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Abstract

The mystery behind the bird nest’s construction is not well understood. Our study focuses on the

stability of a self-supporting nest-like structure. Firstly, we derived a stable/unstable phase boundary

for the structure at the fixed coefficient of friction with varying geometrical parameters through force

analysis. Structures with a lower height and greater friction coeffi- cient between rods are more stable.

The theoretical phase boundary matched the experiment results well. Then we investigate the nest

structure’s stability under applied weight. Static structures with lower height and more rods

(five>four>three) are more stable. Our theory also predicts a transition from plastic phase to elastic

phase. These theoretical predictions are all confirmed by experiment. In the experiment, we also find

that wet rod structures are more stable than dry ones. The structures can support up to 100 times of it’s

weight.
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1. Introduction

Birds choose simple elements from then environment and synthesize them into their nests (Figure

1). However, the mystery behind the bird nest’s construction is still not well understood (Weiner,

Bhosale, Gazzola & King, 2020). Siobhan Roberts (Siobhan, 2020) simplifies a nest to random

packing of sticks (slender grains) and hypothesizes that “the nest state” results from the “jamming”

of its elements (Andrea & Sidney, 2010) that prevent them from falling apart. Inspired by these

works, we will study the mechanics of a nest structure made of bamboo sticks and try to answer

how and why birds can build a stable structure by merely packing.
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Figure 1. Bird Nest (from Internet)

Figure 2. Nest is not a Stick Bomb

We will not regard a nest as a stick bomb (Popular Science Matters, 2020) (explodes and releases

the elastic potential energy when falls to the ground), as shown in Figure 2, with stored elastic

potential energy to keep itself stable. In a stick bomb, it is the external force that causes the elastic

deformation which produces the normal forces and produces the friction to hold the whole

structure. In this aspect, we suppose that the normal forces inside a nest arise to resist its own

gravity and balance the structure. Neither will we use a container to hold the random sticks together

(Yashraj, Nicholas, Butler, Seung, Mattia & Hunte, 2022). Like a real bird does, we try to obtain a

stable structure that can stand by itself by merely packing. Then, we find such a self-supporting

structure with only a few sticks (see figure 3 and 4), where the normal force inside a nest arises to

resist its own gravity. To build a practical bird nest, our structure may act as the base of the nest

that supports the weight of a bunch of filling sticks and the birds and eggs.

Figure 3. Build the Structure

Figure 4. Rod Structures
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Our study focuses on the stability of this self-supporting nest structure. We derive the stability

condi- tions and obtain a phase diagram of a free nest structure by force analysis and verify the

phase diagram by experiment. Then we test the nest structure’s stability under applied weight.

Ultimately, this paper aims to explore new possibilities of the potential application of the nest

structure in architecture, packaging, and other fields of industry. By analyzing its properties, we

aim to pave the way for more sustainable and resilient materias.

2. Static Stability of Free Bird Nest Structure

Some structures are able to stand steadily whereas others collapse or slide down to a stable level.

To derive the physical conditions that allow rods to stand stable, we analyze the forces and

torques in this system. First, we theoretically analyze the forces in the system and mathematically

derive the conditions. Then we will verify the conditions through experiments.

2.1 Theory

2.1.1 Variables

Table 1. Variable List Symbol Description

L Length of the Rod

d1, d2, d3 Length of lower, middle, and upper

segment

m Mass of the rod

t Thickness (diameter) of rod

n Number of rods

θ Angle between rods and the ground

α Interior Angle of a regular n-gon

µ Friction between rods

µ′ Friction between rods and table

h Height of rods

Figure 5. Visual Representation of Variables
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2.1.2 Angle with Ground

All variables mentioned in the following text are represented in table 1. In figure 5, the angle θ

each rod makes with the ground can be determined geometrically. The height of the pink triangle on

the left is (d1 +d2 ) sin θ, and the height of the green triangle on the right is d1 sin θ . The two

heights differ by the diameter of the rod,t.

d1sinθ + d2 sin θ = d1 sin θ + t (1)

sin θ = (2)

Thus, the height of a structure his

h = L sin θ = L (3)

2.1.3 Force and Torque Analysis

There are 7 forces in total on the rod: 3 pairs of normal forces and friction forces, along with gravity.

If the structure is in equilibrium, forces and torques are balanced for each rod. To simplify, we

only investigate rod structures that are symmetrical. (Yao, Liu, Yang, Xiao & Zheng, 2024)

Figure 6. Free Body Diagram

The weights of the rods are distributed evenly across the three contact points with the ground. Thus,

F3 = mg and Ff 3 ≤ µ′ mg. As the structure is symmetric, F1 = F2 and Ff 1 = Ff 2 .

We establish a 3-D coordinate system. The x-z plane is the table. +x is from left to rig

ht, and +z is from closer to further. y is the height from the ground. We then represent

the forces as vectors.



www.scholink.org/ojs/index.php/mmse Modern Management Science & Engineering Vol. 6, No. 3, 2024

Published by SCHOLINK INC.
41

(4)

Take the contact point to the ground as the center of rotation. The radius of each force can be repre-

sented as the following vectors:

(5)

Forces and torques need to be balanced out for the structure to stay in equilibrium. By Σ
⃗

F =
⃗

0

and Σ
⃗

R ×
⃗

F =
⃗

0 , we can set up the following system of equation.

The first three equations are derived from force equilibrium in the x, y, and z direction respectively.

The latter three equations are derived from torque equilibrium in the x, y, and z directions

respectively. With F1 = F2 = and Ff1 = Ff2 = Ff , we can then simplify the set of

equations to the following:

We can derive the condition for µ by adding equation (14) and equation (15).
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(17)
By Ff ≤ µFN ,

(18)
Substitute equation (17) into equation (16),

(19)

Substitute equation (19) into equation (17),

(20)

Substitute equation (17) into equation (12) and equation (13),

(21)

(22)

Combining the components of Ff 3, we can derive the condition,

. (23)

Equation (18) is the condition for static friction coefficient between rods , and

equation (23) is the condition for static friction coefficient between rods and the table

′. When ′is big enough, the condition for would be the
limiting factor, and the stability of the structure will depend on d1 and d2 only.

2.1.4 Energy Analysis

Figure 7 We attempt to analyze the rods structure’s behavior through potential energy level.
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Consider the following structure. The rod on the left is supported by the rod on the right. Their

point of contact with the ground is fixed, so what distance of x gives the maximum energy?

Figure 7. Two Rods Structure and Variables

tan = (24)

The potential energy of the rod A

E∝ = (25)

We solve for extremes by taking the derivative

(26)

One local extrema exists at

(27)

Figure 8 shows the potential energy of rod A as a function of x, the distance from the intersection

to the landing point of rod B. There is one global maxima. The system’s potential energy will drop

rapidly as x decreases, and will drop quickly as x increases.
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Figure 8. Potential Energy Trend of Rod A, L = 30, a = 5, b = 15, θ =

2.2 Experiments

2.2.1 Experiment Results

We test our theoretical prediction with structures of different materials, lengths, diameters, and

number of rods. We vary the combination of d1 and d2 and check whether the structure can

self-support. We then compare the experiment results to theoretical prediction. Under sufficient µ′ ,
we focus only on the condition for µ . Structures with d1 and d2 above the curve are stable whereas

those below is unstable. Parameters of test cases are shown below in Table 2.

Table 2. Summary of Test Cases

Test Case Number of Rods Material Diameter (cm) L (cm) µ

Case 1 3 Plastic 0.30 20 0.36

Case 2 3 Bamboo 0.80 30 0.27

Case 3 4 Bamboo 0.80 30 0.27

(a) Case 1: Three Plastic Rods (b) Case 2: Three Bamboo Rods (c) Case 3: Four Bamboo Rods

Figure 9. Stability Diagram for Theoretical and Experimental Results

Figure 9 The theoretical stability boundary is mainly determined by µ and d2, see equation (18),
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and is inde- pendent of mass and number of rods—the experiment result of three and four rods is

almost the same. Unstable experimental data may fall beyond the curve. The reason is that the

stable structures near the boundary is rather weak and can easily be disturbed by very small

disturbance. In conclusion, the theoret- ical and experimental results matched. Theory better

predicted the stability of bamboo rods than plastic rods. This is likely because the thin plastic rods

deformed in shape, which affected the friction coefficient.

3. Static Stability ofBirdNest Structure underAppliedWeight

3.1 Theory

A stable structure should maintain its shape when holding weights. The objective of this section is

to investigate the relationship between applied weight and structural deformation. We aim to

quantify this ability by applying incremental loads on the top of rod structures and subsequently

measuring the corresponding decrease in height.

We introduce the new force from applied weight besides the force vectors in equation (4). F3

changes alongside, restoring balance of forces.

(28)

mg+ Mg 0].

We need to resolve the balance of torque. The radius of applied force is

Ra = L cos θ Lsin θ 0 ] (29)

The new force doesn’t affect condition for µ (Equation (18)), but would alter condition for µ′ .

(30)

(31)

3.2 Experiment Procedure

We apply force along the rod and measure the minimum angle that the rod can make with the

ground. As shown in the figures, we can calculate and take account of the frictional forces the rods

make with the ground Figure 10 and Figure 11.
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Figure 10. Friction Coefficient Measurement Figure 11. Friction Measurement

Thus, we can derive µ′ from the angle with ground:

= cot θ . (32)

Figure 12 Other than measuring the friction of the structures, we also use the Bending Method

(Song, Sun, Liu, & Li, 2016) to calculate the Young’s Modules of dry and wet rods. We first place

the rod on two thin blades and hang a weight load at the middle of the rod. Young’s modules can be

calculated as

(33)

Figure 12. Young’s Modules Measurement

The parameters of the rods we use are shown in the Table 3.

Table 3. Values ofVarious Rod Types

Type of Rod r (cm) ∆m (kg) m (g) l (cm) ∆z (cm) Y (Pa)

Wet Rods 0.80 2.6 9.0 30.0 1.2 5.7 × 109

Dry Rods 0.80 2.6 9.75 30.0 1.0 7.2 × 109
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For three-rods, four-rods, and five-rods structures, we set d1 = 10cm and vary d2 from 5cm

(structures with d2 < 5 cannot stand on its own) to 13cm, increasing 2 centimeters at a time. We also

soak rods into water overnight to observe the effect of moisture.

3.3 Experiment Results and Analysis

The three figures below are experiment results for n=3, 4 and 5.

(a) Three Dry Rods,experiment date June 4th

(b) Four Dry Rods,experiment date June 4th

(c) Five Dry Rods, experiment date June 4th

Figure 13. Height Change of Three, Four, and Five Rods Structures under Weight

All the structures can withstand up to 60-100 times of their own weights, see figure 13. The structure

drops at a rapid rate with the initial few weights. Then, it reaches a steady state in which the

height decreases much slower with very small slope. Due to the limit of the measurement accuracy,

the curve exhibits a decreasing behavior in a staircase manner.

For three rods structures, the curve with d2 = 5 drops so fast initially that it collapses to the curve

with d2 = 7. Similarly, the curve with d2 = 9 also collapses to the curve with d2 = 11. This is not

the case for four and five rods system, such that there are no crossings between curves and the rank

by initial height is same as the rank by final height. Therefore, the four and five rods systems are

more stable and rigid than the 3 rod one.
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(a) d2 = 5 (b) d2 = 7

(c) d2 = 9 (d) d2 = 11

(e) d2 = 13

Figure 14. Height of Three Dry Rods Structures for Different d2 Values

In Figure 14, three, four, and five rods structures with the same d2 are plotted together. Observing

figure 14a, the three rods structure with d2 = 5 drops significantly in height, whereas 4 and 5

rods structures nearly retain at the same plateau much higher than 3 rods structures. For bigger

values of d2 , the difference between three, four, and five rods is reduced significantly.
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Figure 15. Potential Energy Trend for Acute and Obtuse Angle

One difference between the stability behavior of three and five rods’ structure may be attributed to

the potential energy trend. The two neighboring rods of five rods structures form an obtuse angle

(figure ??), whereas three rods structures form acute angle (figure ??). The potential energy curves

for these two cases are plotted in figure 15 as functions of 儿 (the distance on the lower rod between

the contacting point of the rods and the end it touches the ground, see figure 7). A larger x denotes a

higher contacting point. Two points are indicated in figure 15 for x = 15. The point in case of obtuse

angle is on the right side of a peak , showing that it has to go over an energy barrier before sliding

down; in the case of acute angle, however, the potential energy is on a steep slope on the left side of

a peak, meaning that it is much easier to slide down. Thus, five rods structures are more stable

since the barrier of the energy peak prevents it from sliding down.

(a) Three Dry Rods, experiment date August 25th. (b) Three Wet Rods, experiment date August 25th.

(c) Four Dry Rods, experiment date August 1st. (d) Four Wet Rods, experiment date August 1st.

Figure 16. Three/Four Dry/Wet Rod under Weight, the Curve with Lighter Color Represent”

Reformation”

In the height-weight Figure of three rods (Figure 13), multiple metastable states exist. The curve

of d2 = 5 jumps to d2 = 7 curve when the first weight is applied. The d2 = 9 curve merges with d2

= 11 under higher weight. We presume that the nest will not be able to retain its original height

after removing the weights, so we conducted hysteresis experiment as shown in figure 16. This

experiment was performed two months after the first one. The changing weather and environmental

conditions may affect the results. This time, we also made comparison experiment between dry and
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wet rods. Their friction coefficients and Young ’s Modulus were measured and listed in table 4.

Table 4. Physical Properties of Dry and wet Rods

Dry Rods Wet Rods

Static Friction Coefficient 0.202 0.485

Young’s Modulus ( ×109 Pa) 7.15 5.69

After all fifteen weights are applied, we then remove them one by one to observe the hysteresis

loop of the different rod structures. Solid (dotted) curves are the results when applying (removing)

weight. In dry rod experiment (figure 16a), the results are mostly similar to figure 13a but different in

terms that, this time,the three rod curves ford2 = 5, 7, 9 first merge and then separate afterwards.

The four rod curves never intersect. In the wet rod curves ford2 = 5, 7 merge slowly and other

curves do not intersect with each other.

Now we look at the hysteresis properties. As we have expected, in figure 16a the curves for d2=5,7

jump to d2=9 curve, their initial heights are not retained after removing the weights. The wet

rodexperi- ment for d2=5 is the same case, see figure 16b.

Figure 17. Recovery Ratio ofWet/Dry Three/Four Rods Structures

In Figure 16c, there also exist relatively small hysteresis loops. In some cases, the recovering

height might ever be above the original one. Yet, we still regard the structures as an elastic phase

approximately. If we define elastic phase as a recovery ratio greater than 90%, then most four rods

structures are elastic, whereas the three wet rods structures are elastic when d2 ≥ 7, see Figure 17.

For the structures not being able to recover to their initial heights, the points that deviate from

linearity will be regarded as plastic phase. Thus, applying weight can transfer the structures from

plastic phase to elastic phase.
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Figure 18. Stiffness Coefficient for Dry/Wet Three/Four Rods

We then define the stiffness coefficient as k = . The data are obtained by taking the average of

the slopes over different d2 from Figures 13 and 16. Only the linear ranges are used. As shown in

figure 18, five rods structures are significantly stiffer than four and three rods structures. The wet

structures are less stiff than dry structures because of a lower young’s modulus.

3.4 Comparison to Theory

According to theory, applying weight does not change the condition for µ (equation 18) but

changed the condition for µ′ (equation 31). If friction coefficient with the table cannot support the
structure, it will slide down and d2 will increase.

Figure 19. Theoretical Phase Boundary between Stable and Unstable States

Figure 19 is the theoretical phase boundaries between stable and unstable structures for three, four

and five rods structures when µ′ = 0.82, applied weight M = 1000g. The area above each curve is
the stable phase and beneath each is the unstable phase. Both the theory (Figure 19) and the

experiment (Figure 14) prove five rods structures can remainstable under a lower d2. It is not just

because of a lower weight per rod, but also because number of rods affect the parameter α (interior

angle of a regular polygon), and a bigger α would yield a bigger stability area.

The experiment confirms that the structures will decline rapidly at the beginning and slowly later

(Figure 13). Also, the wet rods structures are more stable because of a higher recovery ratio than

dry rods (figure 17) and a lower standard deviation of stiffness coefficient (Figure 18) than dry
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rods. These two trends can be explained by the condition for minimum µ′

(equation 31). to 1. When M is

close to zero, the ratio increases rapidly as M increases, whereas the term would approach 1 as M

is sufficiently big. For an insufficient value of µ′ , this explains the behavior of the initial rapid
decline and later slower decline. In addition, a bigger m (heavier rods) would yield a lower phase

boundary, which explains the relatively higher stability of the wet rods.

4. Conclusion

This study discovers a self-supporting bird nest structure constructed by merely packing a few

bam- boo rods, with neither container nor fastener. We analyze the stability of the structure under

different conditions. For free rods structures (no applied weight or vibration), several conclusions

can be derived theoretically. When the coefficient of friction with the ground µ′ is sufficient, the
stability of the struc- ture can be determined by the condition for µ, which only depends on d1 and

d2 . A theoretical phase boundary between the stable and unstable states has been obtained at fixed µ

with varying d1 and d2 . The theoretical phase boundary matched the experiment results well.

We also test the stability of the structure when weights are applied. The threshold µ′ underweights
would increase by a factor of This factor

increases quickly at first when applied mass M is small and approaches 1 as M gets bigger. The

rods in structures would slide down (height decrease, d2 increase) to satisfy the condition for µ′ .

The condition for µ′ also included the parameter α, the interior angle of a regular n-gon. A bigger

α would yield a smaller threshold µ′ , so structures with more rods are more stable. In conclusion,
static structures with greater d2 and a number of rods (five>four>three) are more stable. We also

used potential energy analysis to explain the stability of the structures. These theoretical

predictions are all verified in the experiment. We also find that wet rod structures are more stable

than dry ones. The structures can support up to 100 times of it’s own weight.

Yet, this study is still an oversimplification compared to bird nests in real life. Unlike the structures

in which each rod takes the same weights, rods in real bird nests each have different lengths and

diam- eters. The real nests are not necessarily symmetric. Randomness also exists in the process of

bird nest construction. These are points to be investigated in further studies.
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