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Abstract 

This paper describes an approach for stress testing banks that is consistent across economies and 

geographies, in contrast to common “macro scenario” driven approaches. The latter would require 

economic scenarios to be both equally likely (in a probabilistic sense) and equally stressful (in a 

conditional loss sense) across countries in order to be comparable. The paper proposes a three-pronged 

approach for stressing bank solvency, which incorporates recalibrating pre-crisis Basel capital 

assumptions, adapting the BIS “expected shortfall” approach for securities, and using granular data for 

income haircuts. Loan losses are quantified using a simple “multiples” approach, starting from expected 

outcomes, which is derived from the pre-crisis Basel technical proposal. The approach is practical, can 

be more granular or conducted at a high level, depending on data availability, and offers a simple way 

for regulators, investors or risk assessors to compare and contrast stresses in different banking systems. 

Of the eight bank defaults recorded globally during 2017, this approach would have given a better “rank 

ordering” for seven of them, indicating the approach adds value to traditional solvency metrics. 
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1. Introduction: Different Stress Testing Approaches 

Since the 2007/8 financial crisis, stress testing has become a key tool for bank planning and regulatory 

purposes. However, there are a number of different approaches to stress testing. Prior to the 2007-8 

financial crisis, implicit stress tests embedded in banks’ internal capital calculations were commonly 

used to inform banks’ capital buffers. But with many bank failures exposing these as inadequate ex post, 

interest in stress tests has intensified over the past decade. Key international regulatory guidance on 

stress testing was provided by the Basel Committee on Banking Supervision (BCBS) in 2009 (BCBS, 

2009); and both the Board of Governors of the Federal Reserve System (2015) and the European 
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Banking Authority (2014) have prescribed recent large-scale regulatory stress tests in the US and the 

European Union.  

A key feature of these exercises was to shift away from previous “value at risk” (VaR) approaches. VaR 

analysis can offer some substantial advantages, including its practical viability and conceptual 

attractiveness (Kupiec, 1998) and the ability to contrast multiple models and calibrations (see for 

example Alexander and Sheedy, 2008). But with its decline, stress tests instead became increasingly 

reliant on a form of scenario analysis: taking unexpected (downside) macro scenarios and estimating 

how those impact, via loan and securities losses, on bank capital. Lopez (2005) was one of the first to 

note that this mechanism would link losses to “specific and concrete” events; Jokivuolle, Virolainen 

and Vähämaa (2008) is one early post-crisis example of macro-driven stress testing. The popularity of 

these macro-driven tests extended to regulators, with some policymakers arguing they should replace 

the previous “Internal Ratings Based” (IRB) approach to risk-weighted capital (Tarullo, 2014). 

However, there is no consensus here; Borio, Drehmann and Tsatsaronis (2012) note that macro-driven 

stress tests are not suitable as early warning devices and would benefit from complementary 

information. 

Concerns have also been raised about the appropriateness of the modelling framework that links 

macroeconomic data to bank loss rates. To start with, these frameworks were often similar to classic 

macro modelling and hence focused on the middle of the distribution of losses (see for example Bunn 

et al., 2015; and Miani et al., 2012), rather than the tail. In some instances, researchers recognized this 

by proposing adjustments to estimated models, for instance in Buncic and Melecky (2012). However, 

regulators may also have responded by picking unusually stressful scenarios in their macro-based stress 

tests (Ellis, 2017). More recently, there has been renewed focus on flexible models that allow these 

relationships to change as the analysis moves into the tail of the distribution (Covas, Rump, & 

Zakrajsek, 2013). These quantile models, as introduced by Koenker and Hallock (2001), may offer a 

better guide to stressed outcomes, but they are not yet widely employed. 

However, macro-driven stress tests encounter further challenges when there is a need to compare and 

contrast banks in different regions or jurisdictions. Applying the same degree of stress across countries 

is far from simple for typical macro-driven stress tests. An assumed recession that decreases GDP by, 

say, 3% may not be as probable today in the US as in Indonesia; conversely, an equally probable 

scenario (say, with a 10% probability) may well entail a deep recession in one country and a more mild 

slowdown in another. Similarly, tying all countries to a single shock that is transmitted globally will not 

be equally stressful for every country that is affected, as the exposure to the shock and the nature of the 

transmission mechanism will vary from country to country. 

In light of these challenges, the approach described in this paper is deliberately different: and, 

consequently, is not intended to be directly comparable with macro-driven stress tests. In large part, this 

reflects the aims and of and context in which the approach was developed, with comparability and 

consistency across different countries and regions being more important than country-specific risks or 
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scenarios (which by their very nature will be heterogeneous). However, these discrepancies do not 

necessarily imply differences in judgments about the relative strength or viability of a bank under 

stressed conditions. Ultimately, as with other stress tests, this approach still aims to analyze banks’ 

resilience under stressed conditions against a group of peers, in order to uncover potential weaknesses 

in the financial system. 

This paper therefore describes an approach to stress testing that does not rely on downside 

macroeconomic scenario and, unlike most macroeconomic-driven stress tests, allows consistency and 

comparability of results across banks within a jurisdiction and across different jurisdictions. The rest of 

this paper describes each of the components in this approach that determine the stressed capital ratio. 

Section 2 deals sequentially with loan losses, stressing banks’ income, and an approach for security 

losses. Section 3 then shows the results of this approach for over 70 banking systems, highlighting 

those more vulnerable to stressed conditions and those more resilient. Finally, the discussion in Section 

4 concludes. 

 

2. Method 

2.1 Loan Losses: Starting from the Expected Case 

While point forecasts represent the average or most likely outcomes given a set of macroeconomic and 

industry conditions, stress tests literally represent unexpected developments. As such, it is possible to 

draw parallels between the two: and indeed to express stressed loss rates or stressed default rates as a 

“multiple” of expected rates. The higher the multiple, the bigger the increase from the expected to the 

stressed case. 

In order to exploit this link – in the context of loan losses – the analysis needs to start from an expected 

case. Given data limitations in many countries, one simple approach is to focus on system-level trends 

in asset quality, as measured by the aggregate Non-Performing Loan (NPL) ratio. As shown in past 

work (see for instance Buncic & Melecky, 2012, and Moody’s, 2014a and 2014b), it is possible to 

model system-level trends in asset quality and default rates based on expected developments in the 

economic and financial environment, where macroeconomic data – such as real GDP, unemployment, 

inflation, and the exchange rate – are used to obtain forecasts for the NPL ratio.  

However, econometric techniques and models differ. In general, NPL series tend to be relatively short 

for most banking systems (most of which are in emerging or developing economies); as a consequence, 

panel models may be needed to exploit cross-country patterns in the linkages between NPLs and 

macroeconomic variables. Wherever there is greater data availability, country-specific models can be 

estimated. But in either instance, the outcome from this approach is a set of projections for the 

aggregate or total NPL ratio in the banking system. In turn, this can be transformed into a Probability of 

Default (PD) given an assumption about the write-off rate of NPLs, using a simple “law of motion” 

approach (see Buncic & Melecky, op cit).  
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System-level profiles for NPL ratios can easily be transformed into NPL ratios – or PDs – for 

individual loan types, provided either disaggregated data on these categories are available, or 

assumptions are applied about the distribution of loans and asset quality. In some instances where data 

are more plentiful, it is possible to build specific forecasting models for individual loan types.  

One important point here is that – by and large – input data are not adjusted for idiosyncratic factors 

above and beyond routine adjustments. Several private agencies collect arrays of balance sheet and 

accounting data from rated issuers, which are then adjusted to provide standardized metrics across 

different geographies and jurisdictions (see for instance Moody’s, 2017). In principle, these input data 

should only be adjusted if there are clear and unambiguous grounds for doing so. For instance, an 

implicit assumption is often that underwriting standards are broadly consistent over time – or at least 

that any change is evident in metrics such as default rates or non-performing loans. This assumption is 

important because making sensible ad-hoc adjustments for as yet unobserved structural changes is 

difficult. 

It is also important to note that the granularity of the data typically varies significantly from country to 

country and region to region. As such, simplifying assumptions are often needed. In the case of 

aggregate figures on, for instance, loan-to-value ratios, this implies that some banks in a system will be 

relatively “penalized” by using an average figure, while others will implicitly benefit. But provided the 

aggregates are broadly correct, these differences should average out across the system as a whole. 

Where assumptions are needed for granular loan loss rates, these can be linear or non-linear provided 

they are consistent with the aggregate loan profile. It is also likely that individual banks may well see 

different PDs within the same financial system, as a result of bank-specific factors such as the quality 

of underwriting. To the extent to which these factors are evident in differential default data, they can 

also be incorporated.  

This approach can then be used to calculate default rates on different loan types – and for different 

banks – that are consistent with a central macroeconomic scenario. However, in order to calculate loan 

losses estimates of loss given default (LGD) are also required. 

There is a rich body of literature around LGD estimates, including many loan-specific estimates. Based 

on a survey of over 70 such estimates, there can be considerable variability in the appropriate LGD, 

depending on the type of loan (see Figure 1). A simple starting point is to use the median estimates 

shown; but wherever more country-specific data is available, that can also be incorporated. Similarly, 

differences in Loan-To-Value (LTV) ratios can also inform different LGDs for residential and 

commercial property. 
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In principle, these multiple curves can be used to generate stressed loss outcomes, obviating the need 

for a set of globally consistent macro scenarios for individual countries. However, they also suffer from 

obvious shortcomings, notably the poor performance of capital risk weights during the financial crisis. 

This suggests that the original asset risk models proposed by Basel need recalibrating. Properly 

assessing this would require estimates of pre-crisis expectations for credit losses, which are not readily 

available. But two simple proxies are easy to construct: the first is based on the assumption that 

expected losses were equal to the pre-crisis series average; for the second, we can assume that expected 

losses followed a random walk, implying they would be the same as realized losses in the previous 

year. 

Armed with these pseudo “real time” estimates of expected losses, it is possible to examine what the 

actual loss outturns during the crisis implied in terms of multiples, compared with the original Basel 

calibrations. Table 1 presents results for the US, where data are most granular and coverage is good. 

 

Table 1. US Banks’ Crisis Experience and Basel-Implied Multiples 

Highest implied multiple during 

20016-2011 Basel-implied multiples 

 “Series average” 

expected loss 

Random walk 

expected loss 

90th 

percentile

95th 

percentile

98th 

percentile 

99th 

percentile

Corporate loans 2.98 2.79 2.82 3.93 5.56 6.89 

Real estate loans 8.00 6.60 2.35 3.31 4.76 5.99 

Credit cards 2.51 1.80 1.54 1.75 2.02 2.21 

Source: Federal Reserve and author’s calculations. 

 

The results here suggest that the Basel models may not have been very misleading in the recent crisis 

for corporate loans, and to a lesser extent credit cards, depending on the implicit likelihood assigned to 

the financial crisis. The highest observed multiple for corporate loans, of 2.98, was well within the tail 

risks implied by the original calibrations. Unsurprisingly, the most obvious difference is for real estate, 

where the multiples observed during the crisis were much higher than the pre-crisis models suggested. 

But this offers an obvious recalibration approach: parameters from the original Basel specification can 

be adjusted until the implied multiples match the observed outcomes at some given percentile. For 

instance, given the implied multiple observed during the crisis was as high as 8 for US real estate loans, 

but the 99th Basel-implied percentile was only around 6, the Basel approach can be recalibrated to 

generate in higher multiples for real estate loans. 

This approach therefore offers a simple but consistent mechanism for constructing stressed loss rates on 

different lending types across banks in different systems. 
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Based on this assumption, the observed distribution can be used to generate income haircuts for banks, 

which can be applied in stress tests. In particular, depending on the desired degree of stress to apply – 

and, consistent with the multiples approach to loan losses, this can be defined as a percentile of the 

distribution – an income haircut that is consistent with the observed distribution can be employed. For 

instance, in a “1 in 25” stress test, the income haircut would be informed by the 4th percentile of the 

distribution of changes in PPI.  

In practice, this approach can be employed for different components of banks’ income, such as net 

interest income and non-interest income, rather than focus on aggregate PPI. Importantly, however, 

income haircuts are not applied to trading income: this is covered under the securities stress approach, 

and hence would “double count” stresses if also applied here. Similarly, a simplifying assumption in 

several stress tests is that operating expenses are constant, and that the impact of management actions is 

limited to pre-announced measures. However, if these assumptions – or indeed the observed 

distribution of income changes – is not representative, then either the assumptions, or the distribution 

of income data, can be adjusted to inform different approaches. The main goal here is to demonstrate 

that the approach again offers a simple and consistent mechanism to consistently stress banks around 

the globe, based on the observed data. 

2.4 Securities Losses: A Differentiated Approach 

The third key component in this stress testing approach is to impose losses on banks according to their 

securities holdings. For many banks around the world, securities represent a relatively small component 

of the total balance sheet, compared with loans. But despite this, securities can play a significant role in 

stress tests. 

In principle, there are three broad categories of securities holdings (and a residual “other” category). 

The first are securities that are Held To Maturity (HTM). In essence, banks will only realize losses on 

these securities if they default. The second are securities on the trading book (TRD). And the third are 

securities that are available for sale (AFS). Given the different nature of these three groups, a 

differentiated approach for stress testing is required. 

For HTM securities, where a published credit rating exists, it is simple to apply published loss rates 

associated with that published rating (see Moody’s, 2016a). However, in a stressed scenario there 

would likely be some deterioration in ratings from their pre-stress levels. This risk can be incorporated 

using published transition matrices for ratings. For instance, for a two-year stress, and again focusing 

on a “1 in 25” event, the 4th percentile of rating transitions can inform potential deteriorations in credit 

quality. 

Based on published data, in this instance that would be broadly consistent with a three-notch rating 

downgrade; so a “1 in 25” stress for bank with bonds rated Baa2 (on Moody’s scale) would imply a 

downgrade to Ba2 (Table 2). This in turn corresponds to a published two-year (idealized) loss rate of 

1.9%. Where published ratings are not available, benchmarks can be constructed based on close peers 
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or assumptions; for instance, that the average rating of corporate bonds held by a bank matches the 

average rating in the region or country where the bank is domiciled. 

 

Table 2. Two-Year Cumulative Rating Transition Rates 

 Two-year rating horizon 

Initial rating 

Ca, C + 

Default 

Caa B Ba Baa A Aa 

Aaa 0.0% 0.0% 0.0% 0.0% 0.2% 1.8% 17.2% 

Aa 0.1% 0.1% 0.2% 0.5% 1.8% 18.1% 98.5% 

A 0.2% 0.3% 0.7% 1.9% 12.0% 94.8% 99.9% 

Baa 0.6% 0.9% 2.5% 9.1% 91.0% 99.5% 99.9% 

Ba 3.0% 4.6% 17.4% 86.1% 98.8% 99.9% 100.0% 

B 10.6% 21.6% 88.8% 98.3% 99.6% 99.9% 100.0% 

Caa 24.7% 84.0% 98.4% 99.7% 99.9% 100.0% 100.0% 

Ca, C 74.9% 91.0% 98.6% 99.9% 100.0% 100.0% 100.0% 

Note. Transition probabilities are cumulative from the left-hand column to the right-hand one. The 

rating category that nests a 4% cumulative downside outcome (consistent with a “1 in 25” stress) is 

shown in bold italics. 

Source: Moody’s (2016c). 

 

The treatment of securities on the trading book (TRD) should necessarily be different. In principle, 

these are not securities that banks will necessarily hold for long periods of time, so imposing large 

credit losses that may not crystallize for the bank may be inappropriate. At the same time, the trading 

book is affected by market risk in a much more immediate fashion than securities that are held to 

maturity. The process for stressing these securities is an adaptation of the “expected shortfall” approach 

outlined by the Basel Committee (BCBS, 2016). Essentially, this approach estimates loss rates on 

securities for a given holding period, which are calibrated using losses observed in a severe preceding 

year. Using past data for equity and bond indices that cover the global financial crisis in particular – 

which tends to represent the most severe 12-month period in recent history – loss rates for different 

types of securities can be calculated. Where data limitations are prohibitive and do not allow 

country-specific loss rates to be calculated, regional loss rates can be constructed, or loss rates from 

comparable countries can be used. Illustrative examples of loss rates are presented in Figure 4; further 

details on the expected shortfall approach are provided in Appendix 2. 
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losses, informed by crisis-era data and new analysis from regulators, this offers a different approach to 

stress testing that more readily allows for global comparisons. That, in and of itself, means the stress 

testing approach described herein can add value to existing exercises conducted around the world, both 

by policymakers and private institutions. Furthermore – although the sample of ex-post outcomes is 

very small so far – this global stress testing approach appears to add value to rank orderings of credit 

risk. As such, it offers a useful tool to practitioners and policymakers alike. 
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Appendix 1: Relating stressed losses to expected losses 

Under the Basel II regulatory approach (see BIS, 2005), banks were required to hold supervisory 

capital charges based on an assessment of unexpected losses. Algebraically, the formula for this capital 

requirement (K) can be expressed as: 

ܭ    ൌ ൤ܦܩܮ ∗ ܰ ൜ቀ
ଵ

ଵିோ
ቁ
଴.ହ
∗ ሻܦሺܲܩ ൅ ቀ

ோ

ଵିோ
ቁ
଴.ହ
∗ ሺܲሻൠܩ െ ܦܲ ∗ ൨ܦܩܮ ∗ ߱            (1) 

where N represents the standard normal distribution, G the inverse standard normal distribution, P 

represents the percentile at which the unexpected losses are evaluated, R represents the correlation 

between the asset values of different borrowers, and ω represents an adjustment to take account of 

varying loan maturities. Under the Basel II approach, unexpected losses are assessed at the 99.9th 

percentile (P = 0.999), representing extreme tail losses. 

Simply put, this expression defines the unexpected loss as the difference between the expected loss and 

the tail (stressed) loss given assumptions about the nature of potential losses. The ‘unexpected’ loss is 

the difference between the central VaR and the expected loss. 

To model the correlation of borrowers’ asset values, the Basel approach differentiates between different 

types of lending. However, the correlation is typically described as a function of the Probability of 

Default (PD), and correlations are assumed to decrease as PDs increase. Hence for non-mortgage retail 

exposures, the Basel approach specifies the following correlation formula: 

                ܴ ൌ 0.03 ∗
ଵିୣ୶୮	ሺିఊ∗௉஽ሻ

ଵିୣ୶୮	ሺିఊሻ
൅ 0.16 ∗ ቂ1 െ

ଵିୣ୶୮	ሺିఊ∗௉஽ሻ

ଵିୣ୶୮	ሺିఊሻ
ቃ                 (2) 

Where the highest and lowest correlations are 16% and 3%, respectively. The parameter γ determines 

the speed with which the correlations decrease as PDs increase: in the case of “other retail”, the 2005 

Basel calibration is 35, but for “corporate lending” it is 50. 

Another important factor in the risk weighting formula is the maturity adjustment. As longer-term 

credits are riskier than short-term credits, the Basel approach explicitly increases the capital 

requirement with maturity. Based on empirical analysis, the Basel maturity adjustment is specified as: 

                          ߱ ൌ
ଵାሺ௠ିଶ.ହሻ∗௕ሺ௉஽ሻ

ଵିଵ.ହ∗௕ሺ௉஽ሻ
                              (3) 

Where m represents maturity. The right-hand terms in this expression are smoothed maturity 

adjustments based on regression analysis of default rates, as defined in the Basel approach: 

																																																		ܾሺܲܦሻ ൌ ሾ0.11852 െ 0.05478 ∗ log	ሺܲܦሻሿଶ                      (4) 

Importantly, this maturity adjustment is only applied to corporate risk weights in the Basel approach; 

retail risk weight functions do not include maturity adjustments. 

The focus here is on unexpected losses, rather than capital requirements, but under the Basel approach 

the two are equivalent. As such, unexpected losses (UL) can be defined as: 

ܮܷ   ൌ ൤ܰ ൜ቀ
ଵ

ଵିோ
ቁ
଴.ହ
∗ ሻܦሺܲܩ ൅ ቀ

ோ

ଵିோ
ቁ
଴.ହ
∗ ሺܲሻൠܩ െ ൨ܦܲ ∗ ܦܩܮ ∗ ߱         (5) 
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By definition, this unexpected loss is the difference between the central VaR and the expected loss; so 

in order to calculate the stressed loss (SL) the expected loss needs to be added back in: 

ܮܵ                                 ൌ ܮܷ ൅ ܦܲ ∗  (6)                               ܦܩܮ

Finally, combining (5) and (6) and defining the multiple as the ratio of stressed to expected losses gives 

the formula for the multiple curve: 

݈݁݌݅ݐ݈ݑܯ                    ൌ 1 ൅
൤ே൜ቀ

భ
భషೃቁ

బ.ఱ
∗ீሺ௉஽ሻାቀ

ೃ
భషೃቁ

బ.ఱ
∗ீሺ௉ሻൠ൨∗ఠ

௉஽
                   (7) 

The multiple is therefore a function of the (Basel) asset correlations (R), the Probability of Default (PD) 

and a judgment about how far into the tail of the loss distribution the stress should be (P). 

 

Appendix 2: Adapting the Expected Shortfall approach for securities stresses 

The approach described in this paper for stress testing trading securities is inspired by the revised 

standards for minimum capital requirements for market risk set by the Basel Committee in January 

2016, consistent with the fundamental review of the trading book (see BCBS, 2016). In its proposal, the 

Basel Committee implements a shift from value-at-risk (i.e., the maximum losses within a certain 

confidence level) to Expected Shortfall (ES), which is the expected loss conditional on a loss greater 

than a defined percentile of the loss distribution. The stressed calibration is defined following this Basel 

approach, using the proposed 10-day holding period to calculate losses. The Basel ES approach allows 

for liquidity adjustments to this holding period, but the limited availability of public data makes this 

adjustment quite challenging, so the 10-day holding period is maintained as a baseline. 

In the Basel approach, capital charges are calculated taking into account risk factor sensitivities (for 

instance, delta, vega and curvature) within a prescribed set of risk classes. In the stress tests described 

herein, a simplified approach is used due to lack of granular data: the ES is calculated using a relevant 

index for each security that captures the relevant market risk (e.g., an index of high-yield corporate 

bonds in emerging Asia for a corporate bond in the Philippines). As set out in the Basel approach, 

returns on securities are calculated for the 10-day holding period and the most stressed year (252 

trading days) is identified in the past 10 years, as defined by the highest standard deviation. The 

distribution of 10-day returns can then be calculated for that 252-day period: and the appropriate 

percentile of the distribution can be selected, consistent with loan loss and income assumptions (for 

instance, with the 4th percentile of that distribution corresponding to the “1 in 25” calibration). In 

principle, this choice of percentile can be varied in the same manner for both securities and loan losses 

and income. The average of all the 10-days returns (which are typically negative by selection) up to 

that percentile is then the loss rate that is applied to the trading book. 

 


