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Abstract

This paper addresses the limitations of traditional logistics route optimization models, which overly

rely on historical average data and struggle to adapt to dynamic urban traffic environments. It

proposes an interdisciplinary decision-making framework integrating spatial syntax with urban big

data. The research aims to enhance route optimization accuracy and robustness by constructing a

“spatial-temporal” dual-driven model. This model integrates static road network topology attributes

(integration and connectivity values) generated by Depthmap with dynamic multi-source big data

(historical traffic flow, time, and climate). Results demonstrate that compared to traditional shortest

path models, this framework significantly reduces average travel time while improving network load

balance and prediction accuracy. The conclusion asserts that this model effectively resolves the

“shortest path not always optimal” challenge, providing a decision support tool for smart logistics that

combines theoretical depth with practical value.
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1. Introduction

With the explosive growth of e-commerce and on-demand delivery, urban logistics networks face

unprecedented challenges in efficiency and resilience. Traditional “shortest path” models, though

theoretically sound, frequently fail in complex urban environments: they cannot explain why a

physically shorter route may be slow due to topological isolation, nor can they handle uncertainties

from dynamic factors like traffic flow and weather events. This “apparently short yet actually
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circuitous” pain point stems from traditional models' neglect of road network spatial characteristics and

their inadequacy in integrating multi-source dynamic information. An interdisciplinary new

methodology is urgently needed to build a next-generation logistics decision-making brain.

Current academic research on this issue advances along two primary directions: On one hand,Space

Syntax theory, as introduced by Hillier and Hanson (1984), and its Depthmap tool provide a robust

quantitative framework for understanding deep topological structures of road networks (such as global

integration and connectivity values), as explained by Turner (2005), revealing the intrinsic influence of

spatial form on human activity flows.However, its application remains largely confined to urban

planning and static analysis, lacking integration with real-time dynamic data. On the other hand,

logistics optimization models leveraging big data and artificial intelligence (such as spatio-temporal

graph neural networks for traffic forecasting) excel at extracting temporal patterns from massive

datasets. Yet their decision-making often lacks an understanding of the inherent spatial structure of

cities. This is akin to a driver relying solely on real-time traffic navigation without comprehending the

urban layout, leading to local optima and decisions lacking interpretability.

Given this, this paper aims to bridge the aforementioned research gap by promoting the

interdisciplinary integration of spatial syntax and urban big data to construct a new-generation

decision-making framework for logistics route optimization. The core objectives and innovations of

this study are as follows: First, theoretical integration innovation involves synergistically modeling

static spatial syntax metrics computed by Depthmap (as prior knowledge representing the inherent

traffic potential of road networks) with dynamic multi-source big data (historical traffic flows, time,

and climate) to form a “spatial-temporal” dual-driven cost function. Second, methodological innovation

involves designing a data-driven adaptive fusion mechanism that dynamically balances the weights of

static topological structures and real-time dynamic information in route decisions, thereby overcoming

the limitations of traditional static weighting or purely data-driven approaches. This research not only

offers new insights for addressing the “last-mile” bottleneck in urban logistics but also provides a

replicable paradigm for interdisciplinary studies in the smart city domain.

2. ResearchMethodology

This study aims to construct a logistics route optimization decision-making framework integrating

static spatial structures with dynamic spatiotemporal big data. The overall technical approach follows

the logical sequence of “data fusion and processing → model construction → simulation experiments

→ performance evaluation” (Figure 1). To validate the framework's effectiveness, the area within

Beijing's Fifth Ring Road—characterized by complex road networks and significant traffic flow

dynamics—was selected as the case study.
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Figure 1. Research Technology Roadmap

2.1 Data Sources and Preprocessing

This study employs a multi-source data fusion strategy. Static road network data is sourced from

OpenStreetMap (OSM). After undergoing topological checks, repairs, and simplification in

QGIS(removing irrelevant elements such as pedestrian paths), a topological road network suitable for

motor vehicle route planning is formed, following the principles of spatial networks outlined by

Barthélemy (2011). Subsequently, DepthmapX software converted the network into a line graph model.

Core spatial syntax metrics—including global integration, local integration (R=3, 5, 10 km), and

connectivity values—were calculated for each road segment to quantify its static topological properties.

Dynamic spatiotemporal big data originated from Didi’s “Gai a Project” November 2019 weekday

dataset, providing segment-level average travel speeds (15-minute temporal resolution) within the

study area, similar to the approach used in geo-aware point-of-interest recommendation systems [4]. To

enhance model generalization, temporal features extracted from timestamps (hour, weekday) and

historical weather data (weather conditions, temperature) obtained from the National Meteorological

Science Data Center were integrated. All data were integrated and aligned within a Python environment

using Pandas and GeoPandas. A unified spatiotemporal panel dataset was constructed with segment ID

and timestamp as key fields, employing linear time series interpolation to fill missing values.

2.2 Construction of a Dual-Driven Spatio-TemporalModel​

The model's core is a decision framework comprising three modules: a cost function, dynamic weight

prediction, and path search. First, we define the comprehensive travel cost function:

Ci(t)=(1−α)∙Ws(i)+α∙Wd(i,t)

whereWs(i)=1/Ig(i)represents the static spatial weight(Ig(i)normalized global integration)characterizing

the inherent travel potential of a road segment;Wd(i,t)=Ti(t+1)denotes the dynamic temporal weight,

representing the future travel time predicted by the Spatio-Temporal Graph Convolutional Network

(STGCN); αis the adaptive fusion factor (determined via grid search), balancing the weights of static

and dynamic information.

Dynamic weight W。(i,t) prediction is achieved through the STGCN model, as described by Yu et al.

(2017), which takes as input a sequence of spatiotemporal graphs G=(V,E,A,F) over the past P time

slices, where nodes Vrepresent road segments, edges E are defined by network connectivity, and node

features F include historical velocity, time, weather, and spatial syntax metries. Through stacked

spatio-temporal convolutional blocks (graph convolutional layers capture spatial dependencies, while

one-dimensional temporal convolutional layers capture temporal dynamics), the model is trained using
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Mean Absolute Error (MAE) as the loss function to achieve precise prediction of future travel times.

Finally, the aforementioned cost function is integrated into the A* path search algorithm. The actual

cost g(n) within the algorithm is calculated by accumulating the comprehensive costs of path

segmentsCi(t), while the heuristic function h(n) employs Euclidean distance. This approach solves for

the globally optimal path considering both structural constraints and real-time conditions at a specific

departure time.

2.3 Experimental Procedure

The experimental design encompasses diverse traffic scenarios to assess model robustness, including:

morning rush hour (07:00-09:00), off-peak hours (14:00-16:00), and simulated rainy conditions

(achieved by uniformly reducing background traffic flow speed by 15% to mimic adverse weather

impacts). Within each scenario, 100 distinct delivery tasks (origin-destination pairs) were randomly

generated and run using both the SS-D model and three baseline models. To mitigate random error, the

entire experimental process was repeated 20 times, with all evaluation metrics averaged across these 20

iterations. Additionally, paired t-tests were conducted to statistically analyze performance differences

between the SS-D model and each baseline model, with significance set at p < 0.05 to validate the

statistical significance of performance improvements.

3. Results andAnalysis​

The experimental results systematically present and analyze the simulation outcomes of

theSpatial-Temporal Dual-Driver Model (SS-D Model) alongside three baseline models (SP, HT,

RT)across three distinct traffic scenarios, in line with the approaches used in urban traffic prediction

and spatio-temporal data mining [6]. All results represent the average of 20 repeated experiments, and

statistical tests indicate that differences between groups are statistically significant (p < 0.05).

Figure 2. Comparison of Average Travel Times of each Model in Different Scenarios
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3.1 Core EfficiencyMetric: Average Travel Time

Average travel time serves as the most direct metric for evaluating the performance of path

optimization models. As shown in Figure 2 and Table 1, significant variations exist in the performance

of different models across various scenarios.

Table 1. Average Travel Time for each Model (unit: Seconds) and the Improvement Rate Relative to

the SPModel

Model
Morning Rush

Hour​
​ ​ Off-Peak​ ​ ​ Rainy Day​

Average

Improvement

Rate​

SP(Baseline) 1865 1520 2145 -

​ HT​ 1721 (7.7%) 1432 (5.8%) 1988 (7.3%) 6.9%

​ RT​ 1588 (14.8%) 1410 (7.2%) 1854 (13.6%) 11.9%

SS-D ​ 1496(19.8%)​

​

​ 1365(10.2%)​ ​ ​ 1752(18.3%)​ ​ ​ 16.1%​

Results show that the SS-D model achieved the lowest average travel time across all scenarios. Its

advantages were most pronounced in the most complex scenarios—morning rush hour and rainy

conditions—where it demonstrated nearly 20% improvement over traditional shortest path (SP) models

and 5.8% and 5.6% gains over pure real-time (RT) models, respectively. This outcome directly

validates the significant value of integrating static spatial prior knowledge with dynamic information.

Although the RT model dynamically responds to conditions, it tends to make short-sighted decisions

when data fluctuates significantly or perception blind spots exist (e.g., diverting onto low-integration

side roads to avoid immediate congestion, leading to subsequent travel difficulties). The spatial syntax

weight (high integration) in the SS-D model acts as a stable “compass,” guiding vehicles to prioritize

roads with superior topological structure. This enables long-term beneficial decisions even with

incomplete dynamic information, delivering the strongest robustness and highest efficiency in complex

scenarios.

3.2 System PerformanceMetric: Network Load Balancing​
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Figure 3. The road Network Load Balancing (Standard Deviation) of eachModel under Different

Scenarios

Road network load balance (standard deviation) reflects the uniformity of vehicle distribution, preventing

localized congestion. Results are shown in Figure 3.

The SS-D model consistently achieved the lowest network load balance across all scenarios, with a

standard deviation significantly lower than other models. The HT model performed worst, even

underperforming the SP model. This finding is crucial. The SS-D model not only enhances individual

vehicle efficiency but also optimizes overall traffic flow at the system level. This is because spatial

syntax metrics (such as integration) inherently identify the “inherent capacity” of each road in the

network to handle traffic flow. The SS-D model guides vehicles to utilize these “arterial roads” more

frequently, preventing them from flooding into ‘capillary’ roads that are physically short but have low

connectivity and weak carrying capacity. This effectively prevents the formation of localized

congestion and achieves efficient utilization of road network resources. In contrast, the HT and RT

models lack this global perspective, and their decisions may lead to vehicles “clustering” in localized

areas.

3.3Model Reliability Metric: Prediction Accuracy (MAE)​ ​

We further analyzed the performance of the STGCN prediction module within the SS-D model and

compared it with the baseline STGCN model that does not incorporate spatial syntax indicators as input

features. The results are shown in Table 2.
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Table 2. Comparison of MAE before and after Adding Spatial Syntax Features to the STGCN

PredictionModel (Unit: seconds)

Scenario
​ Baseline

STGCN​
​ STGCN+SpatialSyntax ​ Improvement Rate​

​ Morning Rush Hour​ 125.6 ​ 112.3​ 10.6%

​ Off-Peak Hours​ 98.4 ​ 90.1​ 8.4%

​ Rainy Days​ 141.8 ​ 126.5​ 10.8%

The results show that incorporating spatial syntax indicators into the input features of the STGCN

model significantly reduces the mean absolute error (MAE) across all scenarios, with improvement

rates ranging from 8% to 11%. This demonstrates that spatial syntax indicators are effective features

for enhancing the performance of temporal forecasting models. The topological structure of road

networks constitutes a stable and fundamental factor influencing traffic flow. Incorporating this as prior

knowledge into prediction models enhances the model's understanding of spatial dependencies. This

enables more realistic predictions aligned with physical constraints when encountering data sparsity

(e.g., newly added roads) or sudden disturbances, thereby improving the reliability of dynamic

weighting.

4. Discussion and Future Prospects

The core of this study lies in constructing and validating a“spatial-temporal” dual-driven path

optimization framework (SS-D) that integrates spatial syntax and urban big data, building upon

previous research on spatial-temporal models for urban traffic flow prediction [7]. Experimental results

fully demonstrate the framework's significant advantages in enhancing path planning efficiency, system

robustness, and prediction reliability. The following sections will delve into the deeper implications of

these findings, examine them within a broader academic context, and identify the study's limitations

alongside future directions for advancement.

4.1 Interpretation of Results and Academic Contributions

This study reveals that the SS-D model not only surpasses traditional shortest path (SP) models in

efficiency but also outperforms ideal real-time (RT) models assuming perfect information. This finding

holds significant theoretical value. It powerfully demonstrates the strong complementary effect

between static spatial prior knowledge and dynamic temporal information. Purely data-driven RT

models are inherently “reactive,” prone to data noise and locality effects that lead to “myopic”

decisions. By incorporating global topological structures (e.g., integration degree) revealed through

spatial syntax, this study endows the decision system with a “forward-looking” capability, enabling it
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to demonstrate greater robustness in complex dynamic environments.

4.2 Research Limitations and Future Directions

Despite achieving positive outcomes, this study has limitations that also point to future research

directions:

(1). Model Generalization and Adaptability: The model was validated solely on Beijing's road network;

spatial structural differences across cities may impact its universality. Future work should test it on

more urban road networks and incorporate transfer learning or meta-learning frameworks to enhance

generalizability.

(2). Computational Efficiency and Real-Time Challenges: The current framework incurs high

computational costs, posing significant challenges for scenarios requiring second-level responses, such

as instant delivery. Future efforts should focus on model lightweighting, distributed computing, and

embedding spatial syntax metrics into geographic databases to meet real-time demands.

(3). Transition from static fusion to dynamic adaptation: The fusion factor α in this study is a globally

optimized value, yet optimal weights vary by region and time period. Future research should explore

dynamic adaptive α mechanisms that adjust weight balances based on real-time contexts to enhance

intelligence.

(4). Advancing toward multi-objective and sustainable optimization: This study primarily addresses

traffic efficiency. Future work should incorporate social and environmental costs like carbon emissions

and noise pollution, constructing multi-objective optimization models aligned with smart city and

sustainable development strategies.

(5). Deep Integration with Cutting-Edge Technologies: With advancements in vehicle-to-everything

(V2X) networks, 5G/6G, and digital twin technologies, the framework can be deployed within

real-time interactive urban cyber-physical systems. Integrating real-time vehicle data enables precise

prediction and decision-making, achieving fully automated logistics scheduling.

In summary, this study validates the value of interdisciplinary integration methodologies, laying a

foundation for subsequent research, as discussed in the comprehensive survey of urban computing by

Zhao et al. (2019). Addressing urban system challenges requires integrating big data with domain

expertise. Future research will build upon this framework, advancing toward greater universality,

efficiency, and sustainability to contribute to smart city development.
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