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Abstract

Focusing on the prediction of CSI 300 Index returns, this empirical study employs a hybrid CNN-LSTM-
Attention model. The model integrates the strengths of CNN for local feature extraction, LSTM for
temporal dependency modelling, and the Attention mechanism for key information focus, effectively
capturing the multi-scale characteristics of financial data. Comparative experimental results
demonstrate that multivariate models achieve superior fitting performance compared to univariate
models, with the hybrid model outperforming either single model. This research validates the application
value of deep learning models in financial time series forecasting, providing a novel approach for stock
return prediction and offering reference for quantitative analysis and decision-making in financial
markets.
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1. Introduction

The stock market possesses the dual characteristics of high returns and high risk, impacting not only the
wealth of individual investors but also the operational efficiency of the macroeconomic system.
Consequently, research into predicting stock market returns has been a prominent topic of discussion
among numerous scholars. From the 1960s onwards, numerous scholars began researching asset pricing
models. Sharpe (1964), Lintner (1965), and Mossin (1966) proposed and refined the Capital Asset Pricing
Model (CAPM), establishing for the first time a linear relationship between expected returns and risk.
However, this model still suffers from issues such as overly simplistic assumptions and the explanatory
power of the risk factor § being insufficient. Recognising the limitations of CAPM, scholars subsequently
developed the Arbitrage Pricing Theory (APT) and the Fama-French multi-factor model. These
breakthroughs transcended the constraints of single-factor models, significantly enriching the theoretical

foundations of asset pricing. As financial theory continues to evolve, multiple novel characteristic factors
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have been introduced. For instance, Carhart (1977) proposed the momentum factor, creating a four-factor
model; Fama and French (2015) incorporated earnings and investment characteristics into a three-factor
model, validating the new framework's efficacy; Stambaugh and Yuan (2017) constructed a ‘mispricing’
four-factor model. Compared to models incorporating only market and size factors, this new framework
more effectively adapts to market environments characterised by substantial anomalous phenomena.
Traditional asset pricing models pioneered conventional methods for measuring returns, yet such models
fundamentally rely on linear assumptions and structured data, rendering them ill-equipped to capture
dynamic market shifts.

Compared to traditional linear regression methods, machine learning demonstrates superior efficacy in
modelling financial return forecasting due to its robust non-linear analytical capabilities. Specifically, it
enhances the accuracy of financial return prediction modelling by identifying complex interrelationships
among different variables within the model. The literature on machine learning for stock market return
forecasting can be broadly categorised into two types: traditional machine learning models centred on
support vector machines (SVM) and decision trees. For instance, Fan, Pengying et al. (2025) focused on
stock extreme value information, constructing the B-CARS model to demonstrate that models predicting
stock return direction based on both highest and lowest prices significantly outperform single-extreme-
value models or conventional models. The second category comprises deep learning models represented
by neural networks. Deep learning, a pivotal branch within machine learning, enhances big data analysis
capabilities through dimensionality reduction and feature extraction. Compared to traditional machine
learning approaches, deep learning methods effectively process non-linear data, offering distinct
advantages in studying market fluctuations. Consequently, it has increasingly become a focal point in
contemporary financial research. Tsantekidis et al. (2017) found, through comparative analysis, that the
CNN model holds a relative advantage in stock price forecasting. Li Peiran and Yang Lu (2023) observed
that Transformer models can effectively identify market noise signals arising from lottery effect
preferences and irrational trading. Further targeted empirical research grounded in behavioural finance
theory revealed that market participants' lagging responsiveness to information is the primary factor
generating momentum effects. With societal technological advancement, machine learning in stock
return forecasting exhibits trends towards multi-model integration and expanded data dimensions. On
one hand, diverse hybrid models continue to emerge, combining complementary machine learning
algorithms to enhance learning capabilities. On the other, data sources have expanded beyond structured
financial data to incorporate alternative unstructured data such as investor sentiment, financial news texts,
and industry knowledge graphs, offering fresh perspectives for return forecasting research.

Despite significant advances in machine learning within financial research, where CNNs, LSTMs and
Attention mechanisms have been applied to distinct financial domains respectively, each demonstrating
strong performance advantages in their respective specialities and providing diverse technical support
for quantitative finance studies, virtually no scholars have employed a model integrating all three for

stock return prediction research. This paper aims to harness the synergistic potential of CNNs in capturing
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local patterns, LSTMs in handling long-term dependencies, and Attention mechanisms in dynamic
feature selection. Building upon prior scholarly work, it innovatively applies a CNN-LSTM-Attention
model to provide a more efficient technical pathway and theoretical foundation for stock return

forecasting.

2. Theory and Models

2.1 Convolutional Neural Network

Convolutional neural networks (CNNs) represent a deep learning methodology frequently employed for
image classification tasks. Structurally, a CNN primarily comprises fundamental components including
an input layer, convolutional layers, pooling layers, fully connected layers, and an output layer, as
illustrated in Figure 1. Within this framework, convolutional kernels continuously slide across the input
data to extract local features, thereby enabling deep mining of feature information. Pooling layers
typically follow convolutional layers, performing dimensionality reduction on the output features. Fully-
connected layers then fuse and compress these features, ultimately outputting classification or regression

results via activation functions.

ESUR P fin i 2
.‘?\\
T b
\\ \
|
‘ v
\\ ‘\
O
I | L
| - X |
|
HINZ HBHE HER A= HHE2 k=2

Figure 1. Schematic Diagram of CNN Architecture

2.2 Long Short-Term Memory

The LSTM model incorporates gating units and memory units within its internal architecture, building
upon the foundation of RNN models. The gating units primarily regulate the input and output of
information, while the memory units ensure that information maintains relevant states over time. Through
this distinctive mechanism, LSTM can more efficiently retain or discard information when processing
sequential data, thereby significantly enhancing the precision and reliability of capturing long-term
dependencies and key insights within the data.

The internal structure of each unit within the LSTM model is primarily composed of input gates, forget

gates, and output gates, with its cellular memory architecture illustrated in Figure 2.
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Figure 2. Schematic Diagram of the LSTM Architecture

(1) Forgetting Gate
The function of the forgetting gate is to filter out information that needs to be discarded. It achieves this
filtering mechanism by activating the sigmoid function:

fo = o (Wr x[he -1, ] + br) (1)
(2) Input gate
The input gate of the LSTM is responsible for executing the mechanism of updating information,

selectively retaining input content.

it = o (Wi x [1e - 1, X] + bi) @)
Ct =tanh(We x[ht -1, X] + bc) (3)
Ci= fixCi-1+itxCt 4)

(3) Output Gate
The output gate of the LSTM is responsible for controlling the output of cellular information. Its

mathematical expression is as follows:

0t = o (Wox[ht -1, Xt] + bo) (5)

ht = ot x tanh(Ct) (6)

2.3 Attention Mechanism

Attention Mechanism (AM) enables networks to focus computational resources on a small amount of
critical data by amplifying key components of input data while suppressing secondary information. Its
primary structure comprises three vector spaces: Query (Q), Key (K), and Value (V). A schematic

flowchart is illustrated in Figure 3.
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Figure 3. Schematic Diagram of Attention Mechanism Structure

2.4 CNN-LSTM-Attention Model

Compared to traditional models and single architectures, adopting a model fusion strategy effectively
integrates the characteristics of different models, significantly enhancing the ability to learn and model
the intrinsic patterns of time series data. The CNN-LSTM-Attention model developed in this study by
organically combining these three approaches provides novel insights and methodologies for stock return
prediction.

Within this model architecture, the CNN first processes the input stock market data to extract local
features such as short-term price fluctuations and volume changes; LSTM then leverages these local
features to further uncover underlying long-term dependency information, enabling deep learning and
encoding of stock return trends; finally, the attention mechanism generates attention weight distributions
through dot product operations. This dynamically identifies and filters genuinely valuable information
from vast stock market datasets, better adapting to the complex and volatile nature of stock markets. It

provides investors with more valuable references for decision-making.

3. Construction of a Stock Market Yield Prediction Model

3.1 Data Sources and Preprocessing

All data utilised in this study originates from the Wind database, encompassing daily trading data for the
CSI 300 Index and its constituent stocks. The data spans the period from 5 January 2015 to 31 December
2024. To validate the model's predictive efficiency and feasibility, the dataset was divided proportionally
into an 8:2 split, comprising the training set and test set respectively. To ensure the model's predictive
capabilities met expectations, the pandas_ta module—an open-source library within Python specifically
designed for financial technical indicator calculations—was incorporated. This enabled the generation of

multiple technical indicators from the raw data.
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Table 1. Indicators and Their Definitions

name meaning name meaning

open Opening price RET Yield Indicator

close Closing price BIAS SMA 6 6-day Deviation Rate

high Highest price RSI 14 14-day Relative Strength Index
low Lowest price ROC 12 12-day Rate of Change Indicator
volume Transaction volume MOM 10 10-day Momentum Indicator
money Transaction value K Stochastic Oscillator K-line
SMA 5 5-day simple moving average D Stochastic Oscillator D-line
SMA 10 10-day simple moving average J Stochastic Oscillator J-line
SMA 15 15-day simple moving average Lower Upper Bollinger Band

SMA 60 60-day simple moving average Middle Middle Bollinger Band

SMA 120 120-day simple moving average = Upper Lower Bollinger Band

To eliminate the influence of data dimensions, the dataset undergoes min-max scaling prior to model

fitting, with the specific procedure as follows:

X — X 'min

Xscaled = N

X max— X max

Xmin and Xmax representing the minimum and maximum values of the feature respectively, Xscaied For the
scaled value.

3.2 Feature Selection

It is generally accepted that the explanatory power of asset pricing models regarding market information
correlates positively with the number of variables incorporated, meaning that including more market
information variables enhances predictive accuracy. However, existing research indicates that high-
dimensional data often proves incompatible with traditional methods such as linear assumptions. Noise
interference and feature redundancy within the data intensify as the number of variables increases,
potentially leading to overfitting and significant deviations in model predictions. Jiang Fuwei et al. (2022)
conducted empirical research on China's A-share market, demonstrating that while multi-factor models
incorporating excessive variables may fit data within the sample, they exhibit significantly increased
errors in out-of-sample predictions due to over-capturing noise. This validates the incompatibility
between high-dimensional data and traditional linear methods. To balance comprehensive information
coverage with model parsimony while maximising predictive efficiency, this study employs Pearson
correlation analysis and random forest methods to scientifically and effectively screen existing feature
variables. The former adopts a linear perspective, identifying redundant features exhibiting high linear

dependence by calculating correlation coefficients between variables. Random forests, conversely, refine
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the feature set from a non-linear viewpoint. Based on decision tree ensemble principles, they
quantitatively analyse each feature's contribution to model predictions. Their advantage lies in handling
complex non-linear relationships between variables and effectively identifying features with critical
influence on the prediction target.

Random forests can uncover latent associative features elusive to linear analysis, complementing Pearson
correlation analysis to ensure the filtered feature subset comprehensively covers relevant information
while maintaining high predictive efficiency. This approach maximises the retention of variables
exhibiting significant explanatory power for stock return forecasting.

3.2.1 Pearson Correlation Analysis

Pearson correlation analysis is frequently employed to measure the strength and direction of linear
relationships between two continuous variables. It constitutes a standardised processing method that
utilises the ratio of covariance to variable standard deviation to eliminate the influence of variable
dimensions, thereby objectively reflecting the degree of linear association between variables. This study
employs heatmap visualisation techniques to intuitively present the linear correlation between features,
as illustrated in Figure 4. The intensity of colours in the figure exhibits a strong correlation with the
magnitude of the absolute correlation coefficient. For instance, warm-toned areas (red spectrum) denote
the strength of positive correlations, while cool-toned areas (blue spectrum) reflect the degree of negative
correlations. The distribution observed in the correlation heatmap indicates that most features exhibit

varying degrees of linear dependence.
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Figure 4. Results of Pearson Correlation Analysis
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As illustrated in the figure, price-related indicators such as the opening price (open) and closing price
(close) exhibit multiple linear relationships with other features. However, as these price characteristics
directly record the raw state of market transactions and contain substantial latent information, it has been
decided to retain them in their entirety. Volume indicators (volume Z) exhibit a strong positive
correlation with capital flow indicators (money Z), signifying that capital dynamics directly influence
market trading activity. Moving average indicators, exemplified by SMA, demonstrate not only high
internal positive correlation but also strong associations with price-based indicators. This aligns with the
nature of moving averages, which are calculated from price sequences to smooth and present price trends,
enabling effective tracking of price movement changes. Technical indices such as RSI 14 exhibit
moderate positive correlations both among themselves and with certain moving average indicators. Such
indicators demonstrate synergistic capabilities in reflecting market overbought/oversold conditions and
momentum shifts, thereby aiding trend analysis. Bollinger Band-related metrics like Lower Z and
Middle Z can delineate price fluctuation ranges, providing reference points for assessing price
boundaries. In summary, an initial screening of indicators is conducted.

3.2.2 Random Forest

Feature Importances
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Figure 5. Random Forest Feature Selection Results

The feature importance chart derived from the random forest reveals significant variations in the
importance of different features to the model. Among these, RSI 14 exhibits the highest feature
importance, indicating that during the random forest model's learning process, the 14-period Relative
Strength Index data contributes most significantly to the prediction outcomes. This indicator effectively
reflects the comparison of buying and selling forces within the short-term market and the relative strength

of price movements, providing the model with crucial market sentiment information. Following closely
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are variables such as D and MOM 10, demonstrating their considerable importance within the model by
providing valuable predictive insights from distinct perspectives; Features such as EMA 12 Z and high Z
exhibit relatively lower importance, suggesting their weaker influence on prediction outcomes within the
random forest model. This may stem from their information being partially covered by other features, or
their unique value failing to be fully demonstrated within the current dataset and prediction objectives.
This study constructed a multidimensional feature selection framework through cross-validation of
Pearson correlation heatmaps and random forest importance assessments. By integrating results from
correlation analysis and random forest dual screening, the research simultaneously avoided information
redundancy and multicollinearity issues inherent in high-dimensional data while ensuring the feature set
comprehensively covered critical market information. The selected feature set comprises open, close,
high, low, BIAS SMA 6, RSI 14, ROC 12, K, D, money, lower, upper, and SMA 5. This approach
maximises market information coverage while minimising feature redundancy, thereby enhancing the
model's effectiveness and accuracy in predicting stock returns.

3.3 Evaluation Indicators

This study drew upon prior scholarly research when constructing the comprehensive evaluation metric
system, selecting RMSE, MAE, R?, and MAPE as core assessment indicators to systematically evaluate
model predictive performance across multiple dimensions. RMSE and MAE focus on measuring absolute
error, while MAPE examines relative error performance. R? provides an overall assessment of the model's
fit. This evaluation framework enables a comprehensive and objective assessment of model performance,
offering a scientific basis for optimisation, refinement, and practical application.

3.4 Parameter Selection

The software employed in this research and its version is Python 3.9, utilising the following modules:
Numpy 2.2.4, Pandas 2.2.3, pandas_ta 0.3.14b, and matplotlib 3.10.1. Additionally, the specific
parameters configured for the CNN-LSTM-Attention model are as follows:

Table 2. Specific Parameters of the CNN-LSTM-Attention Model

Parameters Parameter value
CNN layer Number of convolutional kernels 64
Convolutional kernel size 3*3
Activation function ReLU
padding 1
LSTM layer Input feature dimension 64
Number of hidden units 50
Activation function Sigmoid
Attention layer Activation function Softmax
Training configuration parameters ~ Output dimension 1
9
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Optimizer Adam
Learning rate 0.001
Number of training epochs 200

Loss function MSELoss
Batch_size 128

4. Analysis of Stock Market Yield Forecast Model Results

4.1 Single-Variable Model Fitting Results

In the single-variable forecasting scenario utilising only historical data from the CSI 300 Index as input
features, the fitting performance of each model exhibited significant variation. In terms of error metrics,
the CNN-LSTM-Attention model—which integrates a convolutional neural network (CNN) with an
attention mechanism—delivered the most favourable performance. Its root mean square error (RMSE)
was as low as 53.4049, while its mean absolute error (MAE) stood at 37.7155, representing the smallest
values among all models. Concurrently, this model achieved a coefficient of determination (R?) 0of 0.9619,
approaching unity, indicating its strongest interpretability of data trends. Its mean absolute percentage
error (MAPE) of merely 1.03% further validated the reliability of its predictive accuracy. By contrast, the
baseline LSTM model performed worst, with an RMSE of 8§1.9025 and R? of 0.9105. The disparity with
the optimal model demonstrates the effectiveness of incorporating CNN feature extraction capabilities and
the Attention weight allocation mechanism in enhancing univariate time series forecasting performance.
Notably, the LSTM-Attention model-—which merely superimposes the Attention mechanism
(RMSE=74.5581, R?=0.9258)—yields inferior results to the CNN-LSTM hybrid model (RMSE=57.7655,
R*=0.9555). This indicates that in univariate scenarios, convolutional extraction of local features may yield

greater predictive improvements than weight optimisation via Attention mechanisms.

Table 3. Comparison of Single-Variable Model Fitting Results

Model Name RMSE MAE R2 MAPE
LSTM 81.9025 54.5159 0.9105 1.47%
CNN-LSTM 57.7655 46.4615 0.9555 1.23%
LSTM-Attention 74.5581 55.6849 0.9258 1.52%
CNN-LSTM-Attention 53.4049 37.7155 0.9619 1.03%

4.2 Multivariate Model Fitting Results

When incorporating multi-dimensional relevant features (open, close, high, low, BIAS SMA 6, RSI 14,
ROC 12, K, D, money, lower, upper, SMA_5) for prediction, the overall performance of each model
improved compared to the univariate scenario, and the ranking of model performance changed. Among

these, the CNN-LSTM-Attention model maintained its advantage, with RMSE reduced to 47.0523, R?
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improved to 0.9705, and MAPE at merely 0.86%. This demonstrates the model's enhanced capability to
fuse complex features under multivariate input conditions. Notably, the LSTM-Attention model
demonstrated significant improvement in the multi-variable scenario, with its RMSE decreasing from
74.5581 in the single-variable scenario to 57.5020, MAE at 34.0478, and MAPE at 0.91%, placing it
second only to the optimal model. This indicates that the attention mechanism can more accurately
capture the temporal correlations of key influencing factors when processing multi-source input features.
Moreover, the base LSTM model's R? in the multi-variable scenario increased from 0.9105 to 0.9526,
with substantial optimisation of error metrics. This validates the effectiveness of incorporating external
correlation features in enhancing the predictive accuracy of the CSI 300 Index. Conversely, the CNN-
LSTM model exhibited largely consistent performance across single- and multi-variable scenarios,

potentially due to the limited efficiency of its convolutional layers in extracting multi-variable features.

Table 4. Comparison of Multivariate Model Fitting Results

Model Name RMSE MAE R2 MAPE
LST™M 59.5908 40.2923 0.9526 1.08%
CNN-LSTM 57.7655 46.4615 0.9555 1.25%
LSTM-Attention 57.5020 34.0478 0.9566 0.91%
CNN-LSTM-Attention 47.0523 31.9029 0.9705 0.86%
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Figure 6. Multivariate Model Fitting Results
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5. Discussion

This study employs a CNN-LSTM-Attention model to forecast returns on the CSI 300 Index, marking a
pivotal advancement in financial time series analysis. By employing Pearson correlation heatmaps to
dissect the interrelationships among financial indicators, it elucidates the intrinsic connections between
price, volume, and technical indicators, thereby establishing a robust foundation for feature selection in
model inputs. Fitting results indicate: (1) Multivariate models more comprehensively reflect market
dynamics, encompassing richer information, thus yielding superior fitting outcomes compared to
univariate models. (2) Hybrid models overcome the limitations of single-model approaches through
structural synergy, achieving more precise fitting of stock return variations.

Overall, this study validates the application potential of deep learning models in financial return
forecasting while revealing the challenges posed by market complexity to precise prediction. It aims to
provide insights for quantitative financial investment and risk management practices, driving deeper
integration of artificial intelligence and financial analysis within fintech. This will empower market
participants to respond to volatility more rationally and scientifically, advancing the ongoing exploration

of financial market patterns.
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