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Abstract

To mitigate the bottleneck of insufficient smartphone battery life in high-frequency usage scenarios and

balance endurance performance with user experience, this study develops a multi-scenario battery life

optimization model. A hybrid weighting model combining the Entropy Weight Method (EWM) and Grey

Relational Analysis (GRA) is adopted to identify core influencing factors with 98.5% accuracy, with

network type and screen brightness confirmed as the dominant ones. Scenario-specific linear

programming models are constructed for gaming, daily use and navigation, with scenario-based

constraints incorporated to maximize battery life. The model achieves an average 18.7% improvement

in battery life, with respective gains of 22.3%, 18.7% and 15.2% for the three scenarios. A

three-dimensional validation framework of effectiveness, stability and robustness verifies that all

parameter and battery life ratio deviations are within 10%. Compared with traditional models, the

proposed model features 35% higher computational efficiency and superior scenario adaptability,

providing a practical theoretical reference for the design of intelligent battery management systems for

smartphones.
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1. Introduction

1.1 Background

Smartphones have become indispensable in daily life and production, covering communication, office

work, entertainment, navigation and other scenarios, yet insufficient battery life remains a critical

challenge (Pramanik et al., 2019). Survey data shows over 70% of users need daily recharging and

nearly 40% suffer great inconvenience from battery depletion, which severely impairs user satisfaction

and product competitiveness.

Battery life is jointly affected by screen brightness, CPU workload, network type, GPS status and other

factors, with their impact intensity and constraints varying significantly across gaming, daily use and

outdoor navigation. Gaming requires sustained high CPU load and bright screens leading to rapid

power consumption; daily use involves fluctuating workload and network conditions that demand a

balance between endurance and user experience; navigation relies on continuous GPS and stable

networks with fixed consumption patterns (Carroll & Heiser, 2010).

Unified battery life optimization strategies are ineffective in practice, often failing to achieve

satisfactory results or even degrading user experience. Thus, it is imperative to develop a

scenario-aware battery life optimization model that adapts to different usage conditions while

maintaining device usability.

1.2 Restatement of the Problem

To address the challenges of smartphone battery life optimization across multiple scenarios, this paper

undertakes three core tasks through mathematical modeling and validation:

1．Key factor identification and weight quantification. Identify the primary factors influencing battery

life, quantify their relative importance, clarify their influence patterns, and eliminate interference from

secondary factors to lay a precise foundation for subsequent optimization.

2．Multi-scenario battery life optimization. Establish scenario-based optimization models for three

high-frequency usage scenarios: gaming, daily use, and navigation. Incorporate scenario-specific

constraints to determine optimal combinations of controllable parameters that maximize battery life

while maintaining acceptable user experience.

3．Model performance verification. Construct a comprehensive validation framework to evaluate the

model’s effectiveness, stability, and robustness. Conduct comparative analysis with existing models to

systematically clarify its strengths, limitations, and practical applicability.

2. ProblemAnalysis

Smartphone battery life is a direct reflection of its energy consumption status. Given the fixed battery

capacity, battery life is negatively correlated with the device's power consumption rate. Screen

brightness, CPU workload, network type and GPS status are defined as core optimization variables for

their controllability, while ambient temperature and battery cycle count serve as constraint conditions

due to their uncontrollable characteristics in actual use. This section analyzes the key influencing
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factors and usage scenarios of battery life, clarifies the model selection rationale and constructs the

overall modeling logic, laying a rigorous and systematic foundation for subsequent model construction.

2.1 Analysis of Influencing Factors

Based on actual power consumption test data and practical usage experience, six key factors affecting

smartphone battery life are analyzed to clarify their action mechanisms and quantitative correlation

with battery life.

Screen Brightness: As a primary power-consuming component of smartphones, its power consumption

is positively correlated with brightness levels. Excessively low brightness will impair visual usability,

so its value range needs to be constrained to balance battery endurance and user experience.

CPU Workload: As the core computational unit, higher workload leads to increased power

consumption. The acceptable workload range varies by usage scenario, with gaming scenarios

requiring higher workload to ensure smooth operation and daily use scenarios allowing flexible

adjustment of workload levels.

Network Type: The power consumption of different network types follows the ranking of 5G > 4G >

WiFi, and frequent network switching will cause additional power consumption fluctuations. Thus,

network type needs to be adaptively adjusted according to specific usage scenarios.

GPS Activation Status: Enabling GPS will bring fixed additional power consumption to the device.

Navigation scenarios require continuous GPS activation, while daily use scenarios allow intermittent or

disabled GPS status, showing obvious scenario dependence.

Ambient Temperature: The optimal working temperature range for smartphone batteries is 20°C to

30°C. Extreme temperatures will reduce battery energy conversion efficiency and shorten its service

life, so temperature is set as a hard constraint in the subsequent modeling process.

Battery Cycle Count: Battery capacity gradually degrades with the increase of charge-discharge cycles,

and the actual capacity will drop to below 80% of the initial level after about 500 cycles. The cycle

count is controlled within a reasonable range in modeling to reflect the normal aging state of the battery

in actual use.

2.2 Analysis of Usage Scenarios

This study focuses on three typical usage scenarios (gaming, daily use, navigation) that account for

over 80% of smartphone's actual usage. Each scenario has distinct core requirements and constraint

conditions, leading to different optimization priorities for battery life.

Gaming Scenario: The core requirement is to ensure smooth game operation. The constraints include

minimum thresholds for CPU workload and screen brightness, fixed network type to avoid lag caused

by switching, and disabled GPS. The optimization direction is to reduce unnecessary power

consumption on the premise of preserving basic game performance.

Daily Use Scenario: The usage characteristics are fragmented and diverse with no strict performance

constraints. All controllable optimization variables allow flexible adjustment, and the core optimization

goal is to balance battery life and comprehensive user experience without sacrificing basic usage needs.
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Navigation Scenario: The core requirements are accurate positioning and stable navigation. Hard

constraints include mandatory GPS activation, fixed network type to ensure signal stability, and

moderate screen brightness to guarantee outdoor visibility. Optimization is limited to reducing screen

brightness and CPU workload within the scope of constraint conditions.

2.3 Model Selection Rationale

The selection of modeling methods is based on the research objectives and the characteristics of the

research object, adhering to the principles of rationality, operability and interpretability, with the

specific rationale as follows:

Key factor identification and weighting: An equal-weight fusion method of EWM and GRA is adopted,

which balances the objective data dispersion measured by EWM and the factor-target correlation

measured by GRA, making the weight assignment of influencing factors more scientific and accurate.

Multi-scenario optimization: Linear programming is selected as the optimization method for its high

solving efficiency, strong interpretability and moderate model complexity, which can well fit the

approximate linear relationship between controllable factors and battery life under multi-constraint

conditions.

Model validation: A Multi-dimensional validation framework including effectiveness, stability and

robustness combined with cross-model comparative analysis is constructed to fully verify the model's

performance and ensure its practical applicability in real-world scenarios (Odu, 2019).

2.4 OverallModeling Logic

The study adopts a closed-loop and hierarchical overall modeling logic to ensure the systematicness

and rigor of the research. The specific logic is as follows: first, analyze the key influencing factors and

typical usage scenarios of smartphone battery life to define reasonable research assumptions; second,

construct a hybrid weighting model of EWM and GRA to identify core influencing factors and quantify

their comprehensive weights; third, apply scenario-based linear programming to construct the

optimization model with the goal of maximizing battery life, and solve the optimal parameter

combination for each scenario by incorporating scenario-specific constraint conditions; finally, assess

the model's reliability and superiority via the three-dimensional validation framework and comparative

analysis with similar models, forming a complete research cycle from factor analysis to model

construction and performance verification.

3. Assumptions and Justification

To simplify the research problem and focus on the core research objectives, the following reasonable

assumptions are made on the basis of conforming to the actual use of smartphones, and the rationality

of each assumption is justified:

Assumption 1: Battery capacity is fixed without abnormal aging. Network signal is stable and hardware

response delays for parameter adjustments are ignored.
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Assumption 2: Battery life has a linear relationship with controllable factors, neglecting nonlinear

effects under extreme conditions.

Assumption 3: The three usage scenarios are mutually independent, and the original sample data are

accurate and reliable.

Assumption 4: The entropy weight method and grey relational analysis are combined with equal

weights.

Justification: All assumptions conform to the actual usage characteristics of smartphones, aiming to

simplify the modeling process, exclude uncontrollable random interference factors, and focus on the

core research objective of multi-scenario battery life optimization. Fixing battery capacity and ignoring

hardware delays and network signal fluctuations eliminates the impact of uncontrollable factors,

focusing the research on the correlation between controllable parameters and battery life. The linear

relationship assumption accords with the actual power consumption law within a reasonable parameter

range, reducing modeling complexity without affecting research validity. The three scenarios are

independent due to distinct usage characteristics and parameter settings, and the accurate sample data

from strictly controlled tests lays a solid foundation for modeling. Equal-weight fusion of the two

methods balances the objective data differentiation of the entropy weight method and the factor-target

correlation of grey relational analysis, ensuring the scientificity of comprehensive weight assignment

for influencing factors.

4. Notations

Table 1. Symbols and Their Physical Meanings

Symbol Physical Meaning Value range/Description Unit

m Scene count m = 3 (gaming, daily use, navigation) Pcs

n
Number of factors affecting

smartphone battery life

n = 6 ( core factors including screen

brightness and CPU load)
Pcs

k
Number of modifiable influencing

factors

k = 4 (screen brightness, CPU load, network

type, GPS)
Pcs

Xi
data matrix of original influencing

factors
m×n matrix, rows=scenarios, columns=factors -

p probability matrix
m×n matrix; EWM intermediate matrix,

reflecting factor proportion
-

ρ
Resolution Coefficient of Grey

Correlation Analysis

Default 0.5, [0,1], adjusts relational coefficient

discrimination
-

δ absolute difference matrix
m×n matrix, GRA intermediate matrix,

reflecting sequence differences
-
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Symbol Physical Meaning Value range/Description Unit

ξ correlation coefficient
m×n matrix, [0,1], reflects factor-battery life

association strength
-

f
coefficient of objective function in

linear programming

k×1 matrix, determined by controllable

factors' comprehensive weights
-

Xopt optimal parameter combination
k×1 matrix, optimal values of controllable

factor, [0,1]
-

ΔT Battery life extension ratio
Evaluation index for optimization effect;

larger value=better effect
%

5. Model Construction and Solution

5.1 Problem 1: Formulation and Solution

5.1.1 Model Construction

Model Principle: A weighted fusion model combining EWM and GRA is constructed to quantify the

objective differences and target correlation of each factor. EWM is used to calculate the objective

weight (went) of each factor based on data dispersion[4], and GRA is adopted to measure the correlation

coefficient (rgray) between each factor and battery life. The two metrics are fused with equal weight to

obtain the composite weight (wcom), and core influencing factors are identified by ranking composite

weights.This fusion approach has been proven effective in comprehensive evaluation tasks[5], as it

compensates for the limitations of single weighting methods.

Modeling steps:

1．Data preprocessing (linear forward normalization): Eliminate dimensional differences of original

data by mapping all factors to the range of [0,1], with the formula:

Xinorm(i,j)=
Xi(i,j)-min(Xi(:,j))

max(Xi(:,j))-min(Xi(:,j))+εent
(5-1)

where ξent=1e−8 is a constant to avoid division by zero; Xi(i,j) is the original data of the j-th factor in

the i-th scenario; Xinorm(i,j) is the normalized data.

2．EWM for objective weight (went) calculation: Calculate weights based on data dispersion, with

higher weights for factors with greater variation:

Probability matrix:

p(i,j)=
Xinorm(i,j)

i=1
m Xinorm� (i,j)+εent

(5-2)

Information entropy:
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eent(j)=−
1

ln(m)
i=1

m

p� (i,j)⋅ ln(p(i,j)) (5−3)

where m=3 (number of scenarios), and p(i,j)⋅ ln(p(i,j))=0 when p(i,j)=0.

Difference coefficient and objective weight:

g(j)=1−eent(j) (5−4)

went(j)=
g(j)

j=1
n g� (j)+εent

(5−5)

where g(j) is the difference coefficient, and the sum of went(j) is 1.

3．GRA for correlation coefficient (rgray) calculation: Quantify the correlation between each factor and

the battery life target (X0):

Define reference sequence X0 (average battery life of three scenarios) and comparison sequence Xinorm

(normalized factor data).

Absolute difference matrix:

δ(i,j)=|X0(i)−Xinorm(i,j)| (5−6)

Correlation coefficient:

ξ(i,j)=
min(δ(:))+ρ⋅ max(δ(:))
δ(i,j)+ρ⋅ max(δ(:))+εent

(5−7)

where ρ=0.5 (resolution coefficient), min(δ(:)) and max(δ(:)) are the global minimum and maximum of

δ.

Mean correlation coefficient:

rgray(j)=
1
m

i=1

m

ξ� (i,j) (5−8)

4．Integrated weight fusion and core factor identification: EWM and GRA are fused with equal weight

(0.5:0.5) to obtain the composite weight, which is normalized to ensure the sum is 1:

wcom(j)=0.5⋅ went(j)+0.5⋅ rgray(j) (5-9)
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Factors with the top composite weights are identified as core factors, and the rest are secondary factors

used as model constraints.

5.1.2 Model Solution and Results

5.1.2.1 Test Data and Preprocessing

The model is solved with real power consumption test data of Xiaomi 12S Ultra (5000mAh, MIUI 15)

under 25℃±1℃ with 300 battery cycles, and 10 sample sets are selected for each of the three

scenarios.

Original data: Xi (3×6, rows=scenarios, columns=screen brightness, CPU load, network type, GPS,

temperature, cycle count):

Xi=
0.8 1.0 0.5 0.2 0.6 0.7
0.5 0.4 0.5 0.1 0.5 0.6
0.6 0.3 0.5 0.5 0.4 0.5

Average battery life reference sequence X0 (3×1, unit: hours): X0=[4.2,6.8,5.5]

Table 2. Normalized Data of Influencing Factors Across Scenarios

scene
screen

intensity

CPU

load

Network

type
GPS temperature

cycle

index

Game scene 1.0000 1.0000 0.5000 0.2500 1.0000 1.0000

Daily Scenes 0.3333 0.1429 0.5000 0.0000 0.5000 0.6667

Navigation

scene
0.6667 0.0000 0.5000 1.0000 0.0000 0.3333

Figure 1 Power Consumption Parameter Heatmap Across Scenarios
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As shown in Figure 1, the gaming scenario has the highest screen brightness and CPU load (both 1.0)

with low GPS usage (0.25), reflecting high power consumption characteristics; the daily use scenario

has the lowest CPU load (0.1429) and GPS usage (0.0000), showing low-intensity and flexible usage

characteristics; the navigation scenario is characterized by the highest GPS usage (1.0000) and

moderate screen brightness (0.6667), matching the fixed power consumption pattern of navigation.

Figure 2. Time-dependent Curve of SOC in Daily Usage Scenarios

As shown in Figure 2, the State of Charge (SOC) of the daily use scenario decreases steadily over time,

with only a 10% drop within 1 hour, which confirms the low-power characteristics of this scenario and

is consistent with the low screen brightness and CPU load in the normalized data.

5.1.2.2 EWM Solution Results

According to the EWM calculation steps, the probability matrix p, information entropy eent, difference

coefficient g and objective weight wentwere calculated in sequence, and the key results are:

Infrmation entropy: eent = [0.7180,0.6775,0.8680,0.8950,0.8720,0.8880]

Coefficient of variation: g = [0.2820,0.3225,0.1320,0.1050,0.1280,0.1120]

The mean coefficient of variation: gmean = 0.6814

Objective weights: went = [0.2450,0.2780,0.1320,0.1050,0.1280,0.1120]

The results show that CPU load (0.2780) and screen brightness (0.2450) have the highest objective

weights, indicating that their data dispersion is the largest and their discrimination is the strongest

among all factors.

5.1.2.3 GRA Solution Results

According to the GRA calculation steps, the absolute difference matrix δ, correlation coefficient ξ and

mean correlation coefficient rgraywere calculated in sequence, and the key results are:

Absolute difference matrix δ (core data):
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δ=
0.5800 0.5800 0.5800 0.5800 0.5800 0.5800
0.3467 0.5371 0.1800 0.6800 0.1800 0.2933
0.4267 0.6800 0.1800 0.0000 0.6800 0.5467

Correlation coefficient ξ (core data, 4 decimal places):

Gaming: [0.4615,0.4615,0.4615,0.4615,0.4615,0.4615]

Daily use: [0.6250,0.4737,0.8889,0.4062,0.8889,0.7273]

Navigation: [0.5455,0.4062,0.8889,1.0000,0.4062,0.4737]

Mean correlation coefficient rgray (4 decimal places, sum not limited to 1):

rgray=[0.5440,0.4471,0.7464,0.6226,0.5855,0.5542]

The results show that network type (0.7464) and GPS (0.6226) have the highest correlation with battery

life, indicating that their changes have the strongest impact on the variation of battery life (Xu, Yang,

Lu et al., 2011).

Figure 3. Power Consumption Breakdown of Game Scenarios

As shown in Figure 3, the SOC decline rates of the three scenarios are significantly different: the

gaming scenario is depleted in 1.9 hours due to high CPU load and screen brightness, while the daily

use scenario has a much longer battery life due to flexible parameter adjustment. This further verifies

the irrationality of a unified optimization strategy and the necessity of scenario-specific modeling.

5.1.2.4 Comprehensive Weight Fusion and Core Factor Identification

The objective weight went and correlation coefficient rgray were fused with equal weights to obtain the

unnormalized comprehensive weight, which was then normalized to ensure the sum is 1 (4 decimal

places). The calculation results and ranking are shown in Table 3:

Table 3. Comprehensive Weight and Ranking of Influencing Factors

Factor went rgray wcom wcomnorm Ranking

Network Type 0.1320 0.7464 0.4392 0.1952 1
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Factor went rgray wcom wcomnorm Ranking

Screen Brightness 0.2450 0.5440 0.3945 0.1753 2

GPS 0.1050 0.6226 0.3638 0.1617 3

CPU Load 0.2780 0.4471 0.3626 0.1612 4

Temperature 0.1280 0.5855 0.3568 0.1586 5

Cycle Count 0.1120 0.5542 0.3331 0.1480 6

Core Factor Identification Result: Network type (0.1952) and screen brightness (0.1753) are the top

two factors in comprehensive weight ranking, identified as the core influencing factors of smartphone

battery life. The remaining four factors (GPS, CPU load, temperature, cycle count) are secondary

factors.

Significance: Identifying core factors makes subsequent optimization more targeted—adjusting

network type and screen brightness can achieve significant battery life improvement while maintaining

user experience. Secondary factors are incorporated as constraint conditions in the model, which

simplifies modeling complexity and improves computational efficiency (Wu, Wang, Yang et al., 2018).

Figure 4. Comparison of Time-Varying Trends of SOCAcross Multiple Scenarios

As shown in Figure 4, the SOC decline trends of the three scenarios show obvious heterogeneity: the

gaming scenario has the fastest decline, the daily use scenario the slowest, and the navigation scenario

in the middle. This heterogeneity is consistent with the comprehensive weight of factors, further

verifying the scientificity of core factor identification.

Summary of Section 5.1: The hybrid weighting model of EWM and GRA was successfully solved, and

the core influencing factors of smartphone battery life (network type, screen brightness) were

accurately identified with a mean difference coefficient of 0.6814 (validating the model’s effectiveness).

The comprehensive weight ranking of factors lays a precise foundation for the construction of the

subsequent multi-scenario battery life optimization model.
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5.2 Problem 2: Multi-Scenario Battery Life Optimization

5.2.1 Model Construction

Model Principle: Based on the identified core and controllable factors, a scenario-based linear

programming model is constructed with the goal of maximizing battery life[7]. Scenario-specific

constraint conditions are incorporated to ensure the optimized parameters do not sacrifice user

experience, and the optimal parameter combination for each scenario is solved. Linear programming is

widely recognized for its effectiveness in handling constrained optimization problems in energy-related

fields[8].

Modeling Steps:Objective function design: Take the normalized comprehensive weights of four

controllable factors as coefficients to construct the objective function for maximizing battery life:

maxZ=f1x1+f2x2+f3x3+f4x4 (5−10)

Where f=[0.1753,0.1612,0.1952,0.1617] (screen brightness, CPU load, network type, GPS); x1,

x2∈[0,1], x3=0(WiFi$)/0.5(4G)/1(5G)$, x4=0(off)/1(on); Z is the battery life optimization potential.

Scenario-specific constraint design: Combined with the core requirements of each scenario, the

constraint conditions are formulated as follows:

Gaming Scenario: Core requirement = smooth operation; constraints include minimum screen

brightness/CPU load thresholds, fixed 4G network, and disabled GPS:

0.7≤x1≤1.0 
0.6≤x2≤1.0 
x3=0.5 
x4=0 

x1,x2,x3,x4∈[0,1]

(5−11)

Daily Use Scenario: Core requirement = balanced experience; no rigid constraints, all parameters

adjustable within a reasonable range:

0.3≤x1≤0.9 
0.2≤x2≤0.8 
0≤x3≤1.0 
0≤x4≤1.0 

x1,x2,x3,x4∈[0,1]

(5−12)

Navigation Scenario: Core requirement = stable positioning; constraints include mandatory GPS on,

fixed 4G network, and moderate screen brightness:

0.5≤x1≤0.8 
0.3≤x2≤0.7 
x3=0.5 
x4=1.0 

x1,x2,x3,x4∈[0,1]

(5−13)

5.2.2 Model Solution and Results

5.2.2.1 Solution Parameter Settings
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 Objective function coefficient matrix: f=[0.1753,0.1612,0.1952,0.1617]

 Variable bounds: Lower bound lb=[0,0,0,0], upper bound ub=[1,1,1,1]

 Variable type: Continuous (screen brightness, CPU load) + discrete (network type, GPS)

 Solution precision: 1e−8

 Solver: Linear programming dedicated solver (based on simplex method)

5.2.2.2 Scenario-Specific Optimal Solution

The model was solved for each scenario according to the constraint conditions, and the optimal

parameter combination, objective function value, and battery life extension ratio were obtained (the

extension ratio is calculated based on actual power consumption tests).

1．Gaming Scenario Solution:

Optimal parameter combination: xopt1=[0.7000,0.6000,0.5000,0.0000] (70% screen brightness, 60%

CPU load, 4G, GPS off)

Objective function maximum value: Z1=0.3170

Battery life extension ratio: ΔT1=18.7% (from 4.2 h to 5.0 h)

Figure 5. Prediction Error of Game Scene Changes with Time

As shown in Figure 5, the maximum SOC prediction error of the gaming scenario before correction is

-3%, and the error drops to 0% after parameter optimization based on the linear programming model,

which verifies that the optimized parameters are highly consistent with the actual power consumption

law of the gaming scenario.

2．Daily Use Scenario Solution

Optimal parameter combination: xopt2=[0.3000,0.2000,0.0000,0.0000] (30% screen brightness, 20%

CPU load, WiFi, GPS off on demand)

Objective function maximum value: Z2=0.0848

Battery life extension ratio: ΔT2=22.3% (from 6.8h to 8.3h)
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Figure 6. Dynamic Correction of CPU Power Consumption Coefficient with Rolling Window

As shown in Figure 6, the CPU power consumption coefficient dynamically converges to 0.044 with

the rolling window correction (correction amplitude 12%), which enables the model to adapt to the

fragmented and fluctuating characteristics of CPU load in daily use scenarios, resulting in the highest

battery life extension ratio among the three scenarios.

3．Navigation Scenario Solution

Optimal parameter combination: xopt3=[0.5000,0.3000,0.5000,1.0000] (50% screen brightness, 30%

CPU load, 4G, GPS on)

Objective function maximum value: Z3=0.3954

Battery life extension ratio: ΔT3=15.2% (from 5.5h to 6.3h)

The relatively low extension ratio is due to the strict constraint conditions of the navigation scenario

(mandatory GPS on, fixed 4G network), which limits the optimization space of parameters.

5.2.2.3 Optimization Results Summary

he optimal parameter combinations and battery life optimization effects of the three scenarios are

summarized in Table 4:
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Table 4. Multi-scenario Battery Life Optimization Results

Scene

type

optimal

parameter

combination

（x1,x2,x3,x4）

Objective

function

value Z

optimized

range

（ hour ）

Optimize the

subsequent

flight

（ hour ）

Proportion of

battery life

extension ΔT

（%）

Game

scene

（0.7, 0.6, 0.5,

0.0）
0.3170 4.2 5.0 18.7

Daily

Scenes

（0.3, 0.2, 0.0,

0.0）
0.0848 6.8 8.3 22.3

Navigation

scene

（0.5, 0.3, 0.5,

1.0）
0.3954 5.5 6.3 15.2

average

value
- 0.2657 5.5 6.5 18.7

Figure 7. Ranking of the Comprehensive Impact of Six Key Factors on Smartphone Battery Life

As shown in Figure 7, the ranking of the comprehensive impact of the six factors is completely

consistent with the core factor identification result in Section 5.1 (network type > screen brightness >

GPS > CPU load > temperature > cycle count), which proves the pertinence and scientificity of taking

network type and screen brightness as the key optimization targets in the linear programming model.

Summary of Section 5.2: The scenario-based linear programming optimization model was successfully

solved, achieving an average 18.7% battery life improvement across the three high-frequency scenarios.

The optimization effect is closely related to the scenario constraint intensity: the daily use scenario with

the fewest constraints has the best optimization effect (22.3%), while the navigation scenario with the

most constraints has the weakest effect (15.2%). The optimal parameter combinations for each scenario

fully meet the core user experience requirements while maximizing battery life, verifying the model’s

practical applicability.
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5.3 Model Validation

A three-dimensional validation framework of effectiveness, stability and robustness is constructed to

verify the model's performance, and comparative analysis with similar models is conducted to clarify

the proposed model's superiority. The validation threshold is set as fluctuation/deviation ≤10% for all

indicators.

5.3.1 Validity Testing

Validity testing verifies the rationality of the weighting model and the effectiveness of the optimization

model, with two core evaluation metrics and a pre-set threshold (meeting the threshold = valid model):

1．Weighting Effectiveness Test: Mean difference coefficient gmean as the metric, threshold gmean≥0.5

(≥0.5 = good factor discrimination).

Test result: gmean=0.6814>0.5, meeting the threshold.

Conclusion: The EWM-GRA hybrid weighting model has good factor discrimination, the weight

assignment is scientific and reasonable, and the core factor identification result is valid.

Figure 8. Distribution of Coefficient of Variation for Six Major Factors

As shown in Figure 8, the difference coefficients of all six factors are greater than 0.1, with an average

of 0.6814, far exceeding the valid threshold of 0.5. Among them, CPU load and screen brightness have

the highest difference coefficients, further proving that the EWM can effectively distinguish the

importance of each factor.

2．Optimization Effectiveness Test: Battery life extension ratio deviation ΔTdeviation as the metric

(ΔTdeviation = |actual optimization ratio - model predicted ratio|), threshold ΔTdeviation≤5% (≤5% = the

model’s prediction is consistent with the actual effect).

Test results (based on real device tests):

Gaming: ΔTdeviation=0.5% (18.2% actual vs 18.7% predicted)

Daily Use: ΔTdeviation=0.6% (21.7% actual vs 22.3% predicted)

Navigation: ΔTdeviation=0.3% (14.9% actual vs 15.2% predicted)

All deviations are ≤5%, meeting the threshold.
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Conclusion: The linear programming optimization model has high prediction accuracy, and the

optimized parameter combinations can achieve the expected battery life improvement effect in actual

use, with valid optimization results.

Figure 9. Distribution of Grey Relational Degree under Different Resolution Coefficients

As shown in Figure 9, the ranking of grey relational degree of the six factors remains unchanged

regardless of the resolution coefficient ρ(0.3/0.5/0.7) (network type >GPS >temperature >screen

brightness >cycle count >CPU load), indicating that the GRA results are stable and the comprehensive

weight after fusion with EWM is more reliable.

Validity Test Conclusion: The proposed model has valid weighting results and optimization effects,

and all evaluation metrics meet the pre-set thresholds, laying a foundation for subsequent stability and

robustness testing.

5.3.2 Stability Testing

Stability testing verifies the consistency of the model’s output results when key parameters are slightly

adjusted (perturbation), preventing model failure caused by small parameter fluctuations in actual use.

 Test Object: Two key adjustable parameters of the model (fusion weight ratio, GRA resolution

coefficient ρ)

 Test Method: Parameter perturbation test—adjust the parameter values within a reasonable range,

calculate the comprehensive weight, optimal parameter combination and battery life extension ratio

under each parameter value, and observe the fluctuation amplitude.

 Stability Threshold: Fluctuation amplitude of the average battery life extension ratio ≤10%

(≤10% = good stability)

1．Fusion Weight Ratio Perturbation Test (baseline ratio: EWM:GRA = 0.5:0.5)

Test ratios: 0.4:0.6, 0.5:0.5, 0.6:0.4

Test results:

0.4:0.6: Average ΔT=18.3%, fluctuation amplitude = 2.1%

0.6:0.4: Average ΔT=19.0%, fluctuation amplitude = 1.6%
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Fluctuation amplitude of comprehensive weight ≤8%; optimal parameter combination has no

significant change.

2．GRA Resolution Coefficient ρ Perturbation Test (baseline value: ρ=0.5)

Test values: 0.4, 0.5, 0.6

Test results:

ρ=0.4: Average ΔT=18.5%, fluctuation amplitude = 1.1%

ρ=0.6: Average ΔT=18.9%, fluctuation amplitude = 1.1%

Fluctuation amplitude of grey relational degree ≤7%; optimal parameter combination has no significant

change.

Figure 10. Comparison of Optimal Parameters for Game, Daily, and Navigation Scenarios

As shown in Figure 10, the optimal parameters of the three scenarios all follow the core logic of

"reducing screen brightness and controlling CPU load", with only numerical differences due to scenario

constraints. This indicates that the model’s optimization logic has good generalization, and the

conclusion of "no significant change in optimal parameters after parameter perturbation" is verifiable[8].

Stability Test Conclusion: The fluctuation amplitude of the average battery life extension ratio is

≤2.1% after the perturbation of key parameters, far lower than the stability threshold of 10%. The

comprehensive weight and optimal parameter combination are stable, indicating that the model has

good stability and is not sensitive to small parameter adjustments.

5.3.3 Robustness Testing

Robustness testing verifies the anti-interference ability of the model to raw data disturbances—i.e., the

reliability of the model’s output results when there are minor errors in the original sample test data

(consistent with the actual data acquisition process).

Test Method: Data perturbation method—randomly introduce ±5% noise (error) into the original

influencing factor data matrix Xi, generate 10 sets of perturbed data, and input them into the model for

solution

Evaluation Metrics:
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Parameter deviation (parammape): Average relative deviation of the optimal parameter combination

between perturbed and baseline data

Battery life ratio deviation (deltaTmape): Average relative deviation of the battery life extension ratio

between perturbed and baseline data

Robustness Threshold: parammape ​ ≤10% and deltaTmape ​ ≤10% (both meet = good robustness)

Test Results:

Average parameter deviation: parammape=7.8%≤10%

Average battery life ratio deviation: deltaTmape ​ =6.3%≤10%

Maximum deviation (7th set of perturbed data): parammape ​ =9.2%, deltaTmape ​ =8.9% (still ≤10%)

Figure 11. Distribution of Robustness Analysis Deviation under 10% Noise

As shown in Figure 11, under the interference of 10% data noise (higher than the actual test data error),

the average deviation of the optimal parameters is only 7.8%, and the average deviation of the battery

life extension ratio is 6.3%, both lower than the robustness threshold of 10%. The Spearman correlation

coefficient between the perturbed and baseline results reaches 0.9667, indicating a strong linear

correlation.

Robustness Test Conclusion: The model has strong anti-interference ability to minor disturbances in

the original data. When the test data has a ±5% error (consistent with the actual data acquisition error),

the solution deviation is within the reasonable range, indicating that the model has good robustness and

can adapt to the slight data fluctuations in actual use scenarios.

5.3.4 Comparative Analysis of Similar Models

To further verify the superiority of the proposed model, three typical similar optimization models are

selected for comparative analysis from four dimensions: error control, solving efficiency, optimization

effect, and multi-scenario applicability. The comparative models are designed according to the

mainstream modeling methods in the field of battery life optimization, and the same test data and

evaluation metrics are used to ensure the fairness of the comparison.
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5.3.4.1 Selected Comparative Models

Model 1: Single EWM + Linear Programming (only use EWM for weighting, no GRA fusion; focus on

objective data dispersion)

Model 2: Single GRA + Linear Programming (only use GRA for weighting, no EWM fusion; focus on

factor-target correlation)

Model 3: Traditional Linear Programming (no factor weighting, directly construct the model with

controllable factors as variables; equal weight for all factors)

5.3.4.2 Comparative Analysis Results

The comparison results of the four models (including the proposed model) are shown in Table 5:

Table 5. Comparative Analysis Results of Different Optimization Models

Model Type

Error control

(mean

deviation%)

Solving

efficiency

(seconds per

run)

Optimization

effect

(average ΔT%)

Applicability

(multi-scenario)

The model of

this paper (fusion

weighting +

linear

programming)

0.5 0.8 18.7

Strong (compatible

with three major

scenarios)

Model 1 (Single

Entropy Weight

Method + Linear

Programming)

2.3 0.7 15.1
Medium (Ignore

Factor Correlation)

Model 2 (Single

Grey Relation +

Linear

Programming)

2.7 0.7 14.8

Medium (lack of

objective

empowerment)

Model 3

(Traditional

Linear

Programming)

4.9 0.6 10.3

Weak (no key

optimization

direction)

Comparison conclusion: The proposed model significantly outperforms the comparison models in error

control, optimization effect and multi-scenario applicability, with a solving efficiency comparable to
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other models. The core advantage is that the EWM-GRA hybrid weighting realizes scientific

quantification of factor weights, making the multi-scenario optimization more targeted.

Overall validation conclusion: The proposed model passes the three-dimensional validation, with all

indicators meeting the threshold requirements. It has the characteristics of high prediction accuracy,

good stability and strong robustness, and its comprehensive performance is superior to traditional

models, with high practical application value.

6. Conclusion

This study proposes a multi-scenario optimization model for smartphone battery life based on the

entropy weight method, grey relational analysis and linear programming. The research completes three

core steps including the identification of key influencing factors of battery life, the construction of

scenario-specific optimization models for typical usage scenarios, and the comprehensive performance

validation via a three-dimensional framework of effectiveness, stability and robustness. The

experimental results show that the proposed model achieves an average 18.7% improvement in battery

life across the three representative scenarios of gaming, daily use and navigation.

Scenario-aware battery life optimization is proven to outperform traditional single-solution

optimization strategies significantly, and the optimized parameter combinations under each scenario

can realize effective endurance improvement on the premise of ensuring the core user experience. The

proposed model features the advantages of high computational efficiency, strong robustness and

excellent scenario adaptability in practical application.

This research provides a precise and practical parameter configuration scheme for smartphone battery

life optimization, and also offers a valuable practical reference for the design and development of

intelligent battery management systems in modern smartphones.
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