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Abstract

This paper addresses the limitations of traditional logistics route optimization models, which overly
rely on historical average data and struggle to adapt to dynamic urban traffic environments. It
proposes an interdisciplinary decision-making framework integrating spatial syntax with urban big
data. The research aims to enhance route optimization accuracy and robustness by constructing a
“spatial-temporal” dual-driven model. This model integrates static road network topology attributes
(integration and connectivity values) generated by Depthmap with dynamic multi-source big data
(historical traffic flow, time, and climate). Results demonstrate that compared to traditional shortest
path models, this framework significantly reduces average travel time while improving network load
balance and prediction accuracy. The conclusion asserts that this model effectively resolves the
“shortest path not always optimal” challenge, providing a decision support tool for smart logistics that
combines theoretical depth with practical value.
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1. Introduction

With the explosive growth of e-commerce and on-demand delivery, urban logistics networks face
unprecedented challenges in efficiency and resilience. Traditional “shortest path” models, though
theoretically sound, frequently fail in complex urban environments: they cannot explain why a
physically shorter route may be slow due to topological isolation, nor can they handle uncertainties

from dynamic factors like traffic flow and weather events. This “apparently short yet actually
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circuitous” pain point stems from traditional models' neglect of road network spatial characteristics and
their inadequacy in integrating multi-source dynamic information. An interdisciplinary new
methodology is urgently needed to build a next-generation logistics decision-making brain.

Current academic research on this issue advances along two primary directions: On one hand,Space
Syntax theory, as introduced by Hillier and Hanson (1984), and its Depthmap tool provide a robust
quantitative framework for understanding deep topological structures of road networks (such as global
integration and connectivity values), as explained by Turner (2005), revealing the intrinsic influence of
spatial form on human activity flows.However, its application remains largely confined to urban
planning and static analysis, lacking integration with real-time dynamic data. On the other hand,
logistics optimization models leveraging big data and artificial intelligence (such as spatio-temporal
graph neural networks for traffic forecasting) excel at extracting temporal patterns from massive
datasets. Yet their decision-making often lacks an understanding of the inherent spatial structure of
cities. This is akin to a driver relying solely on real-time traffic navigation without comprehending the
urban layout, leading to local optima and decisions lacking interpretability.

Given this, this paper aims to bridge the aforementioned research gap by promoting the
interdisciplinary integration of spatial syntax and urban big data to construct a new-generation
decision-making framework for logistics route optimization. The core objectives and innovations of
this study are as follows: First, theoretical integration innovation involves synergistically modeling
static spatial syntax metrics computed by Depthmap (as prior knowledge representing the inherent
traffic potential of road networks) with dynamic multi-source big data (historical traffic flows, time,
and climate) to form a “spatial-temporal” dual-driven cost function. Second, methodological innovation
involves designing a data-driven adaptive fusion mechanism that dynamically balances the weights of
static topological structures and real-time dynamic information in route decisions, thereby overcoming
the limitations of traditional static weighting or purely data-driven approaches. This research not only
offers new insights for addressing the “last-mile” bottleneck in urban logistics but also provides a

replicable paradigm for interdisciplinary studies in the smart city domain.

2. Research Methodology

This study aims to construct a logistics route optimization decision-making framework integrating
static spatial structures with dynamic spatiotemporal big data. The overall technical approach follows
the logical sequence of “data fusion and processing — model construction — simulation experiments
— performance evaluation” (Figure 1). To validate the framework's effectiveness, the area within
Beijing's Fifth Ring Road—characterized by complex road networks and significant traffic flow

dynamics—was selected as the case study.

99
Published by SCHOLINK INC.



www.scholink.org/ojs/index.php/mmse Modern Management Science & Engineering Vol. 8 No. 1, 2026

Dynamic Spatiotemporal DiDi Gaia Project Historical
Big Data Processing Traffic Flow Data

Multi-source data
collection and integration

Static spatial structure data OSM road network QGIS Topology DepthmapX calculates
processing data Check and Repair space syntax metrics

Figure 1. Research Technology Roadmap

2.1 Data Sources and Preprocessing
This study employs a multi-source data fusion strategy. Static road network data is sourced from
OpenStreetMap (OSM). After undergoing topological checks, repairs, and simplification in
QGIS(removing irrelevant elements such as pedestrian paths), a topological road network suitable for
motor vehicle route planning is formed, following the principles of spatial networks outlined by
Barthélemy (2011). Subsequently, DepthmapX software converted the network into a line graph model.
Core spatial syntax metrics—including global integration, local integration (R=3, 5, 10 km), and
connectivity values—were calculated for each road segment to quantify its static topological properties.
Dynamic spatiotemporal big data originated from Didi’s “Gai a Project” November 2019 weekday
dataset, providing segment-level average travel speeds (15-minute temporal resolution) within the
study area, similar to the approach used in geo-aware point-of-interest recommendation systems [4]. To
enhance model generalization, temporal features extracted from timestamps (hour, weekday) and
historical weather data (weather conditions, temperature) obtained from the National Meteorological
Science Data Center were integrated. All data were integrated and aligned within a Python environment
using Pandas and GeoPandas. A unified spatiotemporal panel dataset was constructed with segment ID
and timestamp as key fields, employing linear time series interpolation to fill missing values.
2.2 Construction of a Dual-Driven Spatio-Temporal Model
The model's core is a decision framework comprising three modules: a cost function, dynamic weight
prediction, and path search. First, we define the comprehensive travel cost function:
Ci(H)=(1—a)- W (i)+a-W4(,t)
whereW(i)=1/I,(i)represents the static spatial weight(I,(i)normalized global integration)characterizing
the inherent travel potential of a road segment; W(i,t)=T;(t+1)denotes the dynamic temporal weight,
representing the future travel time predicted by the Spatio-Temporal Graph Convolutional Network
(STGCN); ais the adaptive fusion factor (determined via grid search), balancing the weights of static
and dynamic information.
Dynamic weight W. (i,t) prediction is achieved through the STGCN model, as described by Yu et al.
(2017), which takes as input a sequence of spatiotemporal graphs G=(V,E,A,F) over the past P time
slices, where nodes Vrepresent road segments, edges E are defined by network connectivity, and node
features F include historical velocity, time, weather, and spatial syntax metries. Through stacked
spatio-temporal convolutional blocks (graph convolutional layers capture spatial dependencies, while

one-dimensional temporal convolutional layers capture temporal dynamics), the model is trained using
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Mean Absolute Error (MAE) as the loss function to achieve precise prediction of future travel times.
Finally, the aforementioned cost function is integrated into the A* path search algorithm. The actual
cost g(n) within the algorithm is calculated by accumulating the comprehensive costs of path
segmentsC;(t), while the heuristic function h(n) employs Euclidean distance. This approach solves for
the globally optimal path considering both structural constraints and real-time conditions at a specific
departure time.

2.3 Experimental Procedure

The experimental design encompasses diverse traffic scenarios to assess model robustness, including:
morning rush hour (07:00-09:00), off-peak hours (14:00-16:00), and simulated rainy conditions
(achieved by uniformly reducing background traffic flow speed by 15% to mimic adverse weather
impacts). Within each scenario, 100 distinct delivery tasks (origin-destination pairs) were randomly
generated and run using both the SS-D model and three baseline models. To mitigate random error, the
entire experimental process was repeated 20 times, with all evaluation metrics averaged across these 20
iterations. Additionally, paired t-tests were conducted to statistically analyze performance differences
between the SS-D model and each baseline model, with significance set at p < 0.05 to validate the

statistical significance of performance improvements.

3. Results and Analysis

The experimental results systematically present and analyze the simulation outcomes of
theSpatial-Temporal Dual-Driver Model (SS-D Model) alongside three baseline models (SP, HT,
RT)across three distinct traffic scenarios, in line with the approaches used in urban traffic prediction
and spatio-temporal data mining [6]. All results represent the average of 20 repeated experiments, and

statistical tests indicate that differences between groups are statistically significant (p < 0.05).
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Figure 2. Comparison of Average Travel Times of each Model in Different Scenarios
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3.1 Core Efficiency Metric: Average Travel Time
Average travel time serves as the most direct metric for evaluating the performance of path
optimization models. As shown in Figure 2 and Table 1, significant variations exist in the performance

of different models across various scenarios.

Table 1. Average Travel Time for each Model (unit: Seconds) and the Improvement Rate Relative to

the SP Model

Average
Morning Rush
Model Off-Peak Rainy Day Improvement
Hour
Rate
SP(Baseline) 1865 1520 2145 -
HT 1721 (7.7%) 1432 (5.8%) 1988 (7.3%) 6.9%
RT 1588 (14.8%) 1410 (7.2%) 1854 (13.6%) 11.9%
SS-D 1496(19.8%) 1365(10.2%) 1752(18.3%) 16.1%

Results show that the SS-D model achieved the lowest average travel time across all scenarios. Its
advantages were most pronounced in the most complex scenarios—morning rush hour and rainy
conditions—where it demonstrated nearly 20% improvement over traditional shortest path (SP) models
and 5.8% and 5.6% gains over pure real-time (RT) models, respectively. This outcome directly
validates the significant value of integrating static spatial prior knowledge with dynamic information.
Although the RT model dynamically responds to conditions, it tends to make short-sighted decisions
when data fluctuates significantly or perception blind spots exist (e.g., diverting onto low-integration
side roads to avoid immediate congestion, leading to subsequent travel difficulties). The spatial syntax
weight (high integration) in the SS-D model acts as a stable “compass,” guiding vehicles to prioritize
roads with superior topological structure. This enables long-term beneficial decisions even with
incomplete dynamic information, delivering the strongest robustness and highest efficiency in complex
scenarios.

3.2 System Performance Metric: Network Load Balancing

102
Published by SCHOLINK INC.



www.scholink.org/ojs/index.php/mmse Modern Management Science & Engineering Vol. 8 No. 1, 2026

Network Load Balance of Different Models under Various Scenarios
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Figure 3. The road Network Load Balancing (Standard Deviation) of each Model under Different

Scenarios

Road network load balance (standard deviation) reflects the uniformity of vehicle distribution, preventing
localized congestion. Results are shown in Figure 3.

The SS-D model consistently achieved the lowest network load balance across all scenarios, with a
standard deviation significantly lower than other models. The HT model performed worst, even
underperforming the SP model. This finding is crucial. The SS-D model not only enhances individual
vehicle efficiency but also optimizes overall traffic flow at the system level. This is because spatial
syntax metrics (such as integration) inherently identify the “inherent capacity” of each road in the
network to handle traffic flow. The SS-D model guides vehicles to utilize these “arterial roads” more
frequently, preventing them from flooding into ‘capillary’ roads that are physically short but have low
connectivity and weak carrying capacity. This effectively prevents the formation of localized
congestion and achieves efficient utilization of road network resources. In contrast, the HT and RT
models lack this global perspective, and their decisions may lead to vehicles “clustering” in localized
areas.

3.3 Model Reliability Metric: Prediction Accuracy (MAE)

We further analyzed the performance of the STGCN prediction module within the SS-D model and
compared it with the baseline STGCN model that does not incorporate spatial syntax indicators as input

features. The results are shown in Table 2.
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Table 2. Comparison of MAE before and after Adding Spatial Syntax Features to the STGCN
Prediction Model (Unit: seconds)

Baseline
Scenario STGCN+SpatialSyntax Improvement Rate
STGCN
Morning Rush Hour 125.6 112.3 10.6%
Off-Peak Hours 98.4 90.1 8.4%
Rainy Days 141.8 126.5 10.8%

The results show that incorporating spatial syntax indicators into the input features of the STGCN
model significantly reduces the mean absolute error (MAE) across all scenarios, with improvement
rates ranging from 8% to 11%. This demonstrates that spatial syntax indicators are effective features
for enhancing the performance of temporal forecasting models. The topological structure of road
networks constitutes a stable and fundamental factor influencing traffic flow. Incorporating this as prior
knowledge into prediction models enhances the model's understanding of spatial dependencies. This
enables more realistic predictions aligned with physical constraints when encountering data sparsity
(e.g., newly added roads) or sudden disturbances, thereby improving the reliability of dynamic

weighting.

4. Discussion and Future Prospects

The core of this study lies in constructing and validating a“spatial-temporal” dual-driven path
optimization framework (SS-D) that integrates spatial syntax and urban big data, building upon
previous research on spatial-temporal models for urban traffic flow prediction [7]. Experimental results
fully demonstrate the framework's significant advantages in enhancing path planning efficiency, system
robustness, and prediction reliability. The following sections will delve into the deeper implications of
these findings, examine them within a broader academic context, and identify the study's limitations
alongside future directions for advancement.

4.1 Interpretation of Results and Academic Contributions

This study reveals that the SS-D model not only surpasses traditional shortest path (SP) models in
efficiency but also outperforms ideal real-time (RT) models assuming perfect information. This finding
holds significant theoretical value. It powerfully demonstrates the strong complementary effect
between static spatial prior knowledge and dynamic temporal information. Purely data-driven RT
models are inherently “reactive,” prone to data noise and locality effects that lead to “myopic”
decisions. By incorporating global topological structures (e.g., integration degree) revealed through

spatial syntax, this study endows the decision system with a “forward-looking” capability, enabling it

104
Published by SCHOLINK INC.



www.scholink.org/ojs/index.php/mmse Modern Management Science & Engineering Vol. 8 No. 1, 2026

to demonstrate greater robustness in complex dynamic environments.

4.2 Research Limitations and Future Directions

Despite achieving positive outcomes, this study has limitations that also point to future research
directions:

(1). Model Generalization and Adaptability: The model was validated solely on Beijing's road network;
spatial structural differences across cities may impact its universality. Future work should test it on
more urban road networks and incorporate transfer learning or meta-learning frameworks to enhance
generalizability.

(2). Computational Efficiency and Real-Time Challenges: The current framework incurs high
computational costs, posing significant challenges for scenarios requiring second-level responses, such
as instant delivery. Future efforts should focus on model lightweighting, distributed computing, and
embedding spatial syntax metrics into geographic databases to meet real-time demands.

(3). Transition from static fusion to dynamic adaptation: The fusion factor a in this study is a globally
optimized value, yet optimal weights vary by region and time period. Future research should explore
dynamic adaptive a mechanisms that adjust weight balances based on real-time contexts to enhance
intelligence.

(4). Advancing toward multi-objective and sustainable optimization: This study primarily addresses
traffic efficiency. Future work should incorporate social and environmental costs like carbon emissions
and noise pollution, constructing multi-objective optimization models aligned with smart city and
sustainable development strategies.

(5). Deep Integration with Cutting-Edge Technologies: With advancements in vehicle-to-everything
(V2X) networks, 5G/6G, and digital twin technologies, the framework can be deployed within
real-time interactive urban cyber-physical systems. Integrating real-time vehicle data enables precise
prediction and decision-making, achieving fully automated logistics scheduling.

In summary, this study validates the value of interdisciplinary integration methodologies, laying a
foundation for subsequent research, as discussed in the comprehensive survey of urban computing by
Zhao et al. (2019). Addressing urban system challenges requires integrating big data with domain
expertise. Future research will build upon this framework, advancing toward greater universality,

efficiency, and sustainability to contribute to smart city development.
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