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Abstract 

Manufacturing speed is one of the most important factors in pharmaceutical production, since the drug 

excipient is sensitive and its exposure to light and temperature should be controlled. Therefore, by 

minimizing the manufacturing cycle time, the quality of product can be improved. This process also 

results in minimizing the cost of manufacturing such as working hours, human resource, energy 

consumption and overhead cost while increasing the system productivity. In this study, using a 

stochastic dynamic programming method, the stochastic manufacturing cycle time of pharmaceutical 

product in a plant with process layout and concurrent machines is minimized. The result of this study 

has been compared to simulation modeling of the process. 

Keywords 

pharmaceutical product manufacturing, cycle time, product quality, stochastic dynamic optimization, 

process layout 

 

1. Introduction 

Over the past decade, there has been some progress in using systems engineering and optimization in 

pharmaceutical manufacturing industries. Affordable costs of healthcare demanded by governments as 

well as the competitive pharmaceutical industry has brought up the importance of manufacturing 

efficiency. Implementation of techniques such as work measurements and process engineering in 

manufacturing operations and product improvement have caught lots of attention which could 

potentially be even more beneficial with scheduling tools and process simulation (Papavasileiou, 

Koulouris, Siletti, & Petrides, 2007). Pharmaceutical manufacturing processes can be enhanced using 

process modeling techniques both economically and reliably. Developing and improving manufacturing 

processes have recently raised significant complications in the pharmaceutical industry. 

Nowadays, with the progress of new technologies, novel methods can potentially be used in the 

pharmaceutical industry in order to add more robustness and reliability to the outcomes and product 
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quality. Well-designed manufacturing processes can lead to higher product quality and customer 

satisfaction. For example, contamination of manufacturing lines can be substantially reduced if semi- 

or fully-automated facilities were used in the processes, which in return leads to more robustness and 

reliability. On the other hand, by taking customer satisfaction into consideration using novel, robust and 

scientific techniques for measuring customer satisfaction see (Aguwa, Olya, & Monplaisir, 2017), as 

well as process optimization and scheduling companies can provide agile manufacturing, an approach 

to customize the process without sacrificing the efficiency (O’Connor, Lawrence, & Lee, 2016). 

Compared to other chemical technologies, manufacturing approaches used in pharmaceutical industries 

suffer from relatively low efficiency. Implementing such manufacturing technologies has been limiting 

the pharmaceutical manufacturing processes over the past few years (Myerson, Krumme, Nasr, Thomas, 

& Braatz, 2015). 

Primary and secondary manufacturing are key manufacturing phases in pharmaceutical industry. The 

primary phase involves active pharmaceutical ingredients production while secondary production 

concerns with inert materials and active pharmaceutical ingredients to make final products. Sarin, 

Sherali and Liao (2014) studied the secondary phase for optimizing the material flow which results in 

reduced direct labor hours, improved employee morale and reduced material handling costs as well as 

simplified flow of raw materials, reduced setup and make-span time and work-in-process inventories 

(Logendran, 1998). This method can assure a high operational flexibility, process train simplification 

through eliminating non-value-added and lengthy operations steps. With addressing this issue as the 

main purpose, the production environment addressed in this study is a manufacturing facility that 

produces capsules and tablets in small batches and employs semi-automatic material handling 

transporters to transfer items between different machine cells. 

The remainder of this paper is structured as follows. In section 2, a literature review on pharmaceutical 

manufacturing process, cycle time and product make-span minimization and process scheduling as well 

as a review of using optimization methods in manufacturing industries have been discussed. Then in 

section 3, the implemented method has been explained and in section 4, a case study of capsule 

production in a pharmaceutical manufacturing system has been discussed and the results are analyzed. 

The paper concludes with analyzing the results and future work directions.  

 

2. Literature Review 

As a result of the global competition, and due to a recent change in the general structure of the 

pharmaceutical industry, optimization of the pharmaceutical supply chains has caught considerable 

attention (Shah, 2004). Production planning taken place at the primary facility is of substantial value to 

the overall strength of this optimization process. Several studies have investigated different topics 

related to production planning and scheduling in process industries. For example, Kondili et al. 

(Kondili, Pantelides, & Sargent, 1993) studied batch scheduling, Papageorgiou and Pantelides (1996) 

studied cyclic campaign planning and scheduling, integration of plant design and campaign scheduling 
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(Fumero, Corsano, & Montagna, 2011), in addition, Verderame and Floudas (2010), investigated 

process and demand uncertainty consideration into the model.  

Furthermore, by applying time-based manufacturing techniques to two Dutch pharmaceutical plants, 

Brown and Vondrácek (Brown & Vondráček, 2013) investigated the relationship between delivery 

dependability and throughput time. For multi-stage production processes, Kabra, Shaik and Rathore 

(2013) applied a State-Task Network-based mixed integer programming, by taking constraints, such as 

shelf-life limitations or late delivery penalties, into account. Using Radio Frequency Identification 

(RFID) technology, Pacciarelli and D’Ariano (2012) addressed data reliability issue in a case study 

performed on drug product manufacturing. Their conclusion states that the impact of increased data 

quality on the precision of production schedules is significant and can dramatically enhance 

productivity. 

Recently using Automated Guided Vehicles (AGV) plays a significant role in material transferring in 

pharmaceutical manufacturing systems. But this model is barely studied when it comes to cycle time 

optimization in AGV-equipped manufacturing systems. One of the extensive research in this matter is 

done by Fazlollahtabar and Olya (2013). They proposed a novel stochastic optimization method for 

minimizing total cycle time in an AGV-equipped job shop manufacturing system. In addition to AGV’s 

material handling time and machine’s processing time, they considered AGV break-down. Also, they 

developed a cross-entropy approach when the process times follow different probability distributions. 

Their approach helps manufacturing systems to make processes more efficient through elimination of 

non-value-added material hold steps and streamlining the material transfer. So specifically, in 

pharmaceutical manufacturing process, this method can be beneficial to avoid drug contamination. 

Anwar and Nagi (1988) took the simultaneous scheduling of material handling transporters (e.g., 

automatic-guided vehicles or AGVs) and manufacturing equipment (e.g., machines and work-centers) 

into consideration in producing complex products. In their work, the cumulative lead time of the 

overall production schedule (i.e., total make-span) was minimized for on-time shipment as well as 

reduction in material-handling and inventory holding costs on the shop floor. 

On the other hand, due to different reasons such as failures and costly maintenance, different types of 

uncertainties were encouraged to be taken into account in practice (Olya, Fazlollahtabar, & Mahdavi, 

2013). Since time and cost change as a random condition, and are uncertain, it is not practical to 

consider the arcs as deterministic values. In such cases, probability theory has been used to tackle the 

problem of randomness, and different groups have done lots of research on stochastic shortest path 

problem. When the arc lengths are random variables, the problem is subject to more complications 

(Olya, 2014b). Based on the study done by Frank (1969), this probability was the duration of the 

network shortest path is less than a specific value when link travel times are random and not time 

dependent variables. Mirchandani (1976) proposed another technique to obtain the shortest path 

distribution function in stochastic networks. It is not necessary to solve multiple integrals in this work. 

However, this approach can only be used for special cases where arc lengths are discrete random 
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variables. Murthy and Sarkar (1966) showed that to identify the anticipated shortest path, the expected 

values of random link travel times can be used. This way, the problem becomes a deterministic shortest 

path problem thereby allowing the standard shortest path algorithms to be used to compute the 

anticipated shortest path in a static and stochastic network. 

There are several studies in the literature discussing how to find a path with minimum expected value, 

variance and other criteria in stochastic networks. In these articles, the multi-criterion networks are 

evaluated. Fu and Rilett (1988) claimed that if the probability distribution for link delays was replaced 

by their expected values, it would lead to sub-optimal results. They proposed a dynamic programming 

strategy to solve this problem with conditional probability theory. But Olya (Olya, 2014a; Olya & 

Fazlollahtabar, 2014) presented a stochastic dynamic method where the arc lengths are random 

variables with various probability density functions without replacing the random variables with their 

expected values. They solved the model using combinations of density functions while summing 

probability density functions in each step dynamically. For finding the shortest path in each step, they 

compared two probability density functions instead of two deterministic values in each step of 

dynamics programming. This method is more efficient than traditional methods such as maximum 

likelihood estimation and moment generating function in terms of computational effort. The proposed 

method generates an exact real-time solution with low computation cost. This method can be 

implemented in various real-life application ranging from healthcare systems optimization, operating 

room scheduling and robotics to air, train and ground routing and transportations as well as supply 

chain systems and can cater a solution to many healthcare and pharmaceutical-related issues in 

industry.  

As it was discussed, the objective of this paper is to minimize pharmaceutical product make-span 

where the operation times are approximated by random variables with normal density function. We 

implemented the stochastic dynamic programming method proposed by Olya, Shirazi and 

Fazlollahtabar (2013) which is a more efficient approach to find the exact optimal solution under 

uncertainty. Using this method leads to improved product quality through dramatic decrease of product 

hold time by minimization of material handling and waiting times and elimination of multiple 

non-value-added transferring and hold steps.  

 

3. Methodology: Problem Definition and Modelling 

Generally, batch processing and semi-continuous production are utilized in drug manufacturing 

industry. In batch production system, each machine performs a particular task and there are different 

jobs. Considering the throughput of the manufacturing system and available resource and market-share, 

using identical parallel machines are allowed in job-shop manufacturing and process-flow systems 

where specific products are made and each job is different. This layout is used for manufacturing of 

small or medium size orders. Job shop layout consists of aggregating the machines based on their 

similarity in terms of nature of the task that they perform. Materials can be moved through the different 
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department based on their production sequence. So, they may or may not go through certain operations 

and machines in the plant. The problem of job-shop scheduling is considered as a NP-Hard problem. 

Consider Figure 1 where the process flow and machine layout of tablet and capsules production system 

is depicted. It is clear that for each product, the material travels throughout the different areas according 

to its operation sequence. Operation sequence of two products (i.e., tablet and capsule) is shown in 

Figure 1. In this study, we consider tablet production as the main case. The objective is to minimize the 

make-span. There are different methods to minimize the product cycle time such as scheduling and 

optimization tools. In this study, a dynamic stochastic programming approach is used to minimize the 

make-span which results in increased productivity, reduced manufacturing cost and improved customer 

service. One important characteristic of any scheduling method is being dynamic due to uncertainty in 

the machine’s processing time delay. In addition in many cases it is possible for the machine to break 

down. So, the method should be capable of minimizing the cycle time dynamically. 

 

 

Figure 1. Process Flow and Machine Layout of Tablet and Capsules Production System 

 

In this study operation time is considered as each individual task that consists of time of handling the 

material to the machine, delay time and machine processing time. So, aggregation of different operation 

times forms a make-span or product cycle time. Cycle time is the total time of the manufacturing 

process completion from the beginning to the end. In this research the time of operation is measured by 

normal distribution function instead of being considered as a deterministic value. That is because of the 

presence of uncertainty in the process and considering the correlation between processing time of all 
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manufacturing jobs together. 

Consider a plant floor as shown in Figure 1 which consists of a finite set of machines and products. The 

product flow forms a directed acyclic network which starts from raw material warehouse and finishes 

in final product warehouse. The operation time of each step is shown by an arrow and considered as a 

continuous normal random variable with parameters μ and σ2. The objective is to minimize the total 

operation time (cycle time) of manufacturing each product. 

3.1 Operation Time Approximation 

Operation time is a stochastic variable which its precise prediction is of high importance in operation 

time optimization. Underestimating the operation time may result in long process delays, and 

overestimating the operation time yields low resource utilization rate. Therefore, we need a mechanism 

to predict the visit time. We may use a process flow data to predict the operation time. Here we use the 

historic data of the operation times for approximation. 

Normal distribution is one of the most important distribution functions in statistics because it is simple 

to handle analytically, meaning that, it is possible to solve a large number of problems explicitly; the 

normal distribution is the result of the central limit theorem (Vazquez-Leal, Castaneda-Sheissa, 

Filobello-Nino, Sarmiento-Reyes, & Sanchez Orea, 2012). The central limit theorem states that in a 

series of repeated observations, the precision of the approximation improves as the number of 

observations increases (Montgomery & Runger, 2010). Besides, the bell shape of the normal 

distribution helps to model a variety of random variables in a practical way. The normal (or Gaussian) 

distribution integral has been widely used in manufacturing process modeling. The general formula for 

the probability density function of the normal distribution is  

f(x)= 




2σ

)σ2/( 2)( 2uxe
 

where μ is the location parameter and σ is the scale parameter.  

3.2 Dynamic Programming Recurrence Function 

After approximating the operation times by different normal distributions, in order to find the minimum 

cycle time we used a backward dynamic programming approach proposed by Olya, Shirazi and 

Fazlollahtabar (2013) due to its high efficiency among the other methods. For modeling the cycle time 

minimization problem suppose that we have M machines in the manufacturing system and production 

flow forms an acyclic network. The optimal cycle time value function Ti can be defined as the 

distribution of the shortest operation time from machine i to machine M. The dynamic programming 

recurrence relation is defined in formula 1 (Olya et al., 2013). 

 jij
ij

i TdT 


min       For    i = M-1                    (1) 

To initiate the backward dynamic programming the boundary condition should be set as TM=0. For 

using the above recurrence function it is necessary to find the total distributions and compare them in 
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each stage. The mechanism for calculating them is discussed in the next two sections.  

3.3 Calculating Sum of Two Density Functions 

Since the recurrence function includes adding up two random variables it necessitates the use of 

convolution to find the total operation time for each stage as it is described in theorem 1 (Olya et al., 

2013). 

Theorem 1: Let X and Y be two continuous random variables with density functions fX(x) and fY(y), 

respectively. Assume that both fX(x) and fY(y) are defined for all real numbers. Then the summation of 

two random variable x and y is a random variable with density function fZ(z), where fZ is the 

convolution of fX and fY. 

fz(z)= dyyfyzfdxxzfxf yxy
x

)()()()(  







           (2) 

For finding the summation of two normal random we know that if X1, X2, …, Xn are independent 

normal random variables with (μ1,σ1
2), (μ2,σ2

2),…, (μn,σn
2), then 




n
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i ii

n

i
u 21,1  ) (Olya et al., 2013). 

3.4 Comparing Two Density Functions 

Now we illustrate the method that we use to find the minimum between two normal random variables. 

In order to find the minimum random variable we calculate the probability that the first random 

variable X1 with normal density function with (μ1, σ1
2) became smaller than the second random 

variable X2 with normal density function with (μ2, σ2
2) with considering above-mentioned result: 

P(X1<X2)=P(X1-X2)=P(Z< )
σσ

()
σσ
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2
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                  (3) 

 

4. Case Study and Results 

In pharmaceutical batch production, uncertainty can result from various sources that cause earliness 

and tardiness in the process. Consider the manufacturing network depicted in Figure 1. The process 

flow of two products capsules and tablets are illustrated in the Figure by red and blue arrows, 

respectively. We studied the capsule production in this work as it is illustrated in the Figure, raw 

materials are released by quality control and will be delivered to first stage of the process (i.e., blending) 

from the raw material warehouse. We consider raw material warehouse the origin of the network where 

the process begins. As it was indicated before, the operation time for each stage includes the material 

handling time delays and machine processing time. So, we consider each arrow as an indicator for 

operations. Following the definition of operation time, we defined 8 different operation times and 

considered the operation mapped network as an acyclic network. To form the network, we considered 

raw material warehouse as the origin, then moving toward blending stage. Since there are two 
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machines, we will have two operation times. Then from each of which the material can choose one way 

among two available ways to move forward to the filling stage which also consists of two machines. 

There is a same situation for the product after being processed in filling stage. There are two different 

routes to go to the packing stage from each machine in filling stages. After being processed in packing 

stage the final product is ready to be delivered to customers. So, there is one raw material warehouse 

(RW), one final product warehouse (FW) and two machines in each department. The total number of 

the states is eight and the network has twelve arcs. This means that from each state except the 

destination, there are two possible ways to proceed to the next state. As explained before, this 

procedure can be modeled as an acyclic network in which arc lengths are normal random variables. The 

operation times for each stage are measured in minutes and since the operation times are not 

deterministic, using the Arena software we approximate the density functions of each operation time as 

represented in Table 1.  

 

Table 1. Normal Density Function Approximation of Operation Time at each Stage 

No. State No. Stage Machine sequence Approximation  

1 1 Blending RW-B1 N(104,2) 

2 1 Blending RW-B2 N(129,12) 

3 2 Filling B1-F1 N(165,9) 

4 2 Filling B1-F2 N(170,4) 

5 3 Filling B2-F1 N(145,3) 

6 3 Filling B2-F2 N(140,3) 

7 4 Packing F1-P1 N(155,3) 

8 4 Packing F1-P2 N(140,2) 

9 5 Packing F2-P1 N(120,5) 

10 5 Packing F2-P2 N(128,3) 

11 6 Final transfer P1-FW N(20,2) 

12 7 Final transfer P2-FW N(25,3) 

 

After finding the density function of each operation time, the manufacturing sequence that has the 

lowest total duration has been found by using the stochastic dynamic method where the network origin 

is raw material warehouse and the network destination is the final product warehouse. In order to find 

the shortest cycle time, we need to find the total operation time for each stage by using formula 1 as 

well as the probability that a certain sequence of operations has the shortest total operation time. In 

order to begin the backward dynamic programming, the boundary condition is set to zero (T8 = 0). The 

result of applying the method is represented in Table 2. 
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Table 2. Stepwise Result of Dynamic Programming 

State No. Selected operation sequence Operation time Probability 

8 FW - - 

7 P2-FW N(25,3) - 

6 P1-FW N(20,2) - 

5 F2-P1-FW N(140,7) 0.99 

4 F1-P2-FW N(165,5) 0.99 

3 B2-F2-P1-FW N(280,10) 0.99 

2 B1-F2-P1-FW N(310,11) 0.99 

1 RW-B2-F2-P1-FW N(409,22) 0.80 

 

As it is indicted in Table 2 the manufacturing route with the shortest cycle time of the capsule 

manufacturing is the sequence that starts from the raw material warehouse, goes to machine number 2 

in the blending section, then it goes to machine number 2 in filling, then goes to machine number 1 in 

the packing section and eventually goes to final product warehouse. The probability that this sequence 

has the lowest cycle time is 0.8. So, it can be stated that this sequence has the minimum cycle time with 

a probability of 80 percent.  

For validating the results, we have used the process simulation in Arena software. The results of the 

process simulation are represented in Table 3.  

 

Table 3. Operation Time Simulation Result 

Sequence Average Minimum Maximum 

RW-B1-F1-P1-FW 444.2216 432.7189 457.0553 

RW-B1-F1-P2-FW 449.3251 438.1263 461.3951 

RW-B1-F2-P1-FW 413.8709 401.4177 426.1416 

RW-B1-F2-P2-FW 426.6687 416.8918 435.9161 

RW-B2-F1-P1-FW 449.0533 437.2045 461.1022 

RW-B2-F1-P2-FW 439.7201 426.4335 449.4967 

RW-B2-F2-P1-FW 409.4163 394.547 425.6678 

RW-B2-F2-P2-FW 421.8703 410.4095 434.8484 

 

Considering the results of simulation in Table 3, it can be concluded that the results of simulation 

support the result of the implemented method in this research.  
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5. Conclusions 

Although pharmaceutical manufacturing optimization is very important in this sensitive industry, it has 

not been studied very well using progressed techniques. Accelerating the pharmaceutical manufacturing 

process is essential for manufacturers to remain as a strong competitor in this emerging industry. Cycle 

time optimization is considered as an important issue in manufacturing processes, especially in the 

pharmaceutical industry where the raw material is sensitive and needs to be proceeded rapidly. The 

problem becomes more complicated due to uncertainty of the operation times. To tackle this issue, a 

stochastic dynamic programming method has been used where the operation times are approximated by 

normal density functions. The results of implementing the mentioned method are compared with the 

process simulation results. Using this method is beneficial for pharmaceutical and healthcare processes 

since it is more realistic because of considering the probability density function of each operation time 

instead of their expected values. Using the expected values decreases the level of uncertainty of the 

model. Using new technologies such as continuous production can improve the process speed; however, 

using the new technology needs the cost benefit analysis and high initial investment for implementing 

the technology in the plant. 
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