot penetration rate in province i during year t, serving as a 

proxy indicator for artificial intelligence; 𝐿𝑎𝑏𝑜𝑟𝑖𝑗
2004 represents the employment figure in industry j for 

province i in China during the base year 2004; 𝐿𝑎𝑏𝑜𝑟𝑖
2004 denotes the employment figure in industry j 

for China during the base year 2004; 𝑅𝑜𝑏𝑜𝑡𝑗𝑡  indicates the industrial robot installation volume in 

industry j nationwide during year t; 𝐿𝑎𝑏𝑜𝑟𝑗
2004 signifies the employment figure in province i during the 

base year 2004. 
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4.2.3 Control Variables 

The control variables selected for this study include: (1) Degree of openness to the outside world: (Total 

import and export value of goods×USD/CNY exchange rate) / Regional GDP. (2) Population density: 

Regional total population / Area of regional administrative divisions. (3) Level of financial development: 

Ratio of outstanding loans from financial institutions to GDP. (4) Degree of government intervention: 

General public budget expenditure / Regional GDP. (5) Energy structure: Regional electricity 

consumption / Total national electricity consumption. (6) Urbanization level: Urbanization rate. 

4.3 Data Source 

Due to limitations in data availability, this study ultimately selected 30 provinces in China (excluding 

Hong Kong, Macao, Taiwan, and Tibet) from 2013 to 2022 as the research subjects to examine the impact 

of artificial intelligence on regional low-carbon transformation. Data sources include the International 

Federation of Robotics (IFR), the China Statistical Yearbook, the China Energy Statistical Yearbook, and 

provincial statistical yearbooks. For a small number of missing data points, linear interpolation was 

employed to fill gaps, and variables underwent truncation processing. Descriptive statistics are presented 

in Table 1. 

 

Table 1. Descriptive Statistics 

Variable Name  Symbol 
Sample 

Size 
Mean 

Standard 

Deviation 
Minimum Maximum 

Total Carbon Emissions Co2 300 10.471 0.794 8.616 14.461 

Green Total Factor Productivity GTFP 300 1.124 0.277 0.771 2.557 

Level of Artificial Intelligence AI 300 0.212 0.135 0.025 0.872 

Degree of Openness to the Outside World Open 300 0.259 0.257 0.008 1.257 

Population Density Density 300 0.048 0.071 0.001 0.393 

Level of Financial Development Fin 300 1.600 0.464 0.740 3.000 

Degree of Government Intervention Gov 300 0.250 0.101 0.107 0.643 

Energy Structure Energy 300 0.033 0.023 0.004 0.094 

Level of Urbanization Urban 300 0.614 0.114 0.379 0.896 

 

5. Empirical Results Analysis 

5.1 Baseline Regression Results 

Columns (1) to (4) in Table 2 present the benchmark regression results for AI's impact on total carbon 

emissions and total factor productivity after incorporating control variables. Specifically, columns (1) 

and (2) report AI's effect on total carbon emissions, where the estimated AI coefficient is significantly 

negative at the 1% level. Columns (3) and (4) report regression results for total factor productivity, where 

the AI coefficient is significantly positive. The empirical findings indicate that artificial intelligence 
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facilitates regional carbon emission reduction and enhances total factor productivity, thereby advancing 

China's regional low-carbon transition through dual pathways of carbon reduction and efficiency 

improvement. Theoretically, as a new form of productive forces driven by technological innovation and 

intelligent empowerment, AI leverages core technologies such as machine learning and intelligent 

algorithms to transcend the temporal and spatial constraints of traditional technology integration and 

knowledge application. It accelerates the precision, efficiency, and intelligent transformation of 

traditional industries, simultaneously upgrading and optimizing regional industrial structures while 

increasing demand for renewable energy consumption. This enables the gradual realization of energy 

consumption reduction effects from structural adjustments, achieving carbon decoupling from industrial 

structures and thereby advancing regional low-carbon transformation. Other control variables largely 

align with theoretical expectations. 

 

Table 2. Basic Regression Results 

Variables 
(1) (2) (3) (4) 

Co2 Co2 GTFP GTFP 

AI 
-0.677*** 

(-3.782) 

-0.482*** 

(-3.509) 

0.832*** 

(4.774) 

0.589*** 

(3.300) 

Open 
—— 

-0.159 

(-1.051) 
—— 

0.283* 

(1.700) 

Density 
—— 

14.699** 

(2.466) 
—— 

46.796*** 

(6.859) 

Fin 
—— 

-0.110** 

(-2.272) 
—— 

-0.077* 

(-1.668) 

Gov 
—— 

0.307 

(1.462) 
—— 

0.233 

(1.084) 

Energy 
—— 

13.663*** 

(3.771) 
—— 

-2.628 

(-0.729) 

Urban 
—— 

1.198** 

(2.410) 
—— 

-0.995* 

(-1.883) 

_cons 
10.598*** 

(288.135) 

8.930*** 

(25.853) 

0.938*** 

(25.161) 

-0.151 

(-0.421) 

Year Yes Yes Yes Yes 

Province Yes Yes Yes Yes 

N 300 300 300 300 

R2 0.980 0.982 0.837 0.868 

 



www.scholink.org/ojs/index.php/jepf         Journal of Economics and Public Finance                     Vol. 11, No. 3, 2025 

235 
Published by SCHOLINK INC. 

5.2 Endogeneity Test 

The primary source of endogeneity issues in this paper likely stems from the bidirectional causality 

between the dependent variable and the instrumental variable. Specifically, artificial intelligence injects 

new momentum into regional sustainable development by enhancing energy efficiency, facilitating green 

technological innovation, and driving industrial upgrading. Simultaneously, numerous technical 

challenges arise during regional low-carbon transitions, compelling local AI enterprises to overcome 

technological bottlenecks and thereby address the pain points of low-carbon transformation. Given this, 

this paper employs the instrumental variables method to test for endogeneity from two perspectives. First, 

AI is lagged by one period and used as an instrumental variable. The rationale is as follows: Since 

regional low-carbon transformation in a subsequent period does not retroactively drive local AI 

development, this partially mitigates endogeneity issues arising from reverse causality. The regression 

results, presented in Table 3, show that AI coefficients align with the direction of the basic regression for 

both total carbon emissions and total factor productivity, and are statistically significant at the 5% and 

1% levels, respectively. This indicates that AI still promotes regional low-carbon transformation. (2) 

Following the methodology of Wang Yongqin [32], we constructed an instrumental variable for regional 

AI levels in China using U.S. industrial robot data. The regression results for this instrumental variable 

are presented in Table 4. The rationale is as follows: The U.S. ranks among the world leaders in AI 

development, and its trends reflect the technological evolution direction of the industry. Furthermore, its 

development timeline closely aligns with China's, satisfying the condition of comparability. 

Simultaneously, U.S. industrial robot data serves as a sufficiently exogenous instrument variable, 

exerting no substantive influence on China's natural ecosystems or green low-carbon transition, thus 

meeting the exogeneity requirement. The specific calculation method is as follows: 

𝐴𝐼_𝑈𝑆𝑖𝑡 = ∑
𝐿𝑎𝑏𝑜𝑟𝑖𝑗

2004

𝐿𝑎𝑏𝑜𝑟𝑖
2004

𝑁
𝑗=1 ∗

𝑅𝑜𝑏𝑜𝑡_𝑈𝑆𝑗𝑡

𝐿𝑎𝑏𝑜𝑟_𝑈𝑆𝑗
1990                      (3) 

Here, 𝑅𝑜𝑏𝑜𝑡_𝑈𝑆𝑗𝑡  denotes the number of industrial robots installed in U.S. industry j in year t, while 

𝐿𝑎𝑏𝑜𝑟_𝑈𝑆𝑗
1990 represents the employment level in U.S. industry j in 1990 (the base year). 

 

Table 3. Instrumental Variables Regression Results 

Variables 
Instrumental Variables——Co2 Instrumental Variables——GTFP 

Phase One Phase Two Phase One Phase Two 

Lai 
1.049*** 

(20.054) 
 

1.049*** 

(20.054) 
 

AI 
 -0.435** 

(-2.065) 

 0.965*** 

(4.873) 

Control variables Yes Yes Yes Yes 

Year Yes Yes Yes Yes 
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City Yes Yes Yes Yes 

N 300 300 300 300 

R2 0.980 0.332 0.980 0.673 

Kleibergen-Paap rk LM  55.485***  55.485*** 

Cragg-Donald Wald F  530.179  530.179 

 

Columns (1) to (4) in Table 4 present regression results using U.S. industrial robot penetration as an 

instrumental variable. The first-stage results consistently show that this instrumental variable exhibits a 

significant positive correlation with the endogenous variable—level of artificial intelligence—thus 

satisfying the correlation assumption. The second-stage “carbon reduction” results indicate that the AI 

coefficient is significantly negative at the 5% level, with an increased absolute value compared to the 

baseline results. This suggests that even after mitigating endogeneity issues through the instrumental 

variable approach, AI still significantly suppresses regional carbon emissions. The “efficiency gains” 

results show a significantly positive AI coefficient, with the instrumental variable results further 

indicating that AI enhances green total factor productivity. Simultaneously, the unidentified Kleibergen-

Paap rk LM Sstatistic of 11.522 and the weakly identified Cragg-Donald Wald Fstatistic of 23.371 

indicate passing tests for exogeneity and weak instrument identification, confirming the appropriateness 

of the instrumental variable approach. 

 

Table 4. Instrumental Variables Regression Results 

Variables 
Instrumental Variables——Co2 Instrumental Variables——GTFP 

Phase One Phase Two Phase One Phase Two 

IV 
25.995*** 

(3.664) 
 

25.995*** 

(3.664) 
 

AI 
 -1.469** 

(-2.183) 
 

1.689** 

(2.170) 

Control variables Yes Yes Yes Yes 

Year Yes Yes Yes Yes 

City Yes Yes Yes Yes 

N 300 300 300 300 

R2 0.943 0.265 0.943 0.626 

Kleibergen-Paap rk LM  11.522***  11.522*** 

Cragg-Donald Wald F  23.371  23.371 

 

5.3 Robustness Test 

5.3.1 Replace Core Explanatory Variables 
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To further test the robustness of total carbon emissions and green total factor productivity, we adopt an 

industrial intelligence index that measures AI levels across three dimensions—infrastructure, production 

applications, and competitiveness and efficiency—following the methodology of Sun Zao and Hou 

Yulin[33]. Columns (1) and (2) in Table 5 present regression results after replacing the core explanatory 

variables. It can be observed that after replacing the explanatory variables, artificial intelligence still 

significantly suppresses regional carbon emissions at the 1% statistical level and enhances green total 

factor productivity, confirming the robustness of the findings in this paper. 

5.3.2 Replace the Explained Variable 

Drawing on the research of Cong Jianhui [34], carbon emissions were recalculated and log-transformed. 

Specifically, emissions boundaries were divided into three major scopes: Scope 1 encompasses direct 

emissions from the industrial, transportation, and construction sectors; Scope 2 covers indirect emissions 

from purchased electricity and other sources; and Scope 3 includes other indirect emissions during 

production and transportation processes. Total factor productivity was recalculated using the SBM-ML 

model. The regression results are presented in columns (3) and (4) of Table 5. It can be observed that 

after replacing the dependent variable, artificial intelligence still significantly reduces carbon emissions 

and enhances total factor productivity at the 1% level, with results remaining robust.。 

5.3.3 Exclude Municipalities Directly under the Central Government 

This paper employs a robustness test by excluding municipalities directly under the central government. 

Significant economic and social disparities exist across different regions in China. Compared to other 

provinces, municipalities directly under the central government possess distinct advantages in economic 

development, policy implementation intensity, and talent accumulation, resulting in substantial 

differences in artificial intelligence levels. The regression results excluding municipalities are presented 

in columns (5) and (6) of Table 5. Compared to the baseline results, the significance level of the artificial 

intelligence coefficient remains unchanged after excluding municipalities, further indicating the 

robustness of the baseline findings.。 

 

Table 5. Robust Test Regression Results 

Variables 

Replace Core Explanatory 

Variables 

Replace the explained 

variable 

Exclude municipalities 

directly under the central 

government 

(1) (2) (3) (4) (5) (6) 

Co2 GTFP Co2 GTFP Co2 GTFP 

AI -0.017*** 

(-5.033) 

0.020*** 

(5.546) 

-0.300*** 

(-1.989) 

1.591*** 

(3.945) 

-0.421** 

(-2.459) 

0.481** 

(2.317) 

Open 0.172 

(1.092) 

-0.109 

(-0.713) 

0.158 

(1.373) 

1.668*** 

(3.992) 

-0.257 

(-1.164) 

0.593** 

(2.240) 
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Density 19.069*** 

(3.018) 

41.862*** 

(5.853) 

4.884 

(1.089) 

39.583*** 

(3.088) 

13.977 

(1.556) 

69.579*** 

(7.340) 

Fin -0.147*** 

(-3.073) 

-0.031 

(-0.746) 

0.029 

(0.695) 

-0.266** 

(-2.578) 

-0.127** 

(-2.391) 

-0.090* 

(-1.807) 

Gov 0.060 

(0.305) 

0.521** 

(2.529) 

0.173 

(0.748) 

-0.147 

(-0.313) 

0.007 

(0.031) 

0.531** 

(2.528) 

Energy 15.880*** 

(5.203) 

-5.224* 

(-1.681) 

4.043 

(1.360) 

-19.627*** 

(-3.231) 

13.272*** 

(3.673) 

-3.169 

(-0.938) 

Urban 1.657*** 

(4.079) 

-1.564*** 

(-3.562) 

-0.481 

(-202) 

-0.679 

(-0.462) 

-0.020 

(-0.024) 

0.297 

(0.368) 

_cons 8.535*** 

(31.163) 

0.325 

(1.028) 

10.228*** 

(40.599) 

0.509 

(0.579) 

10.018*** 

(18.045) 

-1.178** 

(-2.266) 

Year Yes Yes Yes Yes Yes Yes 

Province Yes Yes Yes Yes Yes Yes 

N 300 300 300 300 260 260 

R2 0.984 0.885 0.977 0.849 0.980 0.873 

 

6. Analysis of Mechanism of Action 

The empirical findings above indicate that artificial intelligence development significantly promotes 

regional low-carbon transformation and continuously unlocks the benefits of low-carbon governance. 

How, then, does AI empower regional low-carbon transformation? Based on the preceding theoretical 

analysis, AI development can influence regional low-carbon transformation through pathways such as 

enhancing regional energy efficiency, advancing green technologies, and upgrading industrial structures. 

The following analysis explores these three pathways. First, AI development promotes regional low-

carbon transformation by enhancing energy efficiency. To validate this mechanism, energy efficiency is 

measured using gross energy consumption per unit of GDP, representing the economic output generated 

from energy input. The regression results in Column (1) and Column (2) of Table 6 indicate that AI 

statistically significantly enhances regional energy efficiency at the 10% level. Theoretically, enhancing 

energy efficiency at both macro and micro levels is a key driver for achieving carbon reduction and 

efficiency gains. AI development can effectively guide regional economic growth from an energy-

intensive, high-emission, extensive model toward a green, low-carbon, intensive model. It promotes the 

large-scale utilization of clean energy and improves energy efficiency, thereby reducing carbon emissions 

during production processes and enhancing regional carbon emission performance. Thus, improving 

energy efficiency constitutes the impact mechanism through which AI propels regional low-carbon 

transformation. 

Second, AI development drives urban low-carbon transformation through green technological progress. 

To validate this mechanism, we measure it using green patent applications per 10,000 people. Table 6, 
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columns (3) and (4), present the regression results, clearly showing that AI significantly promotes 

regional green technological progress. Theoretically, technological progress—especially green 

technological progress—is a crucial means to reduce carbon intensity and enhance carbon emission 

efficiency. AI, with data—possessing both green and technological attributes—as its core production 

factor, generates technological progress that tends toward green, low-carbon, and energy-saving solutions. 

Simultaneously, the integrated development of AI and energy-saving low-carbon technologies helps 

catalyze a new generation of intelligent low-carbon and energy technologies. This, in turn, facilitates 

green technological progress and promotes economic low-carbon transformation. Thus, green 

technological progress constitutes the mechanism through which AI drives regional low-carbon 

transformation. 

Finally, AI development propels urban low-carbon transformation by upgrading industrial structures. To 

validate this mechanism, the structural upgrading effect of AI is measured using a weighted value 

representing the product of the proportion of tertiary industries and labor productivity across sectors. 

Results in Table 6, columns (5) and (6), show that the AI coefficient is statistically significant at the 5% 

level. Overall, AI drives urban industrial upgrading. However, compared to the coefficients for energy 

efficiency and green technological progress mechanisms, the structural upgrading effect of AI is 

relatively smaller. In the Chinese context, the integration of AI with traditional industries is a dynamic 

and gradual process. Simultaneously, the transition of industrial energy structures from reliance on fossil 

fuels and other traditional energy sources to clean, green, and low-carbon alternatives is relatively slow. 

This may weaken the structural effect of AI in enabling traditional industry transformation and promoting 

new industrial development, thereby supporting regional low-carbon transition. Consequently, industrial 

structure upgrading emerges as the primary mechanism through which AI drives urban low-carbon 

transformation. 

In summary, AI can drive regional low-carbon transformation by enhancing energy efficiency, advancing 

green technologies, and upgrading industrial structures, with the structural effect playing a relatively 

minor role. 

 

Table 6. Mechanism of Action Verification 

Variables 

(1) Energy Utilization 

Efficiency 

(2) Green technological 

progress 

(3) Industrial Structure 

Upgrading 

FE IV FE IV FE IV 

AI 
3.334* 22.287*** 0.667*** 1.200*** 0.097** 0.633** 

(1.792) (3.011) (4.930) (2.787) (2.044) (2.540) 

Open 
1.444 4.083 -0.117 -0.043 0.131*** 0.206*** 

(0.684) (1.569) (-0.696) (-0.259) (4.534) (3.505) 

Density -114.018* -298.737*** 16.561** 11.369 1.634 -3.583 
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(-1.747) (-2.903) (1.971) (1.281) (1.339) (-1.277) 

Fin 
-0.729 -2.674** 0.057* 0.002 0.031** -0.024 

(-1.492) (-2.303) (1.790) (0.045) (2.237) (-0.852) 

Gov 
-11.180*** -9.188*** 0.087 0.143 0.092 0.148* 

(-4.526) (-3.657) (0.598) (1.027) (1.548) (1.936) 

Energy 
-41.783** -53.943* -0.138 -0.480 -0.762 -1.106 

(-2.484) (-1.815) (-0.111) (-0.350) (-1.196) (-1.123) 

Urban 
-36.818*** -12.332 -0.401 0.287 0.202* 0.894*** 

(-4.825) (-1.215) (-0.783) (0.436) (1.679) (2.722) 

_cons 
37.074*** 26.545*** -0.430 -0.748** 2.126*** 1.744*** 

(8.091) (4.475) (-1.037) (-2.166) (31.191) (11.024) 

Year Yes Yes Yes Yes Yes Yes 

Province Yes Yes Yes Yes Yes Yes 

N 300 300 300 300 300 300 

R2 0.982 0.480 0.939 0.692 0.977 0.610 

F 11.214 15.931 10.804 22.718 8.326 43.756 

 

7. Heterogeneity Analysis 

7.1 The Impact of Environmental Regulations 

Compared to regions with stringent environmental regulations, areas with lower regulatory intensity 

impose more lenient requirements on corporate pollutant concentration limits and clean production 

technology adoption. Businesses in these regions avoid substantial investments in upgrading 

environmental facilities or implementing advanced pollution control measures, resulting in significantly 

lower environmental compliance costs. This directly diminishes the intrinsic motivation for enterprises 

within such regions to proactively pursue low-carbon transformation. Can artificial intelligence drive 

green and low-carbon transformation in low-regulation areas, thereby achieving green, high-quality 

development? To address this, this paper measures local environmental regulation intensity using the 

ratio of completed industrial pollution control investment to industrial value-added. The sample is 

divided into high-regulation and low-regulation regions based on the median. The results of the grouped 

regression are shown in columns (1) to (4) of Table 7. Regarding the “carbon reduction” regression results, 

the estimated coefficient for artificial intelligence is significantly negative in high-regulation regions but 

not significant in low-regulation regions. Simultaneously, regarding carbon “efficiency gains,” the 

estimated coefficient for high environmental regulation regions is significantly positive at the 1% level, 

while that for low environmental regulation regions is significantly negative. These regression results 

indicate that AI cannot drive carbon reduction and efficiency gains in low environmental regulation 

regions, but it can promote both in high environmental regulation regions. Overall, AI is more conducive 

to advancing the low-carbon transition in high environmental regulation regions. 
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Table 7. Test Results for Environmental Regulation Heterogeneity 

Variables 
High Environmental Regulation Low Environmental Regulation 

CO2 GTFP CO2 GTFP 

AI 

 

-0.424* 0.698*** -0.191 -0.664** 

(-1.697) (3.460) (-0.704) (-2.030) 

Open 

 

0.408 0.077 -0.063 0.260 

(1.550) (0.250) (-0.269) (1.269) 

Density 

 

-20.300 31.742* 21.900** 54.629*** 

(-1.127) (1.888) (2.448) (6.449) 

Fin 

 

-0.205*** 0.007 -0.068 -0.118 

(-2.986) (0.144) (-0.601) (-1.494) 

Gov 

 

-0.046 0.759*** 0.907* -0.471 

(-0.177) (3.293) (1.677) (-1.176) 

Energy 

 

7.577* 7.290* 21.799** -7.349 

(1.914) (1.922) (2.582) (-1.160) 

Urban 

 

3.247*** -1.652*** 0.355 -1.275* 

(3.979) (-2.685) (0.436) (-1.933) 

_cons 9.314*** 0.437 8.373*** 0.042 

 (16.159) (0.886) (14.515) (0.087) 

Year 

Province 

Yes Yes Yes Yes 

Yes Yes Yes Yes 

N 146 146 149 149 

R2 0.994 0.900 0.970 0.906 

 

A possible explanation for the above findings is that in regions with low environmental regulations, 

businesses face no compelling need for low-carbon technologies due to lax environmental standards. 

Most prefer to maintain existing production models to control costs rather than proactively explore ways 

to integrate artificial intelligence with low-carbon technologies. Moreover, for AI to drive low-carbon 

transformation, enterprises must proactively respond to environmental technology upgrades. However, 

businesses in such regions face neither strong environmental compliance pressures nor intrinsic demand 

for low-carbon technological innovation. This makes it difficult for AI to effectively integrate into 

production processes and fulfill its role in low-carbon governance, thereby hindering the rapid 

manifestation of its low-carbon enabling effects. Conversely, regions with stringent environmental 

regulations impose tighter constraints on corporate environmental practices. To comply with these 

regulations, enterprises must proactively seek technological pathways for low-carbon development. AI 

advancement provides digital technology support for low-carbon transformation in highly regulated areas, 

accelerating the integration and innovation of environmental technologies with digital technologies. This 
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promotes green technological progress and enhances energy efficiency. Leveraging the spillover and 

diffusion effects of technological convergence, AI further facilitates the synergistic development of 

energy-saving and low-carbon technologies. This reduces carbon emissions per unit of output and 

enhances carbon performance. Consequently, AI demonstrates relatively stronger promotional effects on 

low-carbon transformation in regions with stringent environmental regulations. 

7.2 Impact of Industrialization Level 

Regions with high levels of industrialization typically center their industrial systems around capital-

intensive and technology-intensive sectors such as heavy chemical industries, high-end equipment 

manufacturing, or energy processing. These industrial systems are deeply reliant on existing industrial 

foundations, supply chain capabilities, and endowments of production factors. During regional economic 

expansion and industrial system optimization, such areas tend to develop structural rigidity patterns 

anchored in existing industrial frameworks. Over time, this manifests as long-term path dependence and 

development lock-in effects, ultimately imposing “industrial structure path lock-in constraints” that 

hinder critical tasks like industrial iteration and upgrading, transitioning from old to new growth drivers, 

and achieving green and low-carbon transformation. To examine how artificial intelligence (AI) enables 

regional low-carbon transformation at different levels of industrialization, this study measures local 

industrialization levels using the ratio of secondary industry output to regional GDP. The sample is 

divided into high-industrialization and low-industrialization regions based on the median, with grouped 

regression analysis conducted. Results in Table 8 (1) to (4) show that AI's estimated coefficients are 

significantly negative for both high- and low-industrialization regions. However, from a productivity 

perspective, the estimated coefficient for AI is insignificant in the high-industrialization regression group. 

Conversely, in the low-industrialization group, the coefficient is significantly positive at the 1% level. 

This indicates that AI development significantly accelerates low-carbon transformation in regions with 

low industrialization levels. While AI substantially reduces carbon emissions in highly industrialized 

regions, it does not yield productivity gains. 

 

Table 8. Test Results for Heterogeneity in Industrialization Levels 

Variables 
High level of industrialization Low level of industrialization 

CO2 GTFP CO2 GTFP 

AI 

 

-0.543*** -0.276 -0.533** 2.105*** 

(-2.814) (-1.245) (-2.400) (6.346) 

Open 

 

0.501 1.080*** -0.105 0.620** 

(1.059) (2.788) (-0.528) (2.331) 

Density 

 

8.447 82.708*** -2.871 16.958* 

(0.498) (6.350) (-0.489) (1.949) 

Fin -0.163** -0.128** -0.025 -0.027 
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 (-2.339) (-2.494) (-0.392) (-0.281) 

Gov 

 

-0.813 0.319 0.250 0.124 

(-1.365) (0.638) (1.114) (0.456) 

Energy 

 

12.014** -4.841 14.662*** 17.003** 

(2.328) (-1.285) (3.494) (2.505) 

Urban 

 

-3.197 -3.869*** 0.925 -0.224 

(-1.652) (-3.696) (1.550) (-0.284) 

_cons 

 

12.271*** 0.584 9.502*** -0.564 

(10.287) (0.692) (20.417) (-0.954) 

Year Yes Yes Yes Yes 

Province Yes Yes Yes Yes 

N 148 148 147 147 

R2 0.975 0.933 0.994 0.887 

 

From the perspective of path dependency theory, regions with high industrialization levels have long 

been dominated by heavy and chemical industries and large-scale standardized production, forming deep 

dependence on traditional production systems and creating lock-in effects. This path dependency imposes 

significant limitations on the application of artificial intelligence. While AI can reduce carbon emissions 

through real-time energy monitoring and optimized resource allocation, the poor equipment compatibility 

and high process modification costs inherent in traditional production systems make it difficult for AI to 

overcome the core constraints imposed by existing production frameworks on total factor productivity. 

Consequently, efficiency gains remain limited. In contrast, regions with low industrialization levels 

feature more flexible industrial structures, predominantly comprising light industry, emerging 

manufacturing, or service-oriented sectors. These areas lack the path lock-in associated with traditional 

heavy-asset production systems. When introducing AI, such regions avoid the high costs of retrofitting 

outdated systems and can directly embed AI across the entire production chain. This approach enables 

carbon emission reductions through on-demand production and reduced resource waste while rapidly 

overcoming inefficient production bottlenecks via intelligent upgrades, thereby driving TFP growth. 

Therefore, while AI can deliver carbon reduction benefits to both regions through energy optimization, 

path dependence differences mitigate its impact on TFP growth in highly industrialized areas due to lock-

in effects from traditional production systems. Conversely, industrial flexibility in less industrialized 

regions enables AI to achieve dual outcomes: reducing carbon emissions while boosting efficiency. 

 

8. Policy Implications and Conclusions 

Through theoretical analysis and empirical testing of AI's role in driving regional low-carbon 

transformation, this study reaches the following conclusions: (1) AI development enhances regional low-

carbon governance effectiveness. AI empowers regional low-carbon transition by reducing regional 
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carbon emissions and improving total factor carbon productivity. This conclusion remains robust across 

multiple tests, carrying significant policy implications for China's pursuit of its dual carbon goals. (2) 

Mechanism analysis indicates that AI facilitates regional low-carbon transition through pathways such 

as energy efficiency improvements, green technological progress, and industrial structure upgrading, 

though the latter plays a relatively minor role. (3) Heterogeneity tests reveal that AI development 

accelerates low-carbon transition in regions with low industrialization levels. However, constrained by 

path dependencies on traditional resource-based industries, its impact on low-carbon governance in 

highly industrialized regions remains limited. Based on these findings, the following policy implications 

are proposed. 

First, accelerate AI development to propel urban low-carbon transformation. Prioritize advancing AI, 

deepening the integration and innovative application of digital technologies like 5G and big data across 

energy, environmental sectors, and traditional industries to foster new technologies, industries, and 

business models relevant to low-carbon fields. Second, accelerate AI-enabled transformation and 

upgrading of the energy sector to optimize resource allocation, promote large-scale clean energy 

utilization, and enhance energy efficiency. Finally, drive traditional industries toward digital, networked, 

and intelligent transformation. Leverage AI to unlock regional green transition potential, harness its 

enabling role in reducing carbon emissions and improving carbon performance, and cultivate new 

momentum for China's regional green and low-carbon development. 

Second, based on regional environmental regulations and industrial development realities, accelerate the 

digital transformation of areas with low environmental regulations and high industrialization levels. 

These regions should seize AI development opportunities, aligning with local industrial structures and 

resource endowments to comprehensively transform traditional industries across the entire value chain. 

Enhance the adaptability of AI to regional industrial restructuring under varying environmental 

regulations and industrialization levels. Accelerate the cultivation of new business models and formats 

based on emerging digital technologies, expedite technological progress and green innovation, advance 

low-carbon technological innovation and intelligent transformation in highly industrialized sectors, 

overcome the structural energy resource “curse,” and continuously unleash the potential of AI to 

empower regional low-carbon transitions. This will achieve coordinated coexistence between intelligent 

transformation and green development in regions with low environmental regulations and high 

industrialization levels. 
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