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Abstract 

While the differential approach to economic analysis is useful, the difference approach is indispensable 

as almost all economic data are discrete, rather than continuous. Thus, we must investigate the 

integration of the differential with difference approaches. We show a difference quotient corresponding 

to a differential quotient, which is generally called a derivative, and a partial difference quotient 

corresponding to a partial differential quotient, which is generally called a partial derivative. From 

these, the difference approach produces a discrete demand system with logarithmic mean elasticities as 

parameters that corresponds to a continuous demand system with point elasticities as parameters 

produced by the differential approach. These systems should satisfy each budget constraint: the former 

for finite-change variables and the latter for infinitesimal-change variables. Based on these, we 

consider a discrete meat demand system, apply it to monthly demand for fresh meat in Japan, and 

estimate it using a weighted RAS method. The estimated demand system has two desirable properties: 

each estimated demand (theoretical value) of the conditional demand function coincides with each 

observed demand, and this system satisfies the difference budget constraint. 

Keywords 

difference approach, differential approach, Cournot aggregation, Engel aggregation, logarithmic mean, 

meat demand system, RAS method 

 

1. Introduction 

While the differential approach to economic analysis is useful, the difference approach is indispensable 

as almost all economic data are discrete, rather than continuous. There are some well-known 

differential demand systems and their variants such as the Rotterdam model (see, e.g., Barten, 1964, 

1993; Theil, 1965, 1975/76; Deaton & Muellbauer, 1980b (Chap. 3); Neves, 1994; Clements & Gao, 

2014, (Appendix)). However, to estimate these systems using actual data, we must approximate some 
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differential values to their corresponding difference values, which creates new problems (see Section 4 

and Appendix B). Thus, we must also investigate a difference approach to avoid these problems. 

In this study, we derive and estimate a difference demand system whose parameters have to possess 

some properties, which we call a discrete demand system. When we estimate the parameters of each 

conditional demand function, we assume that our discrete demand system has two specific features: all 

independent and dependent variables (prices, total expenditures, and demands) are pre-determined (i.e., 

measurable, observable, or exogenously given), and all parameters (price and income elasticities, and 

residuals) of the system are post-determined. (As the ith demand is not a dependent variable whenever 

we estimate this demand system, it would be better for us to use another term instead of the function. 

However, we use the function for convenience). We can regard all pre-determined variables, variables 

calculated from these, and real numbers (1 and 0 will be used later) as real data (i.e., real-world data). 

In response to this assumption, we develop a new method, which we call the weighted RAS (WRAS) 

method. The WRAS method can estimate the parameters using only two points data (i.e., initial and 

terminal data). All the parameters that are estimated using our WRAS display the most desirable 

properties: each theoretical demand of the conditional demand function calculated using estimated 

parameters and independent variables coincides with its real value (observable demand), and these 

parameters satisfy the budget conditions. Thus, we can say that the parameters are consistent with real 

data (see Sections 5 and 6). 

In the below, all variables are assumed to be economic data, and thus they are positive and discrete 

except for events that assume differentiability for their description. (Wherever we have to consider 

these events, all variables are assumed to be continuous and these functions are either differentiable or 

totally differentiable). For simplicity, they are usually not unity when we need to take their logarithms 

and only the natural logarithm is used. Any economic datum x, which may be called a variable, is 

commonly given as xt at point t (e.g., day, month, year). Then, we have two differences such as Δx ≡ x1 

– x0 and Δlogx ≡ logx1 – logx0 = log(x1/x0), where the subscript 0 represents an initial point and 1 

represents a terminal point. The two differences are always those at these points, except in Subsection 

4.3, and Sections 5 and 6. These two differences are also assumed to be non-zero to obtain interesting 

results, unless we set Δx = 0 to define a partial difference quotient. Naturally, we consider the limit: 

lim ∆𝑥 → 0. 

For the differential approach, the two above-mentioned differences (i.e., the differentials) are ordinarily 

written as dx and dlogx. As these differentials cannot be observed or measured, they cannot be used as 

real data (note that a derivative or a partial derivative is theoretically given by its definition). Thus, 

there is no differential demand system of which parameters are consistent with real data. 

For the difference approach, a logarithmic mean (hereafter log-mean) is essential. The log-mean is 

defined as 

𝐿(𝑥) ≡
∆𝑥

∆ log𝑥
=

𝑥1−𝑥0

log 𝑥1−log𝑥0
=

𝑥1−𝑥0

log(𝑥1 𝑥0⁄ )
=

𝑥0−𝑥1

log(𝑥0 𝑥1⁄ )
.                      (1) 
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Sometimes, we write this as L(x1, x0) to express two arguments clearly. The log-mean has many useful 

properties (see, e.g., Carlson, 1972; Stolarsky, 1975; Vartia, 1976; Balk, 2002-3, 2008; Tsuchida, 2014, 

2015, 2018). It is always positive and has the following limit: 

lim∆𝑥→0 𝐿(𝑥) = 𝑥1 = 𝑥0.                                (2) 

Letting h = x1/x0 and using L’Hopital’s rule, we can easily prove Eq. (2) as follows: 

lim
∆𝑥→0

𝐿(𝑥) = lim
𝑕→1

𝑥0(𝑕 − 1)

log 𝑕
= 𝑥0 = 𝑥1. 

However, as our data are discrete, further proof is desirable (see Appendix D). This limit is used to 

explain a correspondence between infinitesimal-change and finite-change variables. Likewise, if x1/x0 is 

close to 1, the log-mean can be approximated by three means: arithmetic, geometric, and harmonic 

(Tsuchida, 2018). Furthermore, it has the following property: 

𝐿(𝑐𝑥) =
𝑐𝑥1 − 𝑐𝑥0

log(𝑐𝑥1 𝑐𝑥0⁄ )
=

𝑐(𝑥1 − 𝑥0)

log 𝑥1 − log 𝑥0
= 𝑐𝐿(𝑥), for a positive constant 𝑐. (3) 

Here, we show the most useful correspondences between the differential and difference approaches 

(Tsuchida, 2018). From the definition (1), we obtain 

∆ log 𝑥 = ∆𝑥 𝐿(𝑥).⁄  (4) 

In contrast, we know the familiar relationship: 

𝑑 log 𝑥 = 𝑑𝑥 𝑥⁄ . (5) 

From Eqs. (4) and (5), we can find the following correspondences: 

infinitesimal − change variables {
𝑑 log 𝑥 ↔ ∆ log 𝑥

𝑑𝑥 ↔ ∆𝑥
     𝑥 ↔ 𝐿(𝑥)

} finite − change variables, (6) 

wherein the relationship “A ↔ B” indicates that A corresponds with B, and vice versa. The last 

correspondence stems from Eq. (2). If ∆𝑥 → 𝑑𝑥 → 0, then ∆ log 𝑥 → 𝑑 log 𝑥 and 𝐿(𝑥) → 𝑥(𝑥1 = 𝑥0).  

The correspondences (6) only hold for x > 0 and xt > 0 (t = 0, 1) and serve as a bridge between the 

differential and difference approaches. 

The remainder of this paper is organized as follows. In Section 2, we discuss an elasticity of a function 

using the differential and difference approaches. Our difference approach can produce the difference 

versions, which are called the log-mean elasticities, corresponding to the point elasticities produced by 

the differential approach. In there, we first discuss a difference quotient corresponding to a differential 

quotient, which is generally called a derivative. Next, we discuss a partial difference quotient 

corresponding to a partial differential quotient, which is generally called a partial derivative. The partial 

difference quotient and the log-mean elasticity produced by the difference approach are the most 

significant concepts introduced in this study, and are the key elements in the derivation of a new 

demand function. In Section 3, we discuss two specific demand functions and their elasticities. We 

show that the differential and difference approaches can lead to continuous and discrete log-change 

demand functions, respectively. Based on these results, in Section 4, we define continuous and discrete 

demand systems that have to satisfy some conditions from each budget constraint: the former for 
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infinitesimal-change variables and the latter for finite-change variables. While the former conditions 

are well-known, the latter conditions have never been known. A specific demand system embeds the 

budget constraint within itself. Hence, the differential budget constraint and difference budget constrain 

are embedded in the differential and difference versions of the demand system, respectively. In Section 

5, we apply our discrete meat demand system to monthly demand for fresh meat in Japan, and the 

parameters are estimated using the WRAS method. The WRAS method can derive the discrete meat 

demand system whose parameters are consistent with real data. In Section 6, we present some 

concluding remarks, wherein we illustrate the consistency with real data using matrix algebra again. 

 

2. Elasticities: Derivations and Definitions 

We begin to represent the elasticities produced by the differential and difference approaches using 

various functions. Our difference approach can derive the difference versions corresponding to the 

elasticities produced by the differential approach. We use terms such as differential quotient, which is 

generally called a derivative, in Subsection 2.1 (see also Tsuchida, 2018) and partial differential 

quotient, which is generally called a partial derivative, in Subsection 2.2 (see, e.g., Takayama, 1974; 

Berck & Sydsӕter, 1991; Bronshtein et al., 2015). In this section and the next two sections, first we 

explain the differential approach under the expression [Inf-Change], and then we explain the difference 

approach under the expression [Fin-Change]. When two functions are written on the same line, the first 

is for the differential approach and the second is for the difference approach in which the subscript t 

represents a point. 

2.1 Functions of One Variable: A Differential Quotient and a Difference Quotient 

1) 𝑌 = 𝑋𝑎 and𝑌𝑡 = (𝑋𝑡)
𝑎 (𝑎 is a constant) 

[Inf-Change] The differential approach leads to: 𝑑𝑌 = 𝑎𝑋𝑎−1𝑑𝑋.  From this, the differential quotient is 

obtained as follows: 

𝑑𝑌 𝑑𝑋⁄ = 𝑎𝑋𝑎−1 = 𝑎(𝑋𝑎 𝑋⁄ ) = 𝑎(𝑌 𝑋⁄ ). 

A point elasticity e* is given by 

𝑒∗ ≡
𝑋𝑑𝑌

𝑌𝑑𝑋
=
𝑑 log 𝑌

𝑑 log 𝑋
= 𝑎. (7) 

[Fin-Change] The difference approach leads to: ∆ log 𝑌 = 𝑎∆ log𝑋, ∆𝑌 𝐿(𝑌)⁄ = 𝑎 ∆𝑋 𝐿(𝑋)⁄ . Thus, 

the difference quotient is 

∆𝑌 ∆𝑋⁄ = 𝑎𝐿(𝑌) 𝐿(𝑋)⁄ . 

An arc elasticity is defined as 

[𝜀∗] ≡
𝐴(𝑋)∆𝑌

𝐴(𝑌)∆𝑋
=
𝑎𝐴(𝑋)𝐿(𝑌)

𝐴(𝑌)𝐿(𝑋)
, (8) 

wherein A(x) = (x1 + x0)/2 is the arithmetic mean. Our difference approach induces a new elasticity, 

called a log-mean elasticity, which is defined as 
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𝜀∗ ≡
𝐿(𝑋)∆𝑌

𝐿(𝑌)∆𝑋
=
∆ log 𝑌

∆ log 𝑋
= 𝑎. (9) 

If A(x) ≈ L(x) (x is X and Y) is assumed, the arc elasticity (8) approaches the log-mean elasticity (9). 

Comparing Eq. (7) with Eq. (9), we can find close correspondences between the differential and 

difference approaches. We emphasize these as follows: 

𝑑𝑌

𝑑𝑋
↔

∆𝑌

∆𝑋
, (10) 

𝑒∗ =
𝑋𝑑𝑌

𝑌𝑑𝑋
=
𝑑 log 𝑌

𝑑 log 𝑋
↔

∆ log 𝑌

∆ log 𝑋
=
𝐿(𝑋)∆𝑌

𝐿(𝑌)∆𝑋
= 𝜀∗. (11) 

The correspondence shown in (10) is easily understood from the following definition of a derivative: 

lim
∆𝑋→0

∆𝑌

∆𝑋
=
𝑑𝑌

𝑑𝑋
. 

If ∆𝑋 → 𝑑X → 0, we can employ the above correspondences. Similar correspondences will be found 

below. 

It must be noted that the point and log-mean elasticities usually depend on a point and two points (i.e., 

an initial point and a terminal point), respectively. Thus, the point elasticity is point-dependent and the 

log-mean elasticity is two-points-dependent (hereafter twop-dependent). See Subsection 2.2. 

2) 𝑌 = 𝑐𝑋 and 𝑌𝑡 = 𝑐𝑋𝑡 (𝑐 is a positive constant) 

[Inf-Change] 𝑑𝑌 = 𝑐𝑑𝑋. The differential quotient and point elasticity are 

𝑑𝑌

𝑑𝑋
= 𝑐 and 𝑒∗ =

𝑋𝑑𝑌

𝑌𝑑𝑋
=
𝑐𝑋

𝑌
= 1. 

[Fin-Change] ∆ log 𝑌 = ∆ log𝑋 , ∆𝑌 𝐿(𝑌)⁄ = ∆𝑋 𝐿(𝑋)⁄ . The difference quotient is 

∆𝑌 ∆𝑋⁄ = 𝐿(𝑌) 𝐿(𝑋) = 𝑐⁄ , 

wherein 𝐿(𝑌) = 𝐿(𝑐𝑋) = c𝐿(𝑋) from Eq.  (3). The arc and log-mean elasticities are 

[𝜀∗] =
𝐴(𝑋)∆𝑌

𝐴(𝑌)∆𝑋
=
𝑐𝐴(𝑋)

𝐴(𝑌)
= 1 and 𝜖∗ =

𝐿(𝑋)∆𝑌

𝐿(𝑌)∆𝑋
= 1. 

Note that A(Y) = A(cX) = cA(X) for a constant c. 

2.2 Functions of Two Variables: A Partial Differential Quotient and a Partial Difference Quotient 

1) 𝑌 = 𝑋𝑎𝑍𝑏 and 𝑌𝑡 = (𝑋𝑡)
𝑎(𝑍𝑡)

𝑏 ( a double logarithmic fuction; and 𝑎 and 𝑏 are constants) 

[Inf-Change] A partial derivative of Y with respect to X is defined as 

𝜕𝑌

𝜕𝑋
≡ lim

∆𝑋→0

(𝑋 + ∆𝑋)𝑎𝑍𝑏 − 𝑋𝑎𝑍𝑏

∆𝑋
 

= lim
∆𝑋→0

(𝑋𝑎 + 𝑎𝑋𝑎−1∆𝑋 + (𝑎(𝑎 − 1) 2!⁄ )𝑋𝑎−2(∆𝑋)2 +⋯)𝑍𝑏 − 𝑋𝑎𝑍𝑏

∆𝑋
= 𝑎𝑋𝑎−1𝑍𝑏, 

(12) 

which is the function obtained by differentiating Y with respect to X, treating Z as a constant. The total 

differential of this function is 
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𝑑𝑌 = 𝑎𝑋𝑎−1𝑍𝑏𝑑𝑋 + 𝑏𝑋𝑎𝑍𝑏−1𝑑𝑍. (13) 

From (13), we obtain the following: 

𝜕𝑌

𝜕𝑋
=
𝑑𝑌

𝑑𝑋
|(𝑑𝑍 = 0) = 𝑎𝑋𝑎−1𝑍𝑏, (14) 

which is a differential quotient dY/dX under the condition: dZ = 0 (Note 1) and essentially equivalent to 

Eq. (12). We designate the middle term in Eq. (14) the partial differential quotient of Y with respect to 

X. The partial differential quotient of Y with respect to Z is defined in a similar manner. 

Thus, the point elasticity of Y with respect to X, eX, is 

𝑒𝑋 ≡
𝑋𝜕𝑌

𝑌𝜕𝑋
=
𝑎𝑋𝑎𝑍𝑏

𝑌
= 𝑎. (15) 

The point elasticity with respect to Z is similarly defined. These elasticities for the double-log (double 

logarithmic) function become independent of the point. 

[Fin-Change] The difference approach leads to 

∆ log 𝑌  = 𝑎 ∆log𝑋 + 𝑏∆ log 𝑍, ∆𝑌 = 𝑎(𝐿(𝑌) 𝐿(𝑋)⁄ ) ∆𝑋 + 𝑏(𝐿(𝑌) 𝐿(𝑍)⁄ )∆𝑍. 

Our partial difference quotient of Y with respect X is defined as 

𝛿𝑌

𝛿𝑋
≡
∆𝑌

∆𝑋
|(∆𝑍 = 0) =

𝑎𝐿(𝑌)

𝐿(𝑋)
, (16) 

which is the difference quotient ΔY/ΔX under the condition: ΔZ = 0 (Note 2) and corresponds to Eq. 

(14). The partial difference quotient of Y with respect to Z is defined in a similar manner. 

Our log-mean elasticity of Y with respect to X, 𝜀𝑋, is 

𝜀𝑋 ≡
𝐿(𝑋)𝛿𝑌

𝐿(𝑌)𝛿𝑋
= 𝑎. (17) 

While the log-mean elasticity is usually dependent on two points, this elasticity is not. 

The partial difference quotient and log-mean elasticity are very effective concepts and play key roles in 

our discrete demand system. This elasticity also corresponds to Eq. (15). These correspondences are 

shown as follows, and will be utilized latter if ∆𝑋 → 𝑑X → 0 and ∆Z = 𝑑Z = 0: 

𝜕𝑌

𝜕𝑋
↔

𝛿𝑌

𝛿𝑋
, (18) 

𝑒𝑋 ≡
𝑋𝜕𝑌

𝑌𝜕𝑋
= 𝑎 ↔ 𝑎 =

𝐿(𝑋)𝛿𝑌

𝐿(𝑌)𝛿𝑋
≡ 𝜀𝑋. (19) 

The two (differential and difference) approaches to the double-log function produce the same elasticity, 

that is, the point elasticities at all points between the initial and terminal points equal the log-mean 

elasticity. (As explained above, the point and log-mean elasticities for other functions are usually 

point-dependent and twop-dependent, respectively). The log-mean elasticity of Y with respect to Z is 

analogously defined. 

2) 𝑌 = 𝑐1𝑋
𝑎𝑍𝑏 + 𝑐2X  and 𝑌𝑡 = 𝑐1(𝑋𝑡)

𝑎(𝑍𝑡)
𝑏 + 𝑐2𝑋𝑡 
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(𝑐1 and 𝑐2are positive constants;  and 𝑎 and 𝑏 are constants) 

[Inf-Change] 𝑑𝑌 = 𝑎𝑐1𝑋
𝑎−1𝑍𝑏𝑑𝑋 + 𝑏𝑐1𝑋

𝑎𝑍𝑏−1𝑑𝑍 + 𝑐2𝑑𝑋. The partial differential quotient of Y with 

respect to X is 

𝜕𝑌

𝜕𝑋
=
𝑑𝑌

𝑑𝑋
|(𝑑𝑍 = 0) = 𝑎𝑐1𝑋

𝑎−1𝑍𝑏 + 𝑐2, 

Thus, the point elasticity of Y with respect to X, eX, is 

𝑒𝑋 =
𝑋𝜕𝑌

𝑌𝜕𝑋
=
𝑎𝑐1𝑋

𝑎𝑍𝑏 + 𝑐2𝑋

𝑌
. (20) 

This point elasticity is dependent on a specific point because the variables X, Z, and Y are those values 

at that point. The point elasticity of Y with respect to Z is analogously defined. 

[Fin-Change] Letting 𝐺𝑡 = 𝑐1(𝑋𝑡)
𝑎(𝑍𝑡)

𝑏 and 𝐹𝑡 = 𝑐2𝑋𝑡, the difference approach gains the following 

(see Tsuchida, 2018): 

∆ log𝐺 = 𝑎∆ log𝑋 + 𝑏 ∆log 𝑍 , ∆𝐺 = 𝑎(𝐿(𝐺) 𝐿(𝑋)⁄ )∆𝑋 + 𝑏(𝐿(𝐺) 𝐿(𝑍)⁄ )∆𝑍, 

∆𝐹 = 𝑐2∆𝑋, ∆𝑌 = ∆𝐺 + ∆𝐹, 

∴  ∆𝑌 = (𝑎(𝐿(𝐺) 𝐿(𝑋)⁄ ) + 𝑐2)∆𝑋 + 𝑏(𝐿(𝐺) 𝐿(𝑍)⁄ )∆𝑍 

Thus, the partial difference quotient of Y with respect to X is 

𝛿𝑌

𝛿𝑋
=
∆𝑌

∆𝑋
|(∆𝑍 = 0) =

𝑎𝐿(𝐺)

𝐿(𝑋)
+ 𝑐2, 

wherein 𝐿(𝐺) = 𝑐1𝐿(𝑋
𝑎𝑍𝑏). The log-mean elasticity of Y with respect to X, 𝜀𝑋, is 

𝜀𝑋 =
𝐿(𝑋)𝛿𝑌

𝐿(𝑌)𝛿𝑋
=
𝑎𝑐1𝐿(𝑋

𝑎𝑍𝑏) + 𝑐2𝐿(𝑋)

𝐿(𝑌)
. (21) 

This log-mean elasticity is dependent on two points. We can see that Eq. (21) corresponds to Eq. (20). 

The log-mean elasticity of Y with respect to Z is similarly defined. 

 

3. Continuous and Discrete Log-Change Demand Functions and Their Elasticities 

In this section, we discuss two specific demand functions and their elasticities. We also use two 

approaches: differential and difference approaches. To simplify our equations, there are two 

commodities, i and j. Our fundamental ith demand functions are 

𝑞
𝑖
= 𝑓

𝑖
(𝑝

𝑖
, 𝑝

𝑗
, 𝑦)and 𝑞

𝑡𝑖
= 𝑓

𝑡𝑖
(𝑝

𝑡𝑖
, 𝑝

𝑡𝑗
, 𝑦

𝑡
), 

wherein p, q, and y represent price, quantity, and income (i.e., total expenditure), respectively, and the 

subscripts i and j represent the commodities. In this section, the budget constraints are discarded. 

1) The ith demand functions: 𝑞𝑖 = c𝑝𝑖
𝑎𝑖𝑖𝑝

𝑗

𝑎𝑖𝑗𝑦𝑏𝑖 and 𝑞𝑡𝑖 = 𝑐(𝑝𝑡𝑖)
𝑎𝑖𝑖(𝑝𝑡𝑗)

𝑎𝑖𝑗(𝑦𝑡)
𝑏𝑖 

    (a double logarithmic fuction, 𝑐 is a positive constant; and 𝑎𝑖𝑖 , 𝑎𝑖𝑗, and 𝑏𝑖 are constants) 

[Inf-Change] Taking the logarithms of both sides yields: 

log 𝑞
𝑖
= log 𝑐 + 𝑎𝑖𝑖 log 𝑝𝑖 + 𝑎𝑖𝑗 log 𝑝𝑗 + 𝑏𝑖 log 𝑦. 

The differential approach produces the following log-change demand function and elasticities: 
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𝑑 log 𝑞𝑖 = 𝑎𝑖𝑖𝑑 log 𝑝𝑖 + 𝑎𝑖𝑗𝑑 log 𝑝𝑗 + 𝑏𝑖𝑑 log 𝑦, 

 𝑒𝑖𝑗 ≡
𝑝
𝑗

𝑞
𝑖

𝜕𝑞
𝑖

𝜕𝑝
𝑗

= 𝑎𝑖𝑗 (𝑗 = 𝑖 and 𝑗) and 𝑕𝑖 ≡
𝑦

𝑞
𝑖

𝜕𝑞
𝑖

𝜕𝑦
= 𝑏𝑖, 

in which eij is the point price elasticity of qi with respect to price pj and hi is the point income elasticity 

of qi with respect to income y. For simplicity, we call these the point elasticities. Thus, the log-change 

demand function can be rewritten as 

𝑑 log 𝑞𝑖 = 𝑒𝑖𝑖𝑑 log 𝑝𝑖 + 𝑒𝑖𝑗𝑑 log 𝑝𝑗 + 𝑕𝑖𝑑 log 𝑦. (22) 

We call this the continuous log-change demand function. We use continuous and discrete to stress the 

demand function or system applied to continuous and discrete data, respectively. 

[Fin-Change] The difference approach leads to the following log-change demand function and 

elasticities: 

∆ log 𝑞𝑖 = 𝑎𝑖𝑖∆ log 𝑝𝑖 + 𝑎𝑖𝑗∆ log 𝑝𝑗 + 𝑏𝑖∆ log 𝑦, 

 𝜀𝑖𝑗 ≡
𝐿(𝑝

𝑗
)

𝐿(𝑞
𝑖
)

𝛿𝑞
𝑖

𝛿𝑝
𝑗

= 𝑎𝑖𝑗 (𝑗 = 𝑖 and 𝑗) and 𝜂
𝑖
≡
𝐿(𝑦)

𝐿(𝑞
𝑖
)

𝛿𝑞
𝑖

𝛿𝑦
= 𝑏𝑖, 

in which εij is the log-mean price elasticity of qi with respect to pj and ηi is the log-mean income 

elasticity of qi with respect to y. We also call these the log-mean elasticities. The demand function, 

which is called the discrete log-change demand function, can be rewritten as 

Δ log 𝑞𝑖 = 𝜀𝑖𝑖Δ log 𝑝𝑖 + 𝜀𝑖𝑗Δ log 𝑝𝑗 + 𝜂𝑖Δ log 𝑦. (23) 

2) The ith demand functions: 𝑞
𝑖
= c + 𝑎𝑖𝑖𝑝𝑖 + 𝑎𝑖𝑗𝑝𝑗 + 𝑏𝑖y and 𝑞𝑡𝑖 = 𝑐 + 𝑎𝑖𝑖𝑝𝑡𝑖 + 𝑎𝑖𝑗𝑝𝑡𝑗 + 𝑏𝑖𝑦𝑡 

(𝑐, 𝑎𝑖𝑖 , 𝑎𝑖𝑗 , and 𝑏𝑖are constants) 

[Inf-Change] The differential approach leads to: 𝑑𝑞𝑖 = 𝑎𝑖𝑖𝑑𝑝𝑖 + 𝑎𝑖𝑗𝑑𝑝𝑗 + 𝑏𝑖𝑑𝑦. Thus, we have: 

d log 𝑞𝑖 =
𝑎𝑖𝑖𝑝𝑖
𝑞𝑖

d log 𝑝𝑖 +
𝑎𝑖𝑗𝑝𝑗

𝑞𝑖
d log 𝑝𝑗 +

𝑏𝑖𝑦

𝑞𝑖
d log 𝑦. 

The point elasticities are 

 𝑒𝑖𝑗 =
𝑎𝑖𝑗𝑝𝑗

𝑞
𝑖

(𝑗 = 𝑖 and 𝑗)and𝑕𝑖 =
𝑏𝑖𝑦

𝑞
𝑖

. 

Therefore, the continuous log-change demand function for this case can also be given by (22). 

[Fin-Change] The difference approach leads to: ∆𝑞𝑖 = 𝑎𝑖𝑖∆𝑝𝑖 + 𝑎𝑖𝑗∆𝑝𝑗 + 𝑏𝑖∆𝑦. This produces 

∆ log 𝑞𝑖 =
𝑎𝑖𝑖𝐿(𝑝𝑖)

𝐿(𝑞𝑖)
∆ log 𝑝𝑖 +

𝑎𝑖𝑗𝐿(𝑝𝑗)

𝐿(𝑞𝑖)
∆ log 𝑝𝑗 +

𝑏𝑖𝐿(𝑦)

𝐿(𝑞𝑖)
∆log 𝑦. 

The log-mean elasticities are 

 𝜀𝑖𝑗 =
𝑎𝑖𝑗𝐿(𝑝𝑗)

𝐿(𝑞
𝑖
)
(𝑗 = 𝑖 and 𝑗) and 𝜂

𝑖
=
𝑏𝑖𝐿(𝑦)

𝐿(𝑞
𝑖
)
. 

Hence, the discrete log-change demand function for this case can also be given by (23). 
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4. Continuous and Discrete Demand Systems and the Aggregations of Their Elasticities 

4.1 Continuous Demand System and Discrete Demand System 

From the explanations in Section 3, it is inferred that we can derive a general differential demand 

system from Eq. (22) and a difference demand system from Eq. (23). In this section, we provide more 

details about these systems. 

[Inf-Change] The pedantic derivation of the general differential case is easy. Our fundamental demand 

system is: 

𝑞
𝑖
= 𝑞

𝑖
(𝐩, 𝑦)(𝑖 = 1, 2, … , 𝑛), 

Where p = {p1, p2, …, pn}, 𝑦 = Σ𝑝𝑖𝑞𝑖, and n are the price vector, income (total expenditure), and the 

number of all commodities in this system, respectively. The summation ∑ 𝑥𝑖𝑖 or ∑ 𝑥𝑖 is always made 

over all values of i. Here qi is implicitly derived using constrained utility maximization. The total 

differentiation of this function yields: 

𝑑𝑞𝑖 =∑
∂𝑞𝑖
∂𝑝𝑗

𝑑𝑝𝑗 +
𝜕𝑞𝑖
𝜕𝑦

𝑑𝑦
𝑗

. 

Thus, we have the general differential demand system as follows: 

𝑑 log 𝑞𝑖 =∑ 𝑒𝑖𝑗𝑑 log 𝑝𝑗 + 𝑕𝑖𝑑 log 𝑦   (𝑖 = 1, 2, … , 𝑛)
𝑗

. (24) 

Recall that eij denotes the point price elasticity and hi denotes the point income elasticity. These 

elasticities possess various properties produced using a utility function and should satisfy the two 

conditions derived by the differential budget constraint (30) below (see also Subsection 4.3 and 

Appendix A). If we substitute the Slutsky equation and another budget constraint (see Appendix B) into 

(24), we obtain a model similar to the Rotterdam model or its variant (see, e.g., Barten, 1993; Matsuda, 

2005; Clements & Gao, 2014). We do not employ the Slutsky equation, so our price elasticities are 

always Marshallian. 

We define a continuous demand system as shown in Eq. (25), based on Eq. (24): 

𝑑 log 𝑞𝑖 =∑ 𝑒𝑖𝑗𝑑 log 𝑝𝑗 + 𝑕𝑖𝑑 log 𝑦 + 𝑢𝑖  (𝑖 = 1, 2, … , 𝑛)
𝑗

, (25) 

where the final term ui is the residual and exhibits all of the effects induced by the other factors that are 

not employed as explanatory variables (e.g., weather and consumer sentiment). The elasticities and 

residuals should satisfy the above conditions and the residual condition that is explained later, 

respectively. 

[Fin-Change] The pedantic derivation of a general difference demand system is impracticable, because 

the difference approach is only applied to a specific demand system. Considering the derivation process 

of Eq. (23) and the correspondences between the differential and difference approaches in (6), (10), 

(11), (18), and (19), we define a difference demand system: 
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Δ log 𝑞𝑖 =∑ 𝜀𝑖𝑗Δ log 𝑝𝑗 + 𝜂𝑖Δ log 𝑦   (𝑖 = 1, 2, … , 𝑛)
𝑗

,  (26) 

wherein 𝜀𝑖𝑗  and 𝜂𝑖 are the log-mean price and income elasticities that should satisfy the two conditions 

derived using the difference budget constraint discussed below. If we consider numerous demand 

systems based on microeconomic theory, we can derive this system from most of them. For example, 

we can derive such a system from the linear expenditure system (LES) as shown in Appendix A (Note 

3). Recall that the LES is far removed from Eq. (26). See also Appendix C. If we assume a certain 

demand system derived using constrained utility maximization, the characteristics of the utility 

function regulate these elasticities. If ∆𝑝𝑖 → 𝑑𝑝𝑖 → 0 and ∆𝑞𝑖 → 𝑑𝑞𝑖 → 0 (for all 𝑖);  and  ∆𝑦 → 𝑑𝑦 →

0, the difference demand system (26) approaches the general differential demand system (24). 

We use this to define a discrete demand system: 

Δ log 𝑞𝑖 =∑ 𝜀𝑖𝑗Δ log 𝑝𝑗 + 𝜂𝑖Δ log 𝑦 + 𝜇𝑖  (𝑖 = 1, 2, … , 𝑛)
𝑗

, (27) 

where the final term 𝜇
𝑖
 is the residual corresponding to ui above. The conditions that their elasticities 

should satisfy are the same as those in Eq. (26) and the condition regarding the residual is discussed 

below. 

We may derive the following approximation formed from Eqs. (24) and (26): 

Δ log 𝑞𝑖 ≈∑ 𝑒𝑖𝑗Δ log 𝑝𝑗 + 𝑕𝑖Δ log 𝑦 (𝑖 = 1, 2, … , 𝑛)
𝑗

. (28) 

This log-change demand system is similar to the Rotterdam model or its variants (e.g., Barten, 1964; 

Theil, 1965, 1975/76; Clements & Gao, 2014). If we use log-change values Δ log 𝑞𝑖 , Δ log 𝑝𝑖 ,  and 

∆ log 𝑦 as in (28), we have to employ the budget constraint for finite-change variables shown below. 

Therefore, the approximation in (28) may not satisfy this difference budget constraint because this 

constraint only applies to the log-mean elasticities. See Appendix B for further details. 

4.2 Conditions for Elasticities and Residuals 

Frisch (1959) showed the conditions that the point elasticities of a demand system have to satisfy (see 

also Deaton & Muellbauer, 1980b; Barten, 1993). We follow some of these conditions and derive some 

new conditions for log-mean elasticities. 

4.2.1 Homogeneity Conditions Derived from the Homogeneous Function 

The homogeneity condition may be meaningful for infinitesimal-change variables, but not necessarily 

meaningful for finite-change variables. 

[Inf-Change] The demand function should be homogeneous of degree zero in prices and income. Thus, 

we have 

𝑞
𝑖
= 𝑞

𝑖
(𝐩, 𝑦) = 𝑞

𝑖
(𝛾𝐩, 𝛾𝑦), (𝑖 = 1, 2, … , 𝑛), 

wherein γ is a positive constant. This is known as the homogeneity restriction. Since we have the 

following from Euler’s theorem: 
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0 =∑ 𝑝𝑗
𝜕𝑞𝑖
𝜕𝑝𝑗𝑗

+ 𝑦
𝜕𝑞𝑖
𝜕𝑦

, (𝑖 = 1, 2, … , 𝑛), 

thus, the homogeneity condition for the point elasticities is given by 

0 =∑ 𝑒𝑖𝑗 + 𝑕𝑖 , (𝑖 = 1, 2, … , 𝑛)
𝑗

. (29) 

[Fin-Change] If the demand function is homogeneous of degree zero, we have the following formal 

equation: 

𝑞
1𝑖
= 𝑞

1𝑖
(𝐩

𝟏
, 𝑦

1
) = 𝑞

0𝑖
(𝐩

𝟎
, 𝑦

0
) = 𝑞

0𝑖 ,
(𝑖 = 1, 2, … , 𝑛), 

wherein p1 = γp0, p0 = {p0i} (price vector), y1 = γy0, 𝑦0 = Σ𝑝
0𝑖
𝑞
0𝑖

, and γ is a positive constant. We also 

call this the homogeneity restriction. As the restriction requires the differences of the demands to 

become null (i. e., ∆𝑞𝑖 = 0) for all commodities, our difference quotient and partial difference quotient 

are inactive. Therefore, we cannot define the homogeneity condition for the log-mean elasticities. 

4.2.2 Conditions Derived from the Budget Constraints 

The budget constraints are as follows: 

𝑦 =∑ 𝑝𝑖𝑞𝑖 ,
𝑖

for infinitesimal − change variables, 

𝑦
𝑡
=∑𝑚𝑡𝑖, 𝑚𝑡𝑖 = 𝑝

𝑡𝑖
𝑞
𝑡𝑖  
is the expenditure

𝑖

for finite − change variables, 

 1 =∑ 𝑤𝑡𝑖 ,  𝑤𝑡𝑖 = 𝑝𝑡𝑖𝑞𝑡𝑖 𝑦𝑡⁄
𝑖

is the budget share for finite − change variables. 

For finite-change variables, our difference approach must utilize the transformation mti or wti as defined 

above (see also Tsuchida, 2018). We call the former Transformation-M and the latter 

Transformation-W. 

[Inf-Change] 𝑑𝑦 = ∑ (𝑞𝑖𝑑𝑝𝑖 + 𝑝𝑖𝑑𝑞𝑖)𝑖  

𝑑𝑦

𝑦
=∑ (

𝑞
𝑖
𝑝
𝑖

𝑦

𝑑𝑝
𝑖

𝑝
𝑖

+
𝑝
𝑖
𝑞
𝑖

𝑦

𝑑𝑞
𝑖

𝑞
𝑖

) =∑ 𝑤𝑖 (
𝑑𝑝

𝑖

𝑝
𝑖

+
𝑑𝑞

𝑖

𝑞
𝑖

)
𝑖𝑖

, 

∴ 𝑑 log 𝑦 =∑ 𝑤𝑖
𝑖

(𝑑 log 𝑝𝑖 + 𝑑 log 𝑞𝑖). (30) 

Equation (30) is the differential budget constraint, from which we produce two conditions: the Engel 

condition on the income elasticities and Cournot conditions on the price elasticities (Note 4): 

∑ 𝑤𝑖𝑕𝑖𝑖 = 1(𝑖 = 1, 2, … , 𝑛),  (Engel condition); 

∑ 𝑤𝑖𝑒𝑖𝑗𝑖 = −𝑤𝑗(𝑖 and 𝑗 = 1, 2, … , 𝑛),  (Cournot conditions). 

These conditions hold only for the point elasticities. The general differential demand system (24) 

should satisfy these conditions. The important point here is that the differential demand system based 

on a specific demand system automatically satisfies these conditions because the budget constraint (30) 

is embedded within itself (see Subsection 4.3 and Appendix A). The same is true for the difference case 

presented below. 
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As a continuous demand system needs a condition regarding the residuals, we derive this condition. 

Multiplying both sides of Eq. (25) by wi and summing for i, we get: 

∑ 𝑤𝑖𝑑 log 𝑞𝑖 =
𝑖

∑𝑤𝑖
𝑖

(∑ 𝑒𝑖𝑗
𝑗

𝑑 log 𝑝
𝑗
+ 𝑕𝑖𝑑 log 𝑦 + 𝑢𝑖). 

Using the two conditions and the budget constraint (30), we have the following Residual condition: 

∑𝑤𝑖𝑢𝑖
𝑖

= 0. 

Theil’s approximation (Theil, 1975/76, Eq. (2.4) in Chap. 2) to the budget constraint (30) is 

∆ log 𝑦 ≈∑ 𝐴(𝑤𝑖)
𝑖

(∆ log 𝑝𝑖 + ∆ log 𝑞𝑖), 

wherein A(wi) = (w1i + w0i)/2 is the arithmetic mean of the two budget shares. This approximation 

produces different conditions to those outlined above. For a more detailed discussion, see Appendix B. 

[Fin-Change] Using Transformation-M, we derive two types of conditions: the Engel condition on the 

income elasticities and Cournot conditions on the price elasticities (Similar conditions derived using 

Transformation-W are shown in Appendix A). To obtain these conditions, we utilize the following 

difference budget constraint: 

Δy =∑ Δ𝑚𝑖 ,
𝑖

 

∴ ∆ log 𝑦 =
∆𝑦

𝐿(𝑦)
=∑

𝐿(𝑚𝑖)

𝐿(𝑦)𝑖
∆ log𝑚𝑖 =∑

𝐿(𝑚𝑖)

𝐿(𝑦)
  ∆ log 𝑝𝑖 +∑

𝐿(𝑚𝑖)

𝐿(𝑦)
∆ log 𝑞𝑖

𝑖𝑖
. (31) 

Thus, we have 

∑ (𝐿(𝑚𝑖) 𝐿(𝑦)⁄ )𝜂
𝑖𝑖 = 1(𝑖 = 1, 2, … , 𝑛), (Engel condition); (32) 

∑ (𝐿(𝑚𝑖) 𝐿(𝑦)⁄ )𝜀𝑖𝑗𝑖 = −(𝐿(𝑚𝑗) 𝐿(𝑦)⁄ )(𝑖 and 𝑗 = 1, 2, … , 𝑛), (Cournot conditions). (33) 

We call these conditions the M-Engel and M-Cournot conditions. If the difference demand system (26) 

is not based on a specific demand system, these conditions must be satisfied. 

Furthermore, the residuals of the discrete demand system need a new condition. Multiplying both sides 

of (27) by 𝐿(𝑚𝑖) 𝐿(𝑦)⁄  and summing for i, we have 

∑
𝐿(𝑚𝑖)

𝐿(𝑦)
∆ log 𝑞

𝑖
=

𝑖

∑ ∑
𝐿(𝑚𝑖)

𝐿(𝑦)
𝜀𝑖𝑗∆ log 𝑝𝑗 +

𝑗𝑖

∑
𝐿(𝑚𝑖)

𝐿(𝑦)
𝜂
𝑖
Δ log 𝑦

𝑖

+∑
𝐿(𝑚𝑖)

𝐿(𝑦)
𝜇
𝑖

𝑖

 

= −∑
𝐿(𝑚𝑗)

𝐿(𝑦)
Δ log 𝑝𝑗 + Δ log 𝑦 +

𝑗
∑

𝐿(𝑚𝑖)

𝐿(𝑦)
𝜇𝑖 ,

𝑖
 

wherein we use Eqs. (32) and (33). Thus, we produce the M-Residual condition as follows: 

∑
𝐿(𝑚𝑖)

𝐿(𝑦)
𝜇
𝑖
= 0.

𝑖

 (34) 

Here, we explain the advantage of using the above three conditions as constraints over the parameters 

(elasticities and residuals). Since our discrete demand system is not derived from a specific demand 
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system, this should satisfy these conditions. Thus, we can exploit these conditions. This demand system 

is composed of n demand functions, and these parameters are exhibited as an  𝑛 × (𝑛 + 2) matrix, 

wherein the columns relate to the three conditions and each row relates to each demand function in (27). 

We employ these features to estimate the parameters. A more detailed explanation is provided in 

Subsection 5.2 and Section 6. 

It is also worth noting that the weights of the aggregation, 𝐿(𝑚𝑖) 𝐿(𝑦),⁄  are those of an ideal 

log-change index. We have known two ideal log-change indices: the Montgomery index and the 

Vartia-Sato index (Vartia, 1976; Sato, 1976; Balk, 2008; Tsuchida, 2014). From our budget constraint 

(31), we can identify the Montgomery index. (For the Vartia-Sato index, see Appendix A). The first and 

second terms on the right-hand side of Eq. (31) are the ideal log-change price and quantity indices, 

respectively. We call these weights the Montgomery weights, which leads to the well-known inequality: 

∑ 𝐿(𝑚𝑖)𝑖 ≤ 𝐿(∑ 𝑚𝑖𝑖 ) =L(y). (35) 

The ingenious proof of the inequality (35) was discussed by Balk (2008, p. 87), who used Jensen’s 

inequality for a convex (or concave) function. As our data are assumed to be discrete, we should seek 

further proof, which is presented in Appendix D. 

4.3 Elasticities That Satisfy the Budget Conditions 

It should be noticed that the point elasticities and log-mean elasticities are usually point-dependent and 

twop-dependent, respectively. To clearly illustrate this, first we explain the difference case for 

Transformation-W in detail and then shortly explain the differential case. 

To estimate the parameters of each difference demand system (26) using yearly data from 2000 to 2015, 

we use the difference demand system (36), its budget constraint (37), and its budget conditions (Engel 

(38) and Cournot (39) conditions) in years t and s = t – 1 as follows: 

Δ log 𝑞𝑡𝑠𝑖 =∑ 𝜀𝑖𝑗
𝑡𝑠Δ log 𝑝𝑡𝑠𝑗 + 𝜂𝑖

𝑡𝑠𝑑 log 𝑦𝑡𝑠
𝑗

, (36) 

∆ log 𝑦𝑡𝑠𝑖 =∑
𝐿(𝑤𝑡𝑖 , 𝑤𝑠𝑖)

∑ 𝐿(𝑤𝑡𝑘, 𝑤𝑠𝑘)𝑘
  ∆ log 𝑝𝑡𝑠𝑖  +∑

𝐿(𝑤𝑡𝑖 , 𝑤𝑠𝑖)

∑ 𝐿(𝑤𝑡𝑘 , 𝑤𝑠𝑘)𝑘
∆ log 𝑞𝑡𝑠𝑖

𝑖𝑖
. (37) 

∑ (𝐿(𝑤𝑡𝑖, 𝑤𝑠𝑖) ∑ 𝐿(𝑤𝑡𝑘, 𝑤𝑠𝑘
𝑘

)⁄ * 𝜂
𝑖
𝑡𝑠

𝑖

= 1, (38) 

∑ (𝐿(𝑤𝑡𝑖, 𝑤𝑠𝑖) ∑ 𝐿(𝑤𝑡𝑘, 𝑤𝑠𝑘
𝑘

⁄ )* 𝜀𝑖𝑗
𝑡𝑠

𝑖

= − (𝐿(𝑤𝑡𝑗, 𝑤𝑠𝑗) ∑ 𝐿(𝑤𝑡𝑘, 𝑤𝑠𝑘)
𝑘

⁄ *. (39) 

The superscripts and subscripts t and s represent the year; and subscripts i, j, and k represent 

commodities. Each difference is expressed as follows:  ∆ log 𝑞𝑡𝑠𝑖 = log 𝑞𝑡𝑖 − log 𝑞𝑠𝑖 , etc. The 

superscript and subscript t represents the terminal year, whereas s represents the initial year. We find 

the Vartia-Sato index from the budget constraint (37), and the weights therein are Vartia-Sato’s, which 

sum to 1. This budget constraint produces the two conditions (38) and (39) (see Appendix A). The 

demand system (36) should satisfy (37). We consider that these equations hold for every pair of years t 
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(2001, 2002, …, 2015) and s, and all i, j, and k (1, 2, …, n). From this, all elasticities are 

twop-dependent (good examples of the LES are shown in Appendix A). 

If all elasticities are independent of all points, we have the following equation (40) instead of (36): 

Δ log 𝑞𝑡𝑠𝑖 =∑ 𝜀𝑖𝑗∆ log 𝑝𝑡𝑠𝑗 + 𝜂𝑖Δ log 𝑦𝑡𝑠.
𝑗

 (40) 

To satisfy the budget constraint (37) for every pair of years, we have the following for all t: 

∑ 𝑙𝑡𝑠𝑖𝜀𝑖𝑗𝑖 = −𝑙𝑡𝑠𝑗, ∑ 𝑙𝑡𝑠𝑖𝜂𝑖𝑖 = 1(𝑡 = 2001, 2002, … , and all 𝑖 and 𝑗). (41) 

In (41), we rewrite the Vartia-Sato weight as 𝑙𝑡𝑠𝑖 = 𝐿(𝑤𝑡𝑖 , 𝑤𝑠𝑖) ∑ 𝐿(𝑤𝑡𝑘, 𝑤𝑠𝑘)𝑘⁄ . From these equations, 

we can obtain the elasticities to satisfy Eq. (37). Without loss of generality, we assume three 

commodities (i, j, and k= 1, 2, 3) and any three years (t = r, u, v: and r ≠ u, u ≠ v, etc.) from 2001 to 

2015. First, we solve the Cournot conditions. These are given by: 

(

𝜀11, 𝜀21, 𝜀31
𝜀12, 𝜖22, 𝜀32
𝜀13, 𝜀23, 𝜀33

)(

𝑙𝑡𝑠1
𝑙𝑡𝑠2
𝑙𝑡𝑠3

+ = (
−1, 0, 0

  0, −1, 0

  0, 0, −1

+(

𝑙𝑡𝑠1
𝑙𝑡𝑠2
𝑙𝑡𝑠3

+. (42) 

We can use Eq. (42) for all vectors lts = (lts1, lts2, lts3) for t = 2001, 2002, …, 2015. Thus, we obtain the 

price elasticities to satisfy the Cournot conditions as follows: 

𝜀𝑖𝑖 = −1, 𝜀𝑖𝑗 = 0 (𝑗 ≠ 𝑖) for all 𝑖 and 𝑗. 

Next, we solve the Engel condition. This is given by 

(

𝑙𝑟𝑟−11, 𝑙𝑟𝑟−12, 𝑙𝑟𝑟−13
𝑙𝑢𝑢−11, 𝑙𝑢𝑢−12, 𝑙𝑢𝑢−13
𝑙𝑣𝑣−11, 𝑙𝑣𝑣−12, 𝑙𝑣𝑣−13

+(

𝜂
1

𝜂
2

𝜂
3

+ = (

𝑙𝑟𝑟−11, 𝑙𝑟𝑟−12, 𝑙𝑟𝑟−13
𝑙𝑢𝑢−11, 𝑙𝑢𝑢−12, 𝑙𝑢𝑢−13
𝑙𝑣𝑣−11, 𝑙𝑣𝑣−12, 𝑙𝑣𝑣−13

+(
1

1

1

) . (Note 5) (43) 

From (43), we obtain 𝜂
𝑖
= 1 for all i. 

Substituting these elasticities into Eq. (40), we obtain the following primitive difference demand 

system: 

Δ log 𝑞𝑡𝑠𝑖 = −Δ log 𝑝𝑡𝑠𝑖 + Δ log 𝑦𝑡𝑠 , for all 𝑡 (2001,… , 2015) and 𝑖. 

Multiplying both sides of the above equation by L(wti,wsi) and summing for i, we obtain the budget 

constraint (37). Hence, this system satisfies this constraint. 

The general differential demand system (24) should satisfy the differential budget constraint (30) and 

its budget conditions (the Engel and Cournot conditions) in every year; that is, all elasticities must be 

point-dependent (see the differential version of the LES shown in Appendix A). If all elasticities are 

independent of all points, we can obtain these elasticities using similar procedures to the 

above-mentioned difference case. Therefore, we have the following primitive differential demand 

system: 

𝑑 log 𝑞𝑡𝑖 = −𝑑 log 𝑝𝑡𝑖 + 𝑑 log 𝑦𝑡 , for all 𝑡 (2000,… , 2015) and all 𝑖, 

Where d log qti, d log pti, and d log yt are the differentials in year t. This system also satisfies the 

differential budget constraint (30). 
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An example of yearly demand system for the above primitive difference and differential demand 

systems is 

log 𝑞
𝑡𝑖
= − log 𝑝

𝑡𝑖
+ log 𝑦

𝑡
+ log(1 𝑛⁄ ) , (𝑖 = 1, 2, … , 𝑛). 

Thus, all budget shares take the same value, that is, 𝑤𝑡𝑖 = (𝑝𝑡𝑖𝑞𝑡𝑖) 𝑦
𝑡

⁄ = 1 𝑛⁄  for all t and i. This 

demand system is derived from the utility function: 𝑈𝑡 = ∑ log 𝑞
𝑡𝑖
 𝑖 (see Phlips, 1974, pp. 65-66). (By 

maximizing the Lagrangean with respect to qti and minimizing it with respect to a Lagrangean 

multiplier λ, we have 1 𝑞
𝑡𝑖

⁄ = λ𝑝
𝑡𝑖
 and 𝑦

𝑡
= ∑ 𝑝

𝑡𝑖
𝑞
𝑡𝑖
. From the two equations, we obtain λ = 𝑛 𝑦𝑡⁄ ). 

Generally, we have 16 sets of point elasticities for the differential demand system and 15 sets of 

log-mean elasticities for the difference demand system. This means that most of the point elasticities 

and log-mean elasticities are point-dependent and twop-dependent, respectively (Note 6). 

 

5. Estimation of the Discrete Meat Demand System 

5.1 Estimating Method 

We showed in Section 4 that the discrete demand system is given by (27) and their parameters 

(elasticities and residuals) should satisfy the M-Engel, M-Cournot, and M-Residual conditions. In this 

section, we estimate these elasticities and residuals using monthly expenditure data for fresh (or raw) 

meat purchases over the previous year in Japan. An explanation of the data used is provided in 

Appendix E. 

Our discrete meat demand system in a given month is 

Δ log 𝑞𝑖 =∑ 𝜀𝑖𝑗Δ log 𝑝𝑗 + 𝜂𝑖Δ log 𝑦 + 𝜇𝑖   (𝑖 and 𝑗 = 1, 2, 3, 4)
𝑗

. (44) 

We do not suppose a specific demand system. Fresh meat is composed of four commodities: beef (i or j 

= 1), pork (i or j = 2), chicken (i or j = 3), and others (i.e., other meats, i or j = 4). The variables qi, pi, 

and 𝜇𝑖 are, respectively, the ith demand, price, and residual, whereas y is the total expenditure on these 

types of meat. The residual includes the contributions of other factors excluding pi (I = 1, 2, 3, 4) and y. 

Most of those contributions may be induced by substitutes and complements for fresh meat (e.g., ham, 

sausage, and cooked foods such as croquette and Hamburg steak). Implicitly, assuming 

Transformation-M, all elasticities in (44) are M-elasticities and should satisfy the three 

above-mentioned conditions. We call Eq. (44) the M-Demand equation conditions in the below. (When 

we employ a continuous meat demand system such as that in (25), it worth mentioning the 

homogeneity condition (29). Each conditional demand function may not satisfy this condition since the 

prices of the substitutes and complements for fresh meat are not contained in the function.) 

We employ a two-stage method to estimate the parameters in (44). In the first stage, we estimate these 

parameters by Ordinary Least Squares (OLS) using all monthly data. Hence, we cannot consider the 

difference budget constraint (31). The results provide information about the rough values of the 

parameters in the next stage, where we regulate these values to satisfy the above-mentioned conditions 



www.scholink.org/ojs/index.php/rem               Research in Economics and Management               Vol. 5, No. 3, 2020 

81 
Published by SCHOLINK INC. 

using the WRAS method. Our main aim in this section is not to evaluate these final results, but rather to 

explain the new method. 

5.2 Estimated Results 

[First Stage] 

First, we calculated the shares of average monthly expenditure on the various types of fresh meat from 

2014 to 2016 as shown in Table 1. It can be seen that in Japan, pork has the largest share, followed by 

beef, except for December. For December, beef has the largest share, which may stem from a seasonal 

effect (in particular, the preparation of sukiyaki for dinner). 

 

Table 1. Average Expenditure Shares 

Month Beef Pork Chicken Others Month Beef Pork Chicken Others 

Jan. 0.297 0.418 0.217 0.068 Jul. 0.304 0.424 0.206 0.066 

Feb. 0.269 0.438 0.222 0.070 Aug. 0.322 0.414 0.194 0.071 

Mar. 0.284 0.428 0.222 0.067 Sep. 0.286 0.423 0.220 0.070 

Apr. 0.290 0.425 0.218 0.067 Oct. 0.281 0.428 0.220 0.070 

May 0.310 0.412 0.211 0.068 Nov. 0.282 0.424 0.223 0.071 

Jun. 0.293 0.428 0.213 0.066 Dec. 0.382 0.344 0.211 0.063 

 

Next, we estimate the parameters of each conditional meat demand function using OLS. We added 

constant terms to Eq. (44) and deleted the residuals. The data were the following. For example, the ith 

per capita demand in April is 

∆ log 𝑞𝑖 = log 𝑞𝑡𝑖 − log 𝑞𝑡−1𝑖 , 𝑡 = 2016 and 2015. 

We have two log-change values in April (2016/15 and 2015/14). Similarly, ∆ log 𝑝𝑖 are given. Total 

expenditure in April is given by 

∆ log 𝑦 = log 𝑦𝑡 − ∆ log 𝑦𝑡−1 , 𝑡 = 2016 and 2015. 
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Table 2. Estimated Parameters at the First Stage 

Demand 

The price of The total 

expenditure 
Constant 

𝑅2 
Corrected 

𝑅2 
Beef Pork Chicken Others 

∆ log 𝑝1 ∆ log 𝑝2 ∆ log 𝑝3 ∆ log 𝑝4 ∆ log 𝑦  

Beef -0.9854 0.1261 -0.6767 -0.3369 1.2508 -0.0444 0.8118 0.7491 

(i= 1) ’(-5.19) ’(0.27) ’(-2.38) ’(-1.48) ’(2.83) ’(-2.68)   

Pork -0.0081 -0.9978 0.4039 0.2018 0.6094 0.0204 0.7083 0.6111 

(i= 2) ’(-0.09) ’(-4.24) ’(2.87) ’(1.82) ’(2.78) ’(2.48)   

Chicken -0.0212 -0.0428 -0.7184 -0.1060 1.0371 0.0206 0.5975 0.4633 

(i= 3) ’(-0.15) ’(-0.12) ’(-3.28) ’(-0.61) ’(3.04) ’(1.62)   

Others 0.0628 -0.4236 -0.0112 -0.5429 1.4393 0.0142 0.6566 0.5421 

(i= 4) ’(0.44) ’(-1.18) ’(-0.05) ’(-3.21) ’(4.30) ’(1.13)   

Note. Values shown in parentheses are t-values. 

 

Because the consumption tax rate was increased in April 2014, the data that we used to estimate the 

parameters were from April 2015/2014 to December 2016/2015. Thus, each data type has 21 samples. 

The parameters estimated using OLS are shown in Table 2. All own price elasticities and income (total 

expenditure) elasticities have proper signs and high t-values. 

[Second Stage] 

In this stage, we estimate parameters in a specific month. We selected the months of October and 

November after considering the change in the consumption tax rate and seasonal variations (e.g., 

ceremonial usage and the rainy season, see also Table 1). Below, we explain the method that we use to 

estimate the parameters for October. The same method is also applied for November. Data used were 

the monthly changes from 2014 to 2015 and from 2015 to 2016, which are shown in Tables 3, 4, and 5. 

We assume that our parameters are the same in both periods to get steady results. Based on this 

assumption, the following Montgomery weights needed to be used. Given that the subscripts 4, 5, and 6 

represent, respectively, 2014, 2015, and 2016, we have two demand functions from Eq. (44): 

  Δ log 𝑞54𝑖 =∑ 𝜀𝑖𝑗Δ log 𝑝54𝑗 + 𝜂𝑖Δ log 𝑦54 + 𝜇𝑖 ,
𝑗

 

Δ log 𝑞65𝑖 =∑ 𝜀𝑖𝑗Δ log 𝑝65𝑗 + 𝜂𝑖Δ log 𝑦65 + 𝜇𝑖
𝑗

, 

where 

∆ log 𝑞54𝑖 = log 𝑞5𝑖 − log 𝑞4𝑖 , etc. 

Averaging two equations yields 

𝐴(Δ log 𝑞𝑖) =∑ 𝜀𝑖𝑗𝐴(Δ log 𝑝𝑗) + 𝜂𝑖𝐴(Δ log 𝑦) + 𝜇𝑖
𝑗

, 
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wherein A(.) represents the arithmetic mean, for example, 

A(∆ log 𝑞𝑖) = (∆ log 𝑞54𝑖 + ∆ log 𝑞65𝑖) 2⁄ = ∆ log 𝑞64𝑖 2⁄ . 

We used the three averages (𝐴 (∆log 𝑞𝑖), 𝐴 (∆log 𝑝𝑖), and 𝐴 (∆log 𝑦)) that are also shown in the tables 

above. Consequently, our budget constraint was 

∆ log 𝑦64 =∑
𝐿(𝑚6𝑖 , 𝑚4𝑖)

𝐿(𝑦6, 𝑦4)
∆ log𝑚64𝑖 =∑

𝐿(𝑚6𝑖 , 𝑚4𝑖)

𝐿(𝑦6, 𝑦4)
(∆ log 𝑝64𝑖 + ∆ log 𝑞64𝑖), 

or 

∆ log 𝑦64 ∕ 2 =∑
𝐿(𝑚6𝑖 , 𝑚4𝑖)

𝐿(𝑦6, 𝑦4)
(∆ log𝑚64𝑖 2⁄ ) =∑

𝐿(𝑚6𝑖 , 𝑚4𝑖)

𝐿(𝑦6, 𝑦4)
(∆ log 𝑝64𝑖 ∕ 2 + ∆ log 𝑞64𝑖 ∕ 2), 

from which the Montgomery weights (2016/2014) shown in Table 5 were used. Below, the log-change 

values for demand, price, and total expenditure (e.g., ∆ log 𝑞𝑖 ,  ∆ log 𝑦) are the averages shown in 

Tables 3 and 4, whereas the Montgomery weights are those (2016/14) shown in Table 5. 

To estimate the parameters in Eq. (44), we made the most of a 4 × 6 matrix A given by 

𝐀 = {𝑎𝑖𝑗} = (

𝜀11, 𝜀12, 𝜀13, 𝜀14, 𝜂1, 𝜇1
…………… . . .

𝜀41, 𝜀42, 𝜀43, 𝜀44, 𝜂4, 𝜇4
+. 

Our control variables are the three averages of the log-change values and the above-mentioned 

Montgomery weights, which are simply redefined as 

𝜆𝑖 ≡
𝐿(𝑚𝑖)

𝐿(𝑦)
= (

∆𝑚𝑡𝑠𝑖

∆log 𝑚𝑡𝑠𝑖

* (
∆𝑦

𝑡𝑠

∆ log 𝑦
𝑡𝑠

)⁄ , 

in which the subscripts t and s may be deleted. 

 

Table 3. Control Variables 1 

  Δlog qi 

  Beef Pork Chicken Others 

Oct. 

2015/14 -0.03663 0.06442 0.04063 0.07227 

2016/15 0.07310 0.03196 0.04240 0.00951 

Average 0.01824 0.04819 0.04152 0.04089 

Nov. 

2015/14 -0.00122 0.06594 0.07037 0.00406 

2016/15 0.09503 0.03192 0.08082 -0.02774 

Average 0.04691 0.04893 0.07560 -0.01184 

 

While we need to estimate 24 parameters for October, the number of control variables are 13: four 

log-change variables for each of demand, price, and weight of the budget constraint; and the 

log-change variable for total expenditure. Nevertheless, by applying the WRAS method to these initial 

values, we can produce desirable parameters. For details of the RAS (or biproportion) method, refer to 

Eurostat (2008, Subsection 14.3), de Mesnard (2011), and Note 7 (see also Bacharach, 1970, Chap. 3). 
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Table 4. Control Variables 2 

  Δlog pi 
Δlog y 

  Beef Pork Chicken Others 

Oct. 

2015/14 -0.03005 -0.02901 -0.02820 -0.01455 0.00217 

2016/15 -0.13590 -0.04122 -0.02902 -0.04879 -0.02092 

Average -0.08298 -0.03512 -0.02861 -0.03167 -0.00938 

Nov. 

2015/14 -0.04552 -0.03459 -0.04400 0.02833 0.00803 

2016/15 -0.11927 -0.06092 -0.04493 -0.04600 -0.01582 

Average -0.08240 -0.04776 -0.04447 -0.00884 -0.00390 

 

Table 5. Control Variables 3 

  𝜆𝑖 = 𝐿(𝑚𝑖)/𝐿(𝑦) 
Total 

  Beef Pork Chicken Others 

Oct. 

2015/14 0.2885 0.4245 0.2167 0.0702 0.9998 

2016/15 0.2729 0.4339 0.2216 0.0715 1.0000 

2016/14 0.2827 0.4268 0.2206 0.0695 0.9996 

Nov. 

2015/14 0.2849 0.4245 0.2189 0.0716 0.9999 

2016/15 0.2760 0.4268 0.2268 0.0704 0.9999 

2016/14 0.2838 0.4218 0.2247 0.0696 0.9998 

 

Table 6. Rough Elements of Matrix A 

 𝜀𝑖1 𝜀𝑖2 𝜀𝑖3 𝜀𝑖4 𝜂
𝑖
 𝜇

𝑖
 

Beef (i = 1) -1.3 0.1 -0.1 -0.1 1 0 

Pork (i = 2) -0.1 -1.3 0.1 0.1 1 0 

Chicken (i = 3) -0.1 -0.1 -1.3 -0.1 1 0 

Others (i = 4) 0.1 -0.1 -0.1 -1.3 1 0 

 

First, we settled the rough elements of matrix A, as shown in Table 6. Each 𝜀𝑖𝑖 = −1.3, 𝜀𝑖𝑗 = 0.1 or −

0.1 (𝑗 ≠ 𝑖), 𝜂𝑖 = 1, and 𝜇𝑖 = 0 (𝑖 and 𝑗 = 1, 2, 3, 4). The signs of the price and income elasticities are 

the same as those in Table 2. All the initial values employed by our WRAS method must be positive. So, 

we modified the values presented in Table 6 by adding 5.0 and 0.2 to all of the own and cross price 

elasticities, respectively, and 1.1 to all of the residuals (Note 7). The additive values to the residuals are 

discussed below. Thus, the initial values (or elements) of matrix A (written as A0 = {a0ij}) are 
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𝐀𝟎 = {𝑎0𝑖𝑗} = (

3.7, 0.3, 0.1, 0.1, 1, 1.1
0.1, 3.7, 0.3, 0.3, 1, 1.1
0.1, 0.1, 3.7, 0.1, 1, 1.1
 0.3, 0.1, 0.1, 3.7, 1, 1.1

, . (Note 8) (45) 

We use our WRAS method to constrain the initial values sufficiently to satisfy the following four 

conditions: the M-Engel condition (32), the M-Cournot conditions (33), the M-Residual condition (34), 

and the M-Demand equation conditions (44). 

To calculate the row and column totals for the matrices, we employ the following weights: 

Row weights: ∆ log 𝑝1 , ∆ log 𝑝2 , ∆ log 𝑝3 , ∆ log 𝑝4 , ∆ log 𝑦 , 1; 

            Column weights: 𝜆1, 𝜆2, 𝜆3, 𝜆4. 

The subscripts are 1 for beef, 2 for pork, 3 for chicken, and 4 for others (Note that the log-change 

values are the same as those mentioned above). As we modified the values in Table 6, our control totals, 

which are equal to the weighted row and column totals, have to be changed. Since we used the 

elements of matrix A0 in Eq. (45) as the initial values, the right-hand sides of the M-Demand equation 

conditions in Eq. (44) are rewritten as follows. For simplicity, we write the values in Table 6 as 

𝜀𝑖𝑗, 𝜂𝑖, and 𝜇𝑖, and those of Matrix A0 as 𝜀𝑖𝑗
∗ , 𝜂

𝑖
∗, and 𝜇

𝑖
∗. 

∑ 𝜀𝑖𝑗
∗

𝑗

Δ log 𝑝
𝑗
+ 𝜂

𝑖
∗Δ log 𝑦 + 𝜇

𝑖
∗ 

            =∑ 𝜀𝑖𝑗
𝑗

Δ log 𝑝𝑗 + 0.2∑ Δ log 𝑝𝑗 + 4.8Δ log 𝑝𝑖 + 𝜂𝑖Δ log 𝑦 + 1.1
𝑗

(𝑖 = 1, 2, 3, 4). 

Thus, one of conditions on the left-hand sides of the M-Demand equations, which is the ith weighted 

row total, should be changed to 

Δ log 𝑞𝑖
# = Δ log 𝑞𝑖 + 0.2∑ Δ log 𝑝𝑗

𝑗
+ 4.8Δ log 𝑝𝑖 + 1.1 (𝑖 = 1, 2, 3, 4). 

Our weighted column totals were also changed, and the left-hand sides of the M-Cournot conditions are 

∑ 𝜆𝑖𝜀𝑖𝑗
∗ =

4

𝑖=1

∑ 𝜆𝑖𝜀𝑖𝑗

4

𝑖=1

+ 0.2∑ 𝜆𝑖

4

𝑖=1

+ 4.8𝜆𝑗(𝑗 = 1, 2, 3, 4). 

Thus, one of the elements on the right-hand sides of the M-Cournot conditions, which is the jth 

weighted column total, should be 

𝜆𝑗
# = −𝜆𝑗 + 0.2∑ 𝜆𝑖

4

𝑖=1

+ 4.8𝜆𝑗 = 3.8𝜆𝑗 + 0.2∑ 𝜆𝑖

4

𝑖=1

(𝑗 = 1, 2, 3, 4). 

The right-hand side of the M-Engel condition, which is the fifth weighted column total, does not 

change since the income elasticities are not modified. We write this as 𝜆5
# = 1. The left-hand side of 

the M-Residual condition is 

∑ 𝜆𝑖𝜇𝑖
∗ =

4

𝑖=1

∑ 𝜆𝑖𝜇𝑖 + 1.1∑ 𝜆𝑖

4

𝑖=1

=
4

𝑖=1

1.1∑ 𝜆𝑖

4

𝑖=1

. 
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Thus, the right-hand side of this condition, which is the sixth weighted column total, is 

𝜆6
# = 1.1∑ 𝜆𝑖

4

𝑖=1

. 

Using the above-mentioned weights and the control totals, we apply the WRAS method to the initial 

values of matrix A0 and obtain the elements of matrix A1 and matrix A2 below. The above-mentioned 

values such as ∆ log 𝑞𝑖
# and 𝜆𝑗

# are always used as the numerators to obtain the coefficients of the row 

and column constraints below. 

1) First round 

1.1) Row constraints 

From the M-Demand equation conditions, we obtained the coefficient of the ith row constraint ri: 

𝑟𝑖 =
∆ log 𝑞

𝑖
+ 0.2∑ ∆ log 𝑝

𝑗
+4

𝑗=1 4.8∆ log 𝑝
𝑖
+ 1.1

∑ 𝑎0𝑖𝑗∆ log 𝑝𝑗 + 𝑎0𝑖5∆ log 𝑦 + 𝑎0𝑖6
4
𝑗=1

(𝑖 = 1,2,3,4). 

All coefficients must be positive. If not, we must reconsider the elements of matrix A0. Moreover, the 

additive values to the residuals are desirable as small as possible. (If the jth additive value is very large, 

rj approaches 1 (Note 9). Thus, this constraint turns out to be inactive.) Using the coefficient ri > 0, we 

determined matrix A1 as follows: 

𝐀𝟏 = {𝑎1𝑖𝑗} = (

𝑟1𝑎011, 𝑟1𝑎012, 𝑟1𝑎013, 𝑟1𝑎014, 𝑟1𝑎015, 𝑟1𝑎016
𝑟2𝑎021, 𝑟2𝑎022, 𝑟2𝑎023, 𝑟2𝑎024, 𝑟2𝑎025, 𝑟2𝑎026
𝑟3𝑎031, 𝑟3𝑎032, 𝑟3𝑎033, 𝑟3𝑎034, 𝑟3𝑎035, 𝑟3𝑎036
𝑟4𝑎041, 𝑟4𝑎042, 𝑟4𝑎043, 𝑟4𝑎044, 𝑟4𝑎045, 𝑟4𝑎046

,. 

1.2) Column constraints 

Using the M-Cournot conditions and the elements of matrix A1, we obtained the coefficient of the jth 

column constraint sj as follows: 

𝑠𝑗 =
3.8𝜆𝑗 + 0.2∑ 𝜆𝑖

4
𝑖=1

∑ 𝜆𝑖𝑎1𝑖𝑗
4
𝑖=1

(𝑗 = 1, 2, 3, 4). 

Using the M-Engel condition and the elements of matrix A1, we obtained the coefficient of the fifth 

column constraint s5 as follows: 

𝑠5 =
1

∑ 𝜆𝑖𝑎1𝑖5
4
𝑖=1

. 

Similarly, we obtained the coefficient of the sixth column constraint s6 from the M-Residual condition 

and the elements of matrix A1 as follows: 

𝑠6 =
1.1∑ 𝜆𝑖

4
𝑖=1

∑ 𝜆𝑖𝑎1𝑖6
4
𝑖=1

. 

If this constraint is redundant, we always set 𝑠6 = 1. For more details, see the final results presented 

below. 

All coefficients are positive because all a1ij > 0. Using these coefficients and the elements of matrix A1, 

we determined the new matrix A2 as follows: 
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𝐀𝟐 = {𝑎2𝑖𝑗} = (

𝑎111𝑠1, 𝑎112𝑠2, 𝑎113𝑠3, 𝑎114𝑠4, 𝑎115𝑠5, 𝑎116𝑠6
𝑎121𝑠1, 𝑎122𝑠2, 𝑎123𝑠3, 𝑎124𝑠4, 𝑎125𝑠5, 𝑎126𝑠6
𝑎131𝑠1, 𝑎132𝑠2, 𝑎133𝑠3, 𝑎134𝑠4, 𝑎135𝑠5, 𝑎136𝑠6
𝑎141𝑠1, 𝑎142𝑠2, 𝑎143𝑠3, 𝑎144𝑠4, 𝑎145𝑠5, 𝑎146𝑠6

,. 

2) Second round and matrix AX 

Using the elements of matrix A2 and the coefficients of the row and column constraints calculated 

using the procedures outlined above, we determined matrices A3 and A4. Repeating these 

computations, we obtained matrices A5, A6,..., AX, wherein X = 2x (x = 4, 5, …).We repeated these 

computations until all the elements of matrix AX were nearly equal to those of matrices AX-2 and AX-1 

(X-2 = X - 2, X-1 = X - 1). This scenario occurred at about X = 100. To get stable results, we employed 

the matrix with X = 800 (i.e., A800). Below, we call these values the convergent elements. 

 

Table 7. Convergent Elements of Matrix AX (October with the sixth column constraint) 

 𝑎𝑖1 𝑎𝑖2 𝑎𝑖3 𝑎𝑖4 𝑎𝑖5 𝑎𝑖6 

Beef (i = 1) 4.1469 0.3040 0.1009 0.1004 0.9586 1.0540 

Pork (i = 2) 0.1194 3.9945 0.3224 0.3208 1.0213 1.1229 

Chicken (i = 3) 0.1177 0.1064 3.9193 0.1054 1.0066 1.1068 

Others (i = 4) 0.3588 0.1081 0.1077 3.9635 1.0230 1.1248 

 

Table 8. Convergent Elements of Matrix AX (October without the sixth column constraint) 

 𝑎𝑖1 𝑎𝑖2 𝑎𝑖3 𝑎𝑖4 𝑎𝑖5 𝑎𝑖6 

Beef (i = 1) 4.1468 0.3040 0.1009 0.1004 0.9585 1.0541 

Pork (i = 2) 0.1194 3.9945 0.3224 0.3208 1.0213 1.1231 

Chicken (i = 3) 0.1177 0.1064 3.9193 0.1054 1.0066 1.1069 

Others (i = 4) 0.3588 0.1081 0.1077 3.9635 1.0230 1.1250 

 

When we repeated these computations, the sixth column constraint was not effective. To be specific, we 

computed two cases for October: one with the sixth column constraint and the other without this 

constraint. The results are shown in Tables 7 and 8, respectively. It can be seen that the convergent 

elements of the matrices are very similar. Similar results were gotten using data for November. 
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Table 9. Estimated Values (October without the sixth column constraint) 

 𝜀𝑖1 𝜀𝑖2 𝜀𝑖3 𝜀𝑖4 𝜂
𝑖
 𝜇

𝑖
 

Beef (i = 1) -0.8532 0.1040 -0.0991 -0.0996 0.9585 -0.0459 

Pork (i = 2) -0.0806 -1.0055 0.1224 0.1208 1.0213 0.0231 

Chicken (i = 3) -0.0823 -0.0936 -1.0807 -0.0946 1.0066 0.0069 

Others (i = 4) 0.1588 -0.0919 -0.0923 -1.0365 1.0230 0.0250 

 

Table 10. Estimated Values (November without the sixth column constraint) 

 𝜀𝑖1 𝜀𝑖2 𝜀𝑖3 𝜀𝑖4 𝜂
𝑖
 𝜇

𝑖
 

Beef (i = 1) -0.8409 0.1168 -0.0972 -0.0942 0.9837 -0.0181 

Pork (i = 2) -0.0853 -1.0148 0.1145 0.1237 1.0034 0.0035 

Chicken (i = 3) -0.0836 -0.0907 -1.0621 -0.0904 1.0187 0.0203 

Others (i = 4) 0.1382 -0.0941 -0.0969 -1.0738 0.9867 -0.0149 

 

We adopted the convergent elements without the sixth column constraint as the final results. 

Subtracting each additive value from the corresponding element in Table 8, we got the elasticities and 

the residuals, which are shown in Table 9. These values satisfy the M-Demand equation conditions (44), 

the M-Engel condition (32), and the M-Cournot conditions (33). They also satisfy the M-Residual 

condition (34) as follows: 

∑ 𝜆𝑖𝜇𝑖 = 0.00014, 

the value of which was negligible in our computations. The estimated own price elasticities and income 

elasticities appear to be reasonable and the estimated cross price elasticities have the same signs as 

those in Tables 2 and 6. 

Hence, we can say that our estimated parameters are consistent with real data, which has the following 

two implications (also see the next section). Substituting these parameters and real data such as pi and y 

on the right-hand side of Eq. (44), we obtain the theoretical demand for each commodity that equals the 

real (or actual) value. Substituting these parameters and the Montgomery weights on the left-hand sides 

of Eqs. (32), (33), and (34), we get the corresponding values that equal the real values on the right-hand 

sides, respectively (Besides, we get the budget constraint (31) from Eqs. (44), (32), (33), and (34); that 

is, these parameters satisfy the budget constraint). 

Similarly, we adopted the convergent elements without the sixth column constraint as the final results 

for November and got their elasticities and residuals. The results are shown in Table 10, and all values 

also satisfy the four above-mentioned conditions. Thus, the estimated parameters for November are 

also consistent with real data. All the estimated elasticities have the same signs as those shown in Table 

9. 
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Additionally, each estimated elasticity in October is similar to that in November, but the residuals differ 

(e.g., 𝜀_11 = −0.8532 in Oct.  vs.  𝜀_11 = −0.8409 in" 𝑁𝑜𝑣. ", 𝜇_1 = −0.0459 in" 𝑂𝑐𝑡. 𝑣𝑠. " 𝜇_1 =

−0.0181 "𝑖𝑛 𝑁𝑜𝑣. ). "  To gain more accurate results, the procedures that we use to obtain the initial 

values in matrix A are crucial. (Strictly speaking, we cannot assess whether these estimated elasticities 

are reasonable and have the proper signs because we have never tried to estimate these parameters). It 

may be helpful to compare our results with those obtained using the differential approach (e.g., 

Fousekis & Revell, 2000; Okrent & Alston, 2012 (Appendix-Table A.4)) and other approaches (e.g., 

Hayes, Wahl, & Williams, 1990). 

 

6. Concluding Remarks 

Some differential demand systems or their variants, such as the Rotterdam model, are well-known. 

However, we cannot derive a differential demand system that is consistent with real data, as the 

differentials such as dx and dlogx (x is any economic datum) are unable to be observed or measured. 

Thus, we must develop an alternative approach, that is, the difference demand system. 

Various correspondences between the differential and difference approaches (or calculi) are presented 

by Tsuchida (2018), and this study extends and evolves these correspondences. Specifically, we have 

shown a difference quotient corresponding to a differential quotient, which is generally called a 

derivative, and a partial difference quotient corresponding to a partial differential quotient, which is 

generally called a partial derivative. From these, we have derived a continuous (i.e., differential) 

log-change demand function with point elasticities as parameters and a discrete (i.e., difference) 

log-change demand function with logarithmic mean elasticities as parameters. Based on these results, 

we have defined continuous and discrete demand systems that should satisfy each budget constraint. 

We can also apply these demand systems to any group of commodities (e.g., a meat demand system). 

Our discrete meat demand system was applied to monthly demand for fresh meat (beef, pork, chicken, 

and other meats) in Japan, and its parameters (elasticities and residuals) were estimated using the 

weighted RAS (WRAS) method, which is handy and practical. Whereas 24 parameters must be 

estimated in a given month, 13 control variables are used in our method. Nevertheless, our WRAS 

method can derive a discrete meat demand system in which the estimated parameters are consistent 

with real data. This implies that each theoretical value of the conditional demand functions calculated 

using estimated parameters and independent variables coincides with its real value (observed demand), 

and each set of these parameters satisfies the Engel, Cournot, and Residual conditions. 

As the difference approach to the demand system and its estimating method have scarcely been studied, 

we offer several remarks (see also the difference version of the AIDS in Appendix A). 

1) We begin by reconsidering the level of consistency with real data, on which we place particular 

emphasis. For an alternative explanation, we use matrix algebra. Our estimated parameters in October 

shown in Table 9 are given as a 4×6 matrix B = {bij}. For example, 𝑏12 = 𝜀12 and 𝑏45 = 𝜂4. Our real 

data are given by vectors. For example, any vector x and its transpose xt are given by 
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𝐱 = (
2
1
)  and 𝐱𝐭 = (2, 1). 

Our four vectors in October are 

𝐮𝐭 = (Δ log 𝑝
1
, Δ log 𝑝

2
, Δ log 𝑝

3
, Δ log 𝑝

4
, Δ log 𝑦 , 1), 

𝐪𝐭 = (Δ log 𝑞
1
, Δ log 𝑞

2
, Δ log 𝑞

3
, Δ log 𝑞

4
), 

𝛌𝐭 = (𝜆1, 𝜆2, 𝜆3, 𝜆4), 𝐯
𝐭 = (−𝜆1, −𝜆2, −𝜆3, −𝜆4, 1, 0), 

wherein the subscripts 1, 2, 3, and 4 represent beef, pork, chicken, and others (i.e., other meats), 

respectively. From these, we obtain two equations: 

𝐪 = 𝐁𝐮, (46) 

    𝐯𝐭 = 𝛌𝐭𝐁. (47) 

Eq. (46) is the same as Eq. (44), and Eq. (47) turns out to be a combination of Eqs. (32), (33), and (34). 

Thus, Eqs. (46) and (47) indicate that matrix B (the estimated parameters) is consistent with the four 

vectors (real data). Similar results are obtained using data for November. 

2) While the normal and continuous demand systems are based on economic theory (see, e.g., Barten, 

1977; Piggott & Marsh, 2011), the discrete demand system is not. Our discrete demand system can only 

be derived from a specific demand system based on economic theory. Thus, we have to investigate how 

to combine economic theory with the discrete demand system. First, we define a utility function and 

derive a demand system based on the relevant theory. Next, we derive the discrete demand system from 

this system and estimate its parameters using the WRAS method. 

3) Additionally, we have to investigate how to identify a utility function whose parameters have 

coherent properties to those produced using our discrete demand system. As examples to check this 

coherence, we explain the difference versions of the linear expenditure system and almost ideal demand 

system in Appendix A. 
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Appendix A: Differential and Difference Versions of the LES and AIDS 

The linear expenditure system (LES) (see, e.g., Stone, 1954; Phlips, 1974; Theil, 1975/76) is given by 

𝑝
𝑖
𝑞
𝑖
= 𝑝

𝑖
𝑏𝑖 + 𝑎𝑖𝑦 − 𝑎𝑖∑ 𝑝

𝑗
𝑏𝑗

𝑗

 (𝑖 and 𝑗 = 1, 2, … , 𝑛), (A1) 

wherein 1 > 𝑎𝑖 > 0,∑𝑎𝑖 = 1, 𝑞𝑖 > 𝑏𝑖 > 0, and 𝑦 =   ∑ 𝑝𝑖𝑞𝑖 ; and ai and bi are constants. The 

properties of parameters ai and bi follow those of the Klein-Rubin (or Stone-Geary) utility function. 

The LES embeds the budget constraint within itself, and thus the differential and difference versions of 

it satisfy their budget constraints (see Subsection 4.3). Total differentiation leads to the following: 
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https://doi.org/10.1080/0025570X.1975.11976447
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𝑞
𝑖
𝑑𝑝

𝑖
+ 𝑝

𝑖
𝑑𝑞

𝑖
= 𝑏𝑖𝑑𝑝𝑖 + 𝑎𝑖𝑑𝑦 − 𝑎𝑖∑ 𝑏𝑗𝑑𝑝𝑗

𝑗

, 

𝑝
𝑖
𝑞
𝑖
𝑑 log 𝑝

𝑖
+ 𝑝

𝑖
𝑞
𝑖
𝑑 log 𝑞

𝑖
= 𝑏𝑖𝑝𝑖𝑑 log 𝑝𝑖 + 𝑎𝑖𝑦𝑑 log 𝑦 − 𝑎𝑖∑ 𝑏𝑗𝑝𝑗𝑑 log 𝑝𝑗

𝑗

, 

∴ 𝑑 log 𝑞𝑖 = (
𝑏𝑖𝑝𝑖 − 𝑝𝑖𝑞𝑖

𝑝𝑖𝑞𝑖
*𝑑 log 𝑝𝑖 −

𝑎𝑖
𝑝𝑖𝑞𝑖

∑ 𝑏𝑗𝑝𝑗𝑑 log 𝑝𝑗
𝑗

+
𝑎𝑖𝑦

𝑝𝑖𝑞𝑖
𝑑 log 𝑦. (A2) 

This is the differential version of the LES. The point elasticities in Eq. (A2) are 

𝑒𝑖𝑖 =
𝑏𝑖𝑝𝑖(1 − 𝑎𝑖)

𝑝
𝑖
𝑞
𝑖

− 1, 𝑒𝑖𝑗 = −
𝑎𝑖𝑏𝑗𝑝𝑗

𝑝
𝑖
𝑞
𝑖

(𝑗 ≠ 𝑖), 𝑕𝑖 =
𝑎𝑖𝑦

𝑝
𝑖
𝑞
𝑖

=
𝑎𝑖

𝑤𝑖

. 

These elasticities satisfy the Homogeneity, Engel, and Cournot conditions explained in Subsection 4.2. 

These proofs are easy, and thus are omitted. From the initial assumptions, -1 < eii < 0 and eij < 0 (j ≠ i). 

For these point elasticities and the theoretical properties for the LES, refer to Phlips (1974, Subsection 

4.3.3), Theil (1975/76, Chaps 1,3, etc.), and Deaton and Muellbauer (1980b, Chap. 3). 

These elasticities are point-dependent. Assuming that (A1) was estimated using yearly data from 1996 

to 2015, we have 20 sets of elasticities from the above relationships. Note that pi, qi, and y are yearly 

data; and ai and bi are constants. 

The LES at time t is 

𝑝
𝑡𝑖
𝑞
𝑡𝑖
= 𝑝

𝑡𝑖
𝑏𝑖 + 𝑎𝑖𝑦𝑡 − 𝑎𝑖 (∑ 𝑝

𝑡𝑗
𝑏𝑗

𝑗

)   (𝑖 and 𝑗 = 1, 2, … , 𝑛), 

wherein 𝑞𝑡𝑖 > 𝑏𝑖 > 0 and𝑦𝑡 = Σ𝑝𝑡𝑖𝑞𝑡𝑖 . While the differential approach produces the unique outcome 

shown above, the difference approach may produce multiple outcomes, as discussed in Tsuchida (2018). 

We have two ideal log-change indices that are derived using Transformation-M (𝑚𝑡𝑖 = 𝑝𝑡𝑖𝑞𝑡𝑖) and 

Transformation-W(𝑤𝑡𝑖 = 𝑝𝑡𝑖𝑞𝑡𝑖/𝑦𝑡). We can apply these transformations to the LES, and thus two 

difference versions are obtained. First, we utilize Transformation-M. 

Substituting mti and kti = ptibi into the above LES, we have: 

𝑚𝑡𝑖 = 𝑘𝑡𝑖 + 𝑎𝑖 (𝑦𝑡 −∑ 𝑘𝑡𝑗
𝑗

) , ∆𝑚𝑖 = ∆𝑘𝑖 + 𝑎𝑖 (∆𝑦 −∑ ∆𝑘𝑗
𝑗

), 

∆ log𝑚𝑖 = ∆ log 𝑝𝑖 + ∆ log 𝑞𝑖 , ∆𝑚𝑖 = 𝐿(𝑚𝑖)∆ log 𝑝𝑖 + 𝐿(𝑚𝑖)∆ log 𝑞𝑖 ,  

∆𝑘𝑖 = 𝑏𝑖∆𝑝𝑖 = 𝑏𝑖𝐿(𝑝𝑖)∆ log 𝑝𝑖 , ∆𝑦 = 𝐿(𝑦)∆ log 𝑦. 

∴ ∆ log 𝑞𝑖 = (
𝑏𝑖𝐿(𝑝𝑖) − 𝐿(𝑚𝑖)

𝐿(𝑚𝑖)
)∆ log 𝑝𝑖 −

𝑎𝑖
𝐿(𝑚𝑖)

∑ 𝑏𝑗𝐿(𝑝𝑗)∆ log 𝑝𝑗 +
𝑎𝑖𝐿(𝑦)

𝐿(𝑚𝑖)
∆ log 𝑦 .

𝑗
 

Note that ∆ log 𝑞𝑖 = log 𝑞𝑡𝑖 − log 𝑞𝑠𝑖 , 𝐿(𝑝𝑖) = 𝐿(𝑝𝑡𝑖 , 𝑝𝑠𝑖), etc. , and 𝑠 = 𝑡 − 1. This is one of the 

difference versions of the LES. The log-mean elasticities, which were named the M-elasticities, are 

𝜀𝑖𝑖 =
𝑏𝑖𝐿(𝑝𝑖)(1 − 𝑎𝑖)

𝐿(𝑚𝑖)
− 1, 𝜀𝑖𝑗 = −

𝑎𝑖𝑏𝑗𝐿(𝑝𝑗)

𝐿(𝑚𝑖)
(𝑗 ≠ 𝑖), 𝜂

𝑖
=
𝑎𝑖𝐿(𝑦)

𝐿(𝑚𝑖)
 . 
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These elasticities are twop-dependent and satisfy Eqs. (32) and (33) (see Subsection 4.3). These proofs 

are very easy, and thus are omitted. When Eq. (A1) is estimated using yearly data as the above, we have 

19 sets of elasticities. 

If we assume that the discrete meat demand system (44) is based on the LES, we have the following 

discrete meat demand system: 

∆ log 𝑞𝑖 =∑ 𝜀𝑖𝑗∆ log 𝑝𝑗 +
𝑗

𝜂𝑖∆ log 𝑦 + 𝜇𝑖 . 

The price and income elasticities are the same as those outlined above and the residuals 𝜇𝑖 satisfy the 

M-Residual condition (34). These 19 sets of elasticities and residuals can also be estimated using the 

WRAS method, and should coincide with the above M-elasticities calculated using ai, bi, and various 

log-means. Hence, we can determine whether our assumption is plausible. Applying Transformation-W 

in the below, we can similarly do. 

Next, we discuss another version using Transformation-W. From the LES, we have: 

𝑚𝑡𝑖

𝑦
𝑡

=
𝑘𝑡𝑖

𝑦
𝑡

+ 𝑎𝑖 (1 −∑
𝑘𝑡𝑗

𝑦
𝑡𝑗

) , 𝑤𝑡𝑖 = 𝑣𝑡𝑖 + 𝑎𝑖 (1 −∑ 𝑣𝑡𝑗
𝑗

), 

wherein 𝑣𝑡𝑖 = 𝑘𝑡𝑖 𝑦
𝑡

⁄ = 𝑏𝑖𝑝𝑡𝑖 𝑦
𝑡

⁄ . Hence, 

∆𝑤𝑖 = ∆𝑣𝑖 − 𝑎𝑖∑ Δ𝑣𝑗
𝑗

,   ∆𝑤𝑖 = 𝐿(𝑤𝑖)∆ log𝑤𝑖 = 𝐿(𝑣𝑖)
∆𝑣𝑖
𝐿(𝑣𝑖)

− 𝑎𝑖∑ 𝐿(𝑣𝑗)
Δ𝑣𝑗

𝐿(𝑣𝑗)𝑗
, 

∆ log𝑤𝑖 = ∆ log 𝑝𝑖 + ∆ log 𝑞𝑖 − ∆ log 𝑦 , ∆ log 𝑣𝑖 = ∆ log 𝑘𝑖 − ∆ log 𝑦 = Δ log 𝑝𝑖 − Δ log 𝑦. 

From this, we obtain 

∆ log 𝑞𝑖 = (
𝐿(𝑣𝑖)

𝐿(𝑤𝑖)
− 1)∆ log 𝑝𝑖 −

𝑎𝑖
𝐿(𝑤𝑖)

∑ 𝐿(𝑣𝑗)
𝑗

∆ log 𝑝𝑗

+ (1 −
𝐿(𝑣𝑖)

𝐿(𝑤𝑖)
+

𝑎𝑖
𝐿(𝑤𝑖)

∑ 𝐿(𝑣𝑗)
𝑗

)∆ log 𝑦. 

This is another difference version of the LES, whose own and cross price elasticities and income 

elasticities, which are called W-elasticities, are 

𝜀𝑖𝑖
𝑤 =

𝐿(𝑣𝑖)

𝐿(𝑤𝑖)
(1 − 𝑎𝑖) − 1, 𝜀𝑖𝑗

𝑤 =
−𝑎𝑖𝐿(𝑣𝑗)

𝐿(𝑤𝑖)
(𝑗 ≠ 𝑖), 𝜂

𝑖
𝑤 = 1 −

𝐿(𝑣𝑖)

𝐿(𝑤𝑖)
+

𝑎𝑖

𝐿(𝑤𝑖)
∑ 𝐿(𝑣𝑗)

𝑗

. 

These W-elasticities differ from the M-elasticities. 

Based on the other budget constraint using Transformation-W (1 = ∑𝑤𝑡𝑖), we obtain 

0 =∑ ∆𝑤𝑖
𝑖

=∑ 𝐿(𝑤𝑖)∆ log𝑤𝑖
𝑖

=∑ 𝐿(𝑤𝑖)
𝑖

(∆ log 𝑝𝑖 + ∆ log 𝑞𝑖 − log 𝑦), 

∴  ∆ log 𝑦 =∑
𝐿(𝑤𝑖)

∑ 𝐿(𝑤𝑘)𝑘
  ∆ log 𝑝𝑖 +∑

𝐿(𝑤𝑖)

∑ 𝐿(𝑤𝑘)𝑘
∆ log 𝑞𝑖

𝑖𝑖
. (A3) 

From Eq. (A3), we find the Vartia-Sato index. The first and second terms of the right-hand side are, 

respectively, the ideal log-change price and quantity indices (Note 10). This budget constraint (A3) 

produces the two conditions related to W-elasticities as follows: 
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∑ (𝐿(𝑤𝑖) ∑ 𝐿(𝑤𝑘𝑘 )⁄ )𝜂
𝑖
𝑤

𝑖 = 1(𝑖 and 𝑘 = 1, 2, … , 𝑛), (Engel condition); (A4) 

∑ (𝐿(𝑤𝑖) ∑ 𝐿(𝑤𝑘𝑘⁄ ))𝜀𝑖𝑗
𝑤

𝑖 = −(𝐿(𝑤𝑗) ∑ 𝐿(𝑤𝑘)𝑘⁄ )(𝑖, 𝑗, and 𝑘 = 1, 2, … , 𝑛),  

(Cournot conditions). 
(A5) 

The W-elasticities also satisfy Eqs. (A4) and (A5). These proofs are also easy. Note that these 

aggregation weights add up to 1and differ from those of the M-elasticities. 

If the ratio of two positive variables, x1 and x0, is close to unity (i.e., x1/x0 ≈ 1), we have a good 

relationship (Tsuchida, 2014, 2018): 

𝐿(𝑥) ≈ 𝐺(𝑥), 𝐿(𝑥) ≈ 𝐴(𝑥), 𝐴(𝑥) ≈ 𝐺(𝑥), 

wherein G(x) = (x0x1)
0.5 is the geometric mean and A(x) is, as mentioned above, the arithmetic mean. If 

all variables below satisfy these assumptions, we obtain the following approximations: 

𝐿(𝑚𝑖) 𝐿(𝑦)⁄ ≈ 𝐺(𝑚𝑖) 𝐺(𝑦)⁄ = 𝐺(𝑤𝑖) ≈ 𝐴(𝑤𝑖) ≈ 𝐿(𝑤𝑖), 

∴
𝐿(𝑚𝑖)

𝐿(𝑦)
≈ 𝐴(𝑤𝑖) ≈

𝐴(𝑤𝑖)

∑ 𝐴(𝑤𝑘)𝑘
≈

𝐿(𝑤𝑖)

∑ 𝐿(𝑤𝑘)𝑘
      (𝑖 and 𝑘 = 1,2, … , 𝑛) 

Thus, the weights derived using Transformation-M approach those derived using Transformation-W. 

Finally, we briefly discuss the almost ideal demand system (AIDS; Deaton & Muellbauer, 1980a, 

1980b; Barten, 1993). The AIDS is 

𝑤𝑖 = 𝛼𝑖 +∑ 𝛾
𝑖𝑗
log 𝑝

𝑗
+

𝑗

𝛽
𝑖
(log 𝑦 − log 𝑃)(𝑖 and 𝑗 = 1, 2, … , 𝑛), (A6) 

wherein P is given by 

log 𝑃 = 𝛼0 +∑ 𝛼𝑘 log 𝑝𝑘 +
1

2
∑ ∑ 𝛾

𝑘𝑗
log 𝑝

𝑘
log 𝑝

𝑗
𝑘𝑗

(𝑘 and 𝑗 = 1, 2, … , 𝑛). (A7) 

An explanation of the constraints regarding the parameters in (A6) and (A7) is omitted. Differentiating 

(A6) leads to 

𝑑𝑤𝑖 =∑ 𝛾
𝑖𝑗
𝑑 log 𝑝

𝑗
+

𝑗

𝛽
𝑖
(𝑑 log 𝑦 − 𝑑 log 𝑃)(𝑖 and 𝑗 = 1, 2, … , 𝑛). (A8) 

Substituting (A9) and (A10) into (A8), we get the differential demand system. 

𝑑𝑤𝑖 = 𝑤𝑖𝑑 log𝑤𝑖 = 𝑤𝑖(𝑑 log 𝑝𝑖 + 𝑑 log 𝑞𝑖 − 𝑑 log 𝑦), (A9) 

𝑑 log𝑃 ≈∑𝑤𝑖𝑑 log 𝑝𝑖 . (A10) 

Note that the right-hand side of (A10) is the price term of the differential budget constraint (30). 

The difference version of (A6) is 

∆𝑤𝑖 =∑ 𝛾
𝑖𝑗
∆log 𝑝

𝑗
+

𝑗

𝛽
𝑖
(∆ log 𝑦 − ∆ log 𝑃)(𝑖 and 𝑗 = 1, 2, … , 𝑛). (A11) 

Similarly, substituting (A12) and (A13) into (A11), we obtain the difference demand system. 

∆𝑤𝑖 = 𝐿(𝑤𝑖)∆ log𝑤𝑖 = 𝐿(𝑤𝑖)(∆ log 𝑝𝑖 + ∆ log 𝑞𝑖 − ∆ log 𝑦), (A12) 
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∆ log𝑃 ≈∑
𝐿(𝑤𝑖)

∑ 𝐿(𝑤𝑘)𝑘
∆ log 𝑝𝑖 . (A13) 

The above (A12) corresponds to (A9) and (A13) corresponds to (A10), though the right-hand side of 

(A13) is the price term of the difference budget constraint (A3). This system is produced using 

Transformation-W. (If we use Transformation-M, we have to multiply both sides of (A6) by y, whereby 

we have numerous non-linear terms.) 

Deaton and Muellbauer (1980a) use the following approximation (A14) instead of (A13): 

∆ log𝑃 ≈∑𝑤𝑖 ∆ log 𝑝𝑖 . (A14) 

This may be regarded as an approximation of (A10), but is neither the price term of the difference 

budget constraint (A3) nor that of Theil’s approximation (B2) in Appendix B. They also show another 

difference version (Deaton & Muellbauer, 1980a, Eq. (21)). 

Given that Eq. (A6) leads to our meat demand system, its discrete meat demand system is given by 

∆ log 𝑞𝑖 =∑ 𝜀𝑖𝑗
𝑤 ∆log 𝑝𝑗 +

𝑗
𝜂𝑖
𝑤Δ log 𝑦 + 𝜇𝑖

𝑤 , (𝑖 and 𝑗 = 1, 2, 3, 4), (A15) 

wherein the parameters are 

𝜀𝑖𝑗
𝑤 =

𝛾
𝑖𝑗

𝐿(𝑤𝑖)
− 𝛿𝑖𝑗, 𝜂𝑖

𝑤 =
𝛽
𝑖

𝐿(𝑤𝑖)
+ 1, 𝜇

𝑖
𝑤 = 𝜇

𝑖
−

𝛽
𝑖

𝐿(𝑤𝑖)
Δ log 𝑃. 

Here, 𝛿𝑖𝑗 is the Kronecker delta, which takes 1 if i = j, and 0 otherwise; and 𝜇
𝑖
 is the residual and 

includes an error that is accompanied by the approximation (A13). From the budget constraint (A3), we 

have the Engel condition (A4) and Cournot conditions (A5); and the Residual condition that is given by 

∑ 𝐿(𝑤𝑖)𝜇𝑖
𝑤

𝑖

∑ 𝐿(𝑤𝑘)𝑘

=
∑ 𝐿(𝑤𝑖)𝜇𝑖𝑖

∑ 𝐿(𝑤𝑘)𝑘

= 0. 

Hence, we can estimate these parameters in Eq. (A15) using our WRAS method. Based on those results 

and some log-means, we get the parameters 𝛾𝑖𝑗  and 𝛽𝑖 in (A6). Thus, we can check whether some 

estimated parameters have the properties coherent to those of its utility function. 

 

Appendix B: Theil’s Approximation to the Differential Budget Constraint 

We showed the approximation formed from Eqs. (24) and (26), which is rewritten as the following 

(B1): 

Δ log 𝑞𝑖 ≈∑ 𝑒𝑖𝑗Δ log 𝑝𝑗 + 𝑕𝑖Δ log 𝑦   (𝑖 and 𝑗 = 1, 2, … , 𝑛)
𝑗

. (B1) 

Although eij and hi are the point elasticities, we should utilize the difference budget constraints such as 

Eq. (31) or (A3) to derive the Engel and Cournot conditions for finite-change variables. Nevertheless, 

Theil’s approximation to the differential budget constraint (30) is commonly utilized as expressed in 

Subsection 4.2. This approximation is rewritten as follows: 
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∆ log 𝑦 ≈∑ (𝐴(𝑤𝑖)
𝑖

∆ log 𝑝𝑖 + 𝐴(𝑤𝑖)∆ log 𝑞𝑖), (B2) 

wherein 𝐴(𝑤𝑖) = (𝑤𝑡𝑖 + 𝑤𝑡−1𝑖) 2⁄ . To employ the approximation (B2), the differences of all of the 

variables (wi, y, pi, and qi) should be very small. The budget constraint (B2) produces two budget 

conditions as follows: 

∑ 𝐴(𝑤𝑖)𝜂𝑖𝑖 ≈ 1(𝑖 = 1, 2, … , 𝑛), (Engel condition); (B3) 

∑ 𝐴(𝑤𝑖)𝜀𝑖𝑗𝑖 ≈ −𝐴(𝑤𝑗)(𝑖 and 𝑗 = 1, 2, … , 𝑛), (Cournot conditions). (B4) 

wherein the two elasticities are M-elasticities (they may also be W-elasticities). Note that A(wi) and the 

elasticities are dependent on two points. The two elasticities in (B1) will approximately satisfy the two 

conditions (B3) and (B4), if we assume that the elasticities eij and hi in (B1) are close to the log-mean 

elasticities 𝜀𝑖𝑗  and 𝜂𝑖in (B4) and (B3). Given that a double-log function produces this continuous 

demand system, the assumptions are fulfilled. Recall that all double-log functions produce point 

elasticities that are always equal to the log-mean elasticities discussed in Subsection 2.2. 

 

Appendix C: Differential and Difference Approaches for a Composite Function 

There are some functions for which we cannot always derive the correspondence between the 

differential and difference approaches (see Tsuchida, 2018). An example is presented below. 

𝑌 = 𝑋 log 𝑍  and 𝑌𝑡 = 𝑋𝑡 log 𝑍𝑡. 

The differential approach quickly derives: 

𝑑𝑌 = log 𝑍 𝑑𝑋 + 𝑋𝑑 log 𝑍 = 𝑋 log 𝑍 𝑑 log𝑋  + 𝑋𝑑 log 𝑍 = 𝑌𝑑 log𝑋 + (𝑌 log 𝑍⁄ )𝑑 log 𝑍. (C1) 

Note that all variables are positive and not 1 when we take their logarithms. 

The difference approach needs a further assumption, that is, log 𝑍𝑡 > 0 (i. e., 𝑍𝑡 > 1) to maintain 

correspondence. Then, the difference approach yields: 

log 𝑌𝑡 = log 𝑋𝑡 + log(log 𝑍𝑡), ∆log 𝑌 = ∆ log 𝑋 + ∆ log log 𝑍 = ∆ log 𝑋 + ∆ log 𝑍 (𝐿(log 𝑍)⁄ , 

wherein 

∆ log log 𝑍 = log(log 𝑍1) − log(log 𝑍0) , 𝐿(log 𝑍) = ∆ log 𝑍 (∆ log log𝑍).⁄  

∴ ∆𝑌 = 𝐿(𝑌)∆log𝑋 + (𝐿(𝑌) 𝐿(log 𝑍)⁄ )∆ log 𝑍. (C2) 

The correspondences between (C1) and (C2) can be found only when Z > 1 and Zt > 1. Hence, we 

cannot always derive the difference version for a demand function that has a composite explanatory 

variable such as that shown above. 
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Appendix D: Proofs of Some Properties of a Logarithmic Mean 

We restate Montgomery weights inequality as follows: 

∑
𝐿(𝑚1𝑖, 𝑚0𝑖)

𝐿(𝑦
1
, 𝑦

0
)

=
𝑖

∑
𝐿(𝑚1𝑖, 𝑚0𝑖)

𝐿(∑ 𝑚1𝑗𝑗 ,∑ 𝑚0𝑗)𝑗𝑖

≤ 1,   (𝑖 and 𝑗 = 1, 2, … , 𝑛). (D1) 

If 𝑚1𝑖 = 𝑚0𝑖 for all i, the inequality turns out to be the identity. The log-mean has the following 

property: 

𝐿(𝑥1, 𝑥0) =
𝑥1

1 2⁄ + 𝑥0
1 2⁄

2

𝑥1
1 2⁄ − 𝑥0

1 2⁄

(1 2⁄ ) log(𝑥1 𝑥0⁄ )
= 𝐴(𝑥1

1 2⁄ , 𝑥0
1 2⁄ )𝐿(𝑥1

1 2⁄ , 𝑥0
1 2⁄ )

= 𝐴(𝑥1
1 2⁄ , 𝑥0

1 2⁄ )𝐴(𝑥1
1 4⁄ , 𝑥0

1 4⁄ )…𝐴(𝑥1
1 𝑧⁄ , 𝑥0

1 𝑧⁄ ), 

(D2) 

wherein z = 2𝑛(𝑛 = 3, 4, 5, … ).The last equation is obtained by expanding the first equality of (D2) 

repeatedly and the same as the Corollary 2 in Carlson (1972). Moreover, we have two relationships: 

𝐿(𝑚1𝑖 , 𝑚0𝑖) = 𝑚0𝑖𝐿(𝑚1𝑖 𝑚0𝑖⁄ , 1) = 𝑚0𝑖𝐿(𝑘𝑖 , 1), 

𝐿(𝑦1, 𝑦0) = 𝑦0𝐿(𝑦1 𝑦0⁄ , 1) = 𝑦0𝐿 (
∑ 𝑚0𝑖(𝑚1𝑖 𝑚0𝑖⁄ )𝑖

𝑦0
, 1) = 𝑦0𝐿 (∑ 𝑤0𝑖𝑘𝑖

𝑖
, 1*, 

wherein 0 < 𝑘𝑖 = 𝑚1𝑖 𝑚0𝑖⁄ and 0 < 𝑤0𝑖 = 𝑚0𝑖 𝑦0⁄ . Using these two relationships and Eq. (D2), we 

produce 

∑𝑚0𝑖𝐿(
𝑖

𝑘𝑖 , 1) =∑ 𝑚0𝑖𝐴(𝑘𝑖
1 2⁄ , 1)𝐴(𝑘𝑖

1 4⁄ , 1)… =∑𝑚0𝑖 (
𝑘𝑖
1 2⁄ + 1

2
)(

𝑘𝑖
1 4⁄ + 1

2
)… ,

1
(Note 11) 

𝑦
0
𝐿 (∑𝑤0𝑖𝑘𝑖

𝑖

, 1* = 𝑦
0
(
(∑𝑤0𝑖𝑘𝑖)

1 2⁄ + 1

2
)(

(∑𝑤0𝑖𝑘𝑖)
1 4⁄ + 1

2
)…. 

Substituting these into the left-hand side of the inequality (D1), we obtain 

∑
𝐿(𝑚1𝑖, 𝑚0𝑖)

𝐿(𝑦
1
, 𝑦

0
)𝑖

=∑
𝑚0𝑖((𝑘𝑖

1 2⁄ + 1) 2⁄ )((𝑘𝑖
1 4⁄ + 1) 2⁄ )…

𝑦
0
(((∑𝑤0𝑖𝑘𝑖)

1 2⁄ + 1) 2⁄ )(((∑𝑤0𝑖𝑘𝑖)
1 4⁄ + 1) 2⁄ )…𝑖

 

=∑
𝑤0𝑖(𝑘𝑖

3 4⁄ + 𝑘𝑖
2 4⁄ + 𝑘𝑖

1 4⁄ + 1)…

(∑𝑤0𝑖𝑘𝑖)
3 4⁄ + (∑𝑤0𝑖𝑘𝑖)

2 4⁄ + (∑𝑤0𝑖𝑘𝑖)
1 4⁄ + 1…𝑖

 (Note 12)

=
∑𝑤0𝑖𝑘𝑖

3 4⁄ +∑𝑤0𝑖𝑘𝑖
2 4⁄ +∑𝑤0𝑖𝑘𝑖

1 4⁄ + 1

(∑𝑤0𝑖𝑘𝑖)
3 4⁄ + (∑𝑤0𝑖𝑘𝑖)

2 4⁄ + (∑𝑤0𝑖𝑘𝑖)
1 4⁄ + 1

…. 

Hence, we can apply Hölder’s inequality (Berck & Sydsӕter, 1991) given by 

∑ 𝑎𝑖𝑏𝑖 ≤ (∑ 𝑎𝑖
𝑝

𝑛

𝐼=1

*
1 𝑝⁄

(∑ 𝑏𝑖
𝑞

𝑛

𝑖=1

*
1 𝑞⁄𝑛

𝑖=1

 , 

wherein ai and bi are positive; and p > 1, q > 1, and 1/p + 1/q = 1. Using the inequality, we produce the 

following inequalities: 

1) If 𝑎𝑖 = 𝑤0𝑖
1 4⁄ , 𝑏𝑖 = 𝑤0𝑖

3 4⁄ 𝑘𝑖
3 4⁄ , 𝑝 = 4, and 𝑞 = 4 3⁄ , then∑𝑤0𝑖𝑘𝑖

3 4⁄ ≤(∑𝑤0𝑖𝑘𝑖)
3 4⁄

; 

2) If 𝑎𝑖 = 𝑤0𝑖
2 4⁄ , 𝑏𝑖 = 𝑤0𝑖

2 4⁄ 𝑘𝑖
2 4⁄ , and 𝑝 = 𝑞 = 4 2⁄ , then∑𝑤0𝑖𝑘𝑖

2 4⁄ ≤(∑𝑤0𝑖𝑘𝑖)
2 4⁄

; 
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3) If 𝑎𝑖 = 𝑤0𝑖
3 4⁄ , 𝑏𝑖 = 𝑤0𝑖

1 4⁄ 𝑘𝑖
1 4⁄ , 𝑝 = 4 3⁄ , and 𝑞 = 4, then∑𝑤0𝑖𝑘𝑖

1 4⁄ ≤(∑𝑤0𝑖𝑘𝑖)
1 4⁄

. 

Using these inequalities and comparing each term in the numerator of the above equations with the 

corresponding term in the denominator, we find the inequality (D1). Whereas we only use the values 

composed of the first and second terms of the last expansion of Eq. (D2), we can apply Hölder’s 

inequality to those terms including the third and higher terms, for which comparisons we use the 

bellow. 

When we compare ∑𝑤0𝑖𝑘𝑖
1 𝑞⁄

 with (∑𝑤0𝑖𝑘𝑖)
1 𝑞⁄ , we employ the following approach. Letting𝑎𝑖 =

𝑤0𝑖

1 𝑝⁄
 and 𝑏𝑖 = 𝑤0𝑖

1 𝑞⁄
𝑘𝑖
1 𝑞⁄

,  we have 

∑ 𝑎𝑖𝑏𝑖 = ∑𝑤0𝑖𝑘𝑖
1 𝑞⁄

≤ (∑ 𝑎𝑖
𝑝)1 𝑝⁄ (∑ 𝑏𝑖

𝑞)1 𝑞⁄ = (∑𝑤0𝑖𝑘𝑖)
1 𝑞⁄ . 

These results are helpful for any comparison. For example, we obtained the above ai and bi using the 

following p and q: 

In 1) above: 1 𝑞⁄ = 3 4⁄ , 1 𝑝⁄ = 1 − 3 4⁄ , ∴ 𝑝 = 4 and 𝑞 = 4 3⁄ . 

In 2) above: 1 𝑞⁄ = 2 4⁄ , 1 𝑝⁄ = 1 − 2 4⁄ , ∴ 𝑝 = 𝑞 = 4 2.⁄  

In 3) above: 1 𝑞⁄ = 1 4⁄ , 1 𝑝⁄ = 1 − 1 4⁄ , ∴ 𝑝 = 4 3⁄  and 𝑞 = 4.  

 

Appendix E: Data Used and Some Compilations 

We used data from the annual report on the family income and expenditure survey (2014-2016) and the 

annual report on the consumer price index (CPI, 2014-2016) (both published by the Statistics Bureau, 

Ministry of Internal Affairs and Communications, Japan). Monthly data on expenditure, quantity, and 

average price per household for each commodity were extracted from Table 3 (2014) and Table 10 

(2015 and 2016) in the former reports. Our others category for fresh (or raw) meat was the sum of 

mixed ground meat and other raw meat. As these tables show the number of persons per household, we 

calculated per capita expenditure and quantity. As 2016 was a leap year, the expenditure and quantity 

figures reported for February 2016 were multiplied by 28/29. 

Each reported price was deflated by the CPI, in which the bench-mark years were changed from 2014 

to 2016. We have two non-connected datasets as the CPI: 2014-2015 (bench-mark year is 2010, shortly 

2010-base) and 2015-2016 (bench-mark year is 2015, shortly 2015-base). The fresh meat items 

reported in the 2010-base are beef A, beef B, pork A, pork B, chicken, and liver. (The weight of liver is 

very small, so this is discarded.) Those reported in the 2015-base are the items other than liver. The 

weights of the items in 2010-base series are slightly different from those in 2015-base series. We used 

the weighted averages of each of the two beef and pork items as our price indices for beef and pork, 

respectively, and the price index for raw meats as our index for others. 

All of our indices were 2015-base after disregarding the above-mentioned differences. The indices in 

2016 were those presented in Table 4-1 in the CPI (2016), whereas those in 2014 were calculated using 

the reciprocal of the 2015/2014 indices (percentage changes over the previous year) presented in Table 

7-1 in the CPI (2015). 
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Notes 

Note 1. If the functions of three or more variables (X, Z, W …) are considered, we have to rewrite the 

condition as dZ = dW = … = 0. 

Note 2. If the functions of three or more variables (Xt, Zt, Wt …) are considered, we have to rewrite the 

condition as ΔZ = ΔW = … = 0. 

Note 3. The almost ideal demand system (AIDS) has a nonlinear price term, which is usually 

approximated to a linear price term to estimate each demand function. Its differential system is derived 

from this linear AIDS (Deaton & Muellbauer, 1980a, 1980b; Barten, 1993). Our difference system can 

be derived using this linear term (see Appendix A). 

Note 4. Frisch (1959) called these the Engel aggregation and Cournot aggregations. 

Note 5. The Montgomery weights are not always able to derive Eq. (43). However, the primitive 

difference demand system below produces these weights that add up to 1 because of 

𝐿(𝑚𝑡𝑖 , 𝑚𝑠𝑖) 𝐿(𝑦𝑡 . 𝑦𝑠)⁄ = (𝑚𝑡𝑖 −𝑚𝑠𝑖) (𝑦𝑡 − 𝑦𝑠) ( ∆ log 𝑦𝑡𝑠 = ∆ log𝑚𝑡𝑠𝑖)⁄ . 

Note 6. For these reasons, we omit the superscripts t and s from the elasticities, other than in this 

subsection. 

Note 7. Our method for handling negative values is very easy and can produce negative elasticities in 

the final results. Compare ours with the GRAS method used by Junius & Oosterhaven (2003) and the 

IGRAS method used by Huang, Kobayashi, & Tanji (2008). Furthermore, our method can obtain any 

value (positive, zero, or negative) as the final result from an initial value of zero. 

Note 8. For clarity, we do not use matrix algebra in this section. 

Note 9. Note that the numerator and denominator on the right-hand side of the above equation contain 

this large value. 

Note 10. While we can conceptually consider two other transformations: 𝑓𝑡𝑖 = 𝑝𝑡𝑖 𝑦𝑡⁄ and 𝑔𝑡𝑖 =

𝑞𝑡𝑖 𝑦𝑡 .⁄  these transformations lead to the same ideal index as that derived using Transformation-W. 

Therefore, the ideal log-change indices have only two formulae: the Vartia-Sato index and the 

Montgomery index. 

Note 11. Letting h = x1/x0 as in Section 1 and using Eq. (D2), we have 

𝐿(𝑥1, 𝑥0) = 𝑥0𝐿(𝑕, 1) = 𝑥0𝐴(𝑕
1 2⁄ , 1)𝐴(𝑕1 4⁄ , 1)…. 

If h = 1(i. e. , ∆𝑥 = 0), all arithmetic means become unity. Thus, the limit (2) is obtained as follows: 

lim
∆𝑥→0

𝐿(𝑥1, 𝑥0) = 𝑥0lim
 →1

𝐿(𝑕, 1) = 𝑥0. 

Note 12. Letting 𝑋 = (𝑥1 2⁄ + 1)(𝑥1 4⁄ + 1)(𝑥1  ⁄ + 1)(𝑥1 16⁄ + 1)…,  we can exploit the fine 

expansion of X as follows: 

𝑥1 2⁄ + 1 = [𝑥2 4⁄ + 1], (𝑥1 2⁄ + 1)(𝑥1 4⁄ + 1) = [𝑥2 4⁄ + 1](𝑥1 4⁄ + 1) = (𝑥3 4⁄ + 𝑥2 4⁄ + 𝑥1 4⁄ + 1)

= [𝑥6  ⁄ + 𝑥4  ⁄ + 𝑥2  ⁄ + 1],  

[(𝑥1 2⁄ + 1)(𝑥1 4⁄ + 1)](𝑥1 8⁄ + 1) = (𝑥7 8⁄ + 𝑥6 8⁄ + 𝑥5 8⁄ + 𝑥4 8⁄ + 𝑥3 8⁄ + 𝑥2 8⁄ + 𝑥1 8⁄ + 1)…. 

 


