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Abstract 

Background: Ischemia reperfusion injury (IRI) involves the cellular damage, dysfunction and cell death 

subsequent to the reperfusion of previously ischemic tissues. The molecular mechanisms of IRI are not 

well understood. Methods: We used an integrative bioinformatic analysis to identify key molecular 

mechanisms involved in IRI by utilizing 7 publically available gene expression datasets from 

conventional and dietary restriction related IRI. Differential gene expression (DEG) analysis and 

functional enrichment analysis was performed. Hub IRI related genes were identified using a consensus 

approach from 4 methods; weighted gene co-expression network analysis, immune infiltration analysis, 

ANOVA with LASSO regression and cluster analysis. Receiver operating curve analysis and support 

vector machine analysis were performed to examine prediction accuracy. Differential expression 

analysis of a miRNA-related dataset was performed and a hub gene-DEmiRNA-lncRNA network analysis 

was constructed. Results: 34 IRI-related genes were identified. Enriched functions included cellular 

hormone metabolic process and progesterone metabolic process, regulation of Protein digestion and 

absorption, 2-Oxocarboxylic acid metabolism and AGE-RAGE signaling pathway. Five consensus hub 

IRI related hub genes; Hpd, Cyp2d9, Aldh1a2, Pigr, Bcat1 were obtained. ROC and SVM analysis 

indicated high AUC values for the IRI related hub genes. Cyp2d9 was highly correlated with Hpd and 

Pigr. Hub gene-DEmiRNA-lncRNA network analysis showed Bcat1 as regulated by multiple DEmiRNAs. 

Conclusion: Using an integrated bioinformatics analysis approach the molecular mechanisms of IRI 

were deconstructed and 5 candidate genes very highly relevant to IRI pathogenesis were identified. These 

findings present valuable directions for future translational research. 
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1. Introduction 

Ischemia occurs due to hypoperfusion, when blood supply to a tissue or organ is interrupted causing a 

drastic reduction in the oxygen and glucose, which leads to metabolic derangement and tissue injury (Wu 

et al., 2018). ATP levels and pH decline in this phase due to anaerobic metabolism (Kalogeris et al., 2012). 

Tissue injury occurs during the reperfusion occurs due to an increase in molecular oxygen which leads to 

the activation of several downstream pathways including the xanthine oxidase system, neutrophil 

activation, mitochondrial electron transport chain, arachidonic acid metabolism and oxidation of 

catecholamines (Wu et al., 2018). These result in the production of several reactive oxygen species (ROS) 

that result in ischemia reperfusion injury (IRI) via modulating the mitochondrial permeability transition 

pore (Bains, 2009). Consequently, a cascade of complex pathological processes including membrane 

lipid peroxidation, complement activation, proinflammatory cytokines, and endothelial activation are 

triggered, mediating IRI.  

Clinically, IRI can cause critical organ damage and may occur after multiple conditions that lead to 

hypoperfusion including sepsis, organ transplant, trauma, stroke or myocardial infarction. Renal IRI is a 

chief cause of acute kidney injury and failure in humans, which is associated with high mortality rates. In 

case of renal transplantation, IRI can occur frequently, especially in cases of allograft organ transplant, 

which can lead to delayed graft function and affect graft survival. Emerging management modalities 

include the renal delivery of pharmacological agents during machine perfusion (Franzin et al., 2021). The 

identification of novel targets to manage renal IRI requires an unraveling of complex molecular 

mechanisms implicated in its pathogenesis 

Dietary and protein restriction can mitigate renal IRI by inducing metabolic alterations (Jongbloed et al., 

2014; Jongbloed et al., 2017). Several studies have analyzed molecular underpinnings of renal IRI using 

bioinformatics (Feng et al., 2016; Zhu eta l., 2018; Guo et al., 2019; You et al., 2022) but integrative 

analyses based on multiple datasets from IRI under conventional and dietary restriction conditions are 

lacking. Such integrative analysis can aid a deeper understanding of key molecular mechanisms 

underpinning renal IRI. Here, we aimed to perform integrative analysis of multiple datasets related to 

conventional and dietary restriction related ischemia-reperfusion injury experiments to obtain high 

relevance genes that might play crucial roles in ischemia-reperfusion injury. 

 

2. Material and Method 

2.1 Datasets 

We downloaded datasets related to ischemia-reperfusion injury (IRI) from GEO 

(http://www.ncbi.nlm.nih.gov/) and obtained a total of 7 datasets (Table 1). These include 6 
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mouse-related datasets: (GSE98622, GSE29495, GSE39548, GSE65656, GSE52982, GSE182793), and 

one human-related dataset (GSE142077). GSE98622 pertains to ischemia-reperfusion injury in kidney 

tissue, and GSE65656 and GSE52982 were from tissue ischemia-reperfusion injury under dietary 

restrictions. 

 

Table 1. IRI Datasets  

Accession Platforms Series Type Taxonomy 
Sample 

Count 

Sample 

Characteristics 

GSE98622 GPL13112 

GPL19057 

Expression 

profiling by high 

throughput 

sequencing 

Mouse 49 Normal(Control), 

Sham, IRI 

GSE29495 GPL13642 Non-coding RNA 

profiling by array 

Mouse 16 Sham, IRI 

GSE39548 GPL7202 Expression 

profiling by array 

Mouse 20 Control, IRI, 

IRI+Hemin, IPC+IRI, 

Hemin 

GSE65656 GPL11180 Expression 

profiling by array 

Mouse 36 Control (SDS), 3 days 

fasting, 2 weeks 30% 

dietary restriction, 

Control (type I), 3 

days protein-free, 3 

days fat-free, 3 days 

carbohydrate-free 

GSE52982 GPL11180 Expression 

profiling by array 

Mouse 19 Young-control, 

Young-fasted, 

Old-control, 

Old-fasted 

GSE182793 GPL21103 Expression 

profiling by high 

throughput 

sequencing 

Mouse 12 Control, IRI 

conscious, IRI 

anesthesia 

GSE142077 GPL16791 Expression 

profiling by high 

throughput 

sequencing 

Human 15 Normal(Control), 

Ischemia, Reperfusion 
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In the 6 mouse-related datasets, GSE98622 and GSE182793 included expression profiling by high 

throughput sequencing, GSE29495 included non-coding RNA profiling by array, and the GSE39548, 

GSE65656, and GSE52982 included gene expression profiling by array. The human-related dataset 

GSE142077 included expression profiling by high throughput sequencing. We performed statistical 

analysis on the datasets grouped into different experimental types. We mainly analyzed GSE98622, 

GSE65656 and GSE52982, and other datasets were used to validate the analysis results. 

2.2 Data Preprocessing 

After downloading the data, we first converted the Probe IDs in the expression matrix to Gene Symbol 

according to the platform information. If one Probe ID matched multiple Gene Symbols, then we 

deduplicated the Gene Symbol by the average of the sample expression values. After performing the 

Gene Symbol conversion, if the sample expression value was large, we considered log2 for the 

expression value of the sample. For a dataset of experimental type expression profiling by high 

throughput sequencing, if the expression value type was Count, we converted count to a TPM 

(Transcripts per million) value based on Equation 1. If the number of samples with a gene expression 

value of 0 in the expression matrix exceeded half of the total number of samples, we removed the gene 

from the expression matrix. 

6/ *10
TPM

( 1/ 1 2 / 2 ... / )

Ni Li

sum N L N L Nn Ln
=

+ + + ( Equation 1) 

Ni is the read counts that mapped on the exon i. Li is the length of exon i. 

( 1/ 1 2 / 2 ... / )sum N L N L Nn Ln+ + +  is the sum of all exons normalized by length. 

Since experimental types of GSE65656 and GSE52982 were gene expression profiling by array, we 

combined the two expression matrices together for analysis and used the ComBat method in the SVA 

package of R (version 4.1.3) to eliminate the batch effects while merging data. We performed PCA 

analysis on the expression matrices before and after the merge to analyze the effects of the merge. We 

labeled the merged data as GSE52982 & GSE65656. 

2.3 Differential Expression Analysis 

Differential expression analysis is the comparison of expression values of different groups of samples in 

a dataset, through which it is possible to detect whether genes have differences between different sample 

groups. For GSE98622, we first performed differential expression analysis based on Case-sample vs 

Normal-sample, and then differential expression analysis based on Case-sample vs Sham-sample. For 

GSE52982 & GSE65656, we distinguished between samples based on whether dietary restrictions were 

enforced, defining dietary restriction-related samples as Case-samples, non-dietary restriction-related 

samples as Control-samples, and differential expression analysis based on Case-sample vs 

Control-sample. 

We used the "limma" package of R to analyze the differential expression of GSE98622, GSE52982 

&GSE65656. We defined the thresholds of P.adjust and log2FC (log2 fold change) based on the analysis 

results, so as to obtain differentially expressed genes (DEG). For GSE98622, the genes with 
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P.adjust<0.05 and | log2FC|>1 were selected as the DEGs. For GSE52982 &GSE65656, the genes with 

P.adjust < 0.05 and the |log2FC |> 0.5 were considered DEGs. 

2.4 Screening of IRI Related Genes 

First, we obtained the DEGs with the similar expression trend in the differential expression analysis 

results of the GSE98622 dataset (Case-sample vs Normal-sample, Case-sample vs Sham-sample). These 

genes were not affected by sham. We then intersected these DEGs obtained from the GSE98622 dataset 

and GSE52982 & GSE65656, which were labeled IRI related genes. These IRI related genes differed not 

only in the level of expression in conventional ischemic reperfusion experiments, but also in the level of 

expression in ischemic reperfusion experiments under food restriction. 

2.5 Enrichment Analysis of IRI Related Genes 

We used the “clusterProfiler '' package in R to analyze the IRI related gene for enriched GO Biological 

process and KEGG pathways. We selected pvalue < 0.05 as the significance threshold to determine 

biological processes affected by these IRI related genes. 

2.6 Prediction of Hub IRI Related Genes 

We analyzed the IRI datasets from different perspectives using 4 different methods to predict hub IRI 

related genes. 

2.6.1 Method 1: Global Analysis of IRI Using Weighted Gene Co-Expression Network Analysis 

(WGCNA) 

If genes have similar expression changes in a physiological process or in different tissues, then these 

genes are also potentially functionally related. In this method, a module is defined as a group of genes 

with a similar expression profile. We used the “WGCNA” package in R (Langfelder et al., 2008) to 

analyze GSE98622, GSE52982 & GSE65656, respectively. We first obtained the expression matrix of all 

genes in case samples under 2 datasets, and then established a co-expression network of genes and 

samples. A co-expression network is a scale-free weighted network. In order to meet the preconditions 

for a scaleless network distribution as much as possible, we selected the value of the adjacency matrix 

weight parameter β. We set the β values to 1-30 and calculated the correlation coefficients and gene 

adjacency functions for the two IRI datasets. Among these, the higher the correlation coefficient (R²) 

(maximum is 1), the closer the network was to the network-free scale distribution, but at the same time a 

certain degree of gene connectivity needs to be guaranteed, so this β value should be as small as possible 

while the correlation coefficient is large enough. 

After selecting the β value, we used the ‘TOMsimilarity’ method to establish the given adjacency matrix 

according to the expression matrix, and then used ‘cutreeDynamic’ to cut the given adjacency matrix, so 

as to achieve module mining of the dataset. After obtaining the modules, we used the 

‘mergeCloseModules’ method to merge the modules with correlation coefficients greater than 0.8 and 

determine the corresponding sample fractions of the modules based on the gene expression values in the 

modules. We extracted the modules in which DEGs were located in the two datasets, and then scored the 

module significance according to the P.adj value corresponding to the DEGs in the differential expression 
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analysis, and finally determined the relatively significant modules in the dataset based on the mean (P.adj) 

score. We extracted the IRI related genes in the significant modules, analyzed the Pearson correlation 

coefficient between the corresponding sample fraction of the module and the expression value of the IRI 

related gene samples, and assessed the relationship between the different modules and the IRI related 

genes. We finally intersected the IRI related genes in the GSE98622, GSE52982 & GSE65656 significant 

modules to obtain the hub genes determined by WGCNA. 

2.6.2 Method 2: Immune Infiltration Analysis with ESTIMATE  

We obtained the expression values of DEGs in GSE98622, GSE52982 & GSE65656, respectively, and 

used the “biomaRt” package of R for homologous comparison of mouse and human genes. Using 

homologous comparison, we replaced mouse genes in the two sets of expression matrices with human 

genes. When a human gene corresponds to multiple mouse genes, to ensure gene uniqueness, we 

de-weight the expression matrix by mean. 

We used the ESTIMATE algorithm (Yoshihara et al., 2013) to calculate two sets of expression matrices 

separately to obtain stromal cell fractions and immune cell fractions in IRI-related kidney tissue samples. 

We used the Wilcoxon test to analyze the differences of immune cells in the case and control groups. At 

the same time we performed ROC analysis of the cell fractions in the sample to assess the robustness of 

ESTIMATE. Then we extracted the results of immune cells and IRI related genes in the case samples, and 

analyzed the relationship between the stromal cell samples and the IRI related genes using Pearson 

correlation coefficient, and analyzed the relationship between the immune cell samples and the IRI 

related genes. Finally, we filtered for IRI related genes. For GSE98622, GSE52982 & GSE65656, we 

extracted a gene if it was relatively highly correlated with both dataset stromal cells. Similarly, if a gene 

was relatively highly correlated with both datasets of immune cells, we extracted it. Finally, we took the 

IRI related genes that were highly correlated with stromal cells and immune cells to obtain hub genes 

associated with ESTIMATE. 

2.6.3 Method 3: IRI Related Genes Analyzed Using ANOVA and LASSO 

We extracted the expression values of IRI related genes in GSE98622, GSE52982 & GSE65656, and 

then performed ANOVA analysis of the IRI related genes in the datasets based on sample type (Case and 

Control). We obtained IRI related genes (Pvalue<0.01) that were significant in both datasets, and then 

used LASSO (Least absolute shrinkage and selection operator) Logistic Regression (Tibshirani, 1996) to 

characterize the significant IRI related genes. We used LASSO to build models for feature screening in 

two sets of datasets (GSE98622, GSE52982 & GSE65656), and finally obtained IRI-related hub genes. 

2.6.4 Method 4: Consensus Cluster Plus to Analyze Case-samples Corresponding to IRI Related Genes 

We obtained the expression matrix of IRI related genes in Case-samples in GSE98622, GSE52982 & 

GSE65656, and then analyzed it using “ConsensusClusterPlus” in R.To obtain samples with consistent 

correlation, we set the maxK parameter to 8 in the ConsensusClusterPlus method, and then selected the 

best Cluster from the clustering results. Based on the samples in different Clusters, we used “limma” in R 

to perform multi-group differential expression analysis on IRI related genes in GSE98622, GSE52982, & 
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GSE65656. We combined IRI related genes from 2 datasets of P value < 0.05 to obtain the hub genes 

associated with ConsensusClusterPlus. We used a boxplot to depict these hub gene expressions in 

different Clusters samples and performed kruskal.test to determine significance. 

We analyzed IRI through the above 4 methods to obtain 4 different sets of hub genes. If a gene appeared 

in any of the 3 methods, then this gene was considered a potential hub gene in IRI, and these potential hub 

genes were included in subsequent analyses. 

2.7 ROC Analysis for Hub IRI Related Genes 

We extracted the expression values of the hub IRI related gene in GSE98622, GSE52982 & GSE65656 

and then performed the Wilcoxon Test. We simultaneously extracted the expression values of hub IRI 

related genes in three validation sets (GSE29495, GSE39548, GSE182793) to see the differences 

between these genes in the validation set. Finally, we performed a ROC analysis of hub IRI related genes 

to assess the prediction strength of the expression levels of these genes. 

2.8 SVM Analysis of Hub IRI Related Genes 

We build SVM models based on Case-samples and Control-samples, using each hub IRI related gene as a 

feature to evaluate the model's predictive effect through ROC analysis. We used Python's scikit-learn 

package to build the SVM model. After establishing the SVM, we examined the SVM using the 

GridSearchCV method and used 10 fold cross-validation to find the best parameters. We divided the 

dataset into training sets and test sets at 70%/30%, the training set was used for model identification of 

data features, and the test set was used to verify the learning effect of the model. The score of each sample 

was obtained using the model prediction, and we used the sample score to perform ROC analysis to 

evaluate the effectiveness of the model. 

For IRI-related datasets, we obtained the expression matrix of hub IRI related gene in each dataset and 

performed the following 3-step processing: 

① S1: Based on hub genes, GSE98622, GSE52982&GSE65656 expression matrices were merged. 

The samples were divided into training sets and test sets at 70%/30%. The prediction effect was 

evaluated after the SVM was established 

② S2: Based on hub genes, GSE39548, GSE182793, GSE142077 expression matrices were merged. 

Hub genes that appeared in 3 datasets were used for combining, and then we divided the samples into 

training sets and test sets at 70%/30%. Next, we built the SVM model and evaluated the prediction 

values. 

③ S3: Based on hub genes, we merged five sets of data expression matrices (a total of 6 datasets) in 

steps S1 and S2. During the merging process, we merged hub genes that appeared together in 3 datasets. 

The samples were divided into training sets and test sets at 70%/30%. The prediction values were 

evaluated after the SVM was established. 

Next, we used the Pearson correlation coefficient to analyze the correlations between the hub genes. 

2.9 Differential Expression Analysis of GSE29495 and Construction of ceRNA Network 

Differential expression analysis of the miRNA-related dataset GSE29495 was performed to screen for 
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differentially expressed miRNA (DE-miRNA). We predicted miRNAs targeting hub genes through the 

miRWalk database (http://mirwalk.umm.uni-heidelberg.de/). These miRNAs were then intersected with 

DEmiRNAs, and finally the DEmiRNA-hub gene pairs were obtained. 

We downloaded the relationship pairs of miRNA and lncRNA from the ENCORI database 

(https://starbase.sysu.edu.cn/index.php) and extracted the de-miRNA corresponding lncRNA targets to 

form DEEmiRNA-lncRNA relationship pairs. Integrating hub gene-DEmiRNA, DEmiRNA-lncRNA 

was done using Cytoscape software to construct ceRNA networks. Pearson's correlation coefficient was 

used to analyze the relationship between miRNAs in ceRNA networks. 

 

3. Results 

3.1 Data Preprocessing 

We first combined GSE65656 and GSE52982 directly for PCA analysis (Fig1A). The results showed that 

some of the samples between GSE65656 and GSE52982 were coincident. (a region of Fig1A). By 

comparing the raw data, we identified these samples from the same group of mice. Therefore, we did not 

process samples from a region. For samples in the b region , we used the “ComBat” method of “sva” 

packages of R to eliminate batch effects (Fig1B). By comparing the b-region samples in Fig1A and 

Fig1B, it was found that the difference in the b-region in Fig1B was significantly reduced, and all 

samples from the a and b regions in Fig1B were integrated for subsequent analysis. 

 

 

Figure 1. PCA Analysis of Dataset Merging and Batch Effect Correction. (A) PCA analysis of 

GSE65656 and GSE52982 before batch effect correction. (B) PCA analysis after eliminating batch 

effects using the ComBat method. In the figure, samples in area a are from the same group, and samples 

in area b are from different groups. Batch effects were eliminated only for samples in area b, and finally 

samples in areas a and b were merged for subsequent analysis. 
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3.2 Differential Expression Analysis 

We performed differential expression analysis on GSE98622, GSE52982 & GSE65656. For GSE98622, 

we selected genes with P.adjust<0.05 and |log2FC|>1 as differentially expressed genes, where log2FC>1 

was up-regulated and log2FC <-1 was down-regulated (Table 2). For GSE52982&GSE65656, we 

selected genes with P.adjust<0.05 and |log2FC|>0.5 as differentially expressed genes (DEGs). Here, 

genes with log2FC>0.5 were up-regulated genes, and those with log2FC<0.5 were down-regulated genes 

(Table 2). We used a volcano plot to depict the distribution of differential expressed genes between the 

two datasets, and marked the Top 10 genes with the most significant P.adjust values on the plot (Fig. 2). 

 

Table 2. DEG Statistical Results 

  GSE98622 GSE52982&GSE65656 

  Case vs Normal Case vs Sham Case vs Control 

P.adjust P.adjust < 0.05   

|log2FC| |log2FC| > 1 |log2FC| > 0.5 

DEG_up 293 564 135 

DEG_down 150 106 358 

DEG_total 443 670 493 

 

 

Figure 2. Volcano Plot of Differentially Expressed Genes Distribution in GSE98622, GSE52982 & 

GSE65656. The plots show the distribution of differentially expressed genes with the top 10 genes with 

the most significant P.adjust values marked. Red dots represent upregulated genes, blue dots represent 

downregulated genes, and gray dots represent genes that do not meet the significance criteria. 
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3.3 Screening for IRI Related Genes 

After differential expression analysis, we obtained a total of 269 DEGs for GSE98622 (case vs normal, 

case vs sham) (Figure 3A). Among these, there were 268 genes with the same expression trend, including 

200 commonly up-regulated genes and 68 common genes that were down-regulated. 

 

Figure 3. IRI Related Gene Venn Diagram from DEG. (A) Differentially expressed genes obtained 

from GSE98622 dataset showing overlap between Case vs Normal and Case vs Sham comparisons. (B) 

IRI related genes obtained from the intersection of GSE98622 and GSE52982&GSE65656 datasets, 

resulting in 34 IRI-related genes. 

 

We extracted the expression values of IRI related genes in GSE98622, GSE52982&GSE65656, and 

obtained the dataset-related characteristics. The results indicated that the expression levels of IRI related 

genes in case and control samples were significantly different (Figure 4A-B). 
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Figure 4. Expression Values of IRI Related Genes in GSE98622 and GSE52982&GSE65656. 

Heatmaps showing the expression patterns of 34 IRI-related genes across different sample conditions. 

Red indicates high expression, blue indicates low expression. Sample characteristics are color-coded and 

shown on the top. 

 

In order to obtain the expression levels of 34 IRI related genes under different treatment conditions in 

GSE39548, GSE182793 and GSE142077, we obtained the expression matrices of these genes in three 

datasets. Since GSE142077 is a human data expression matrix, we used the “biomaRt” package of R to 

perform homologous alignment of mouse and human genes to find the corresponding human genes. 

Finally, we obtained 32 human-related genes. The expression matrix of IRI related genes in GSE142077 

was obtained using 32 human genes, and the three groups of expression matrices were displayed by heat 

map (Figure 5A-C). 
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Figure 5. Heat Map of Expression Levels of IRI Related Genes in Validation Datasets. (A) 

GSE39548, (B) GSE182793 and (C) GSE142077. Since data cleaning was performed for each dataset, 

the number of IRI related genes obtained in GSE39548, GSE182793 and GSE142077 were 31, 19 and 27, 

respectively. In Figure 5C, the human genes are in brackets, and the mouse genes are outside the 

brackets. 

 

We used the “clusterProfiler'' package of R to perform GO Biological process and KEGG pathway 

analysis on these 34 mouse-related IRI related genes, and selected Pvalue<0.05 as the significant 

pathway and displayed the Top20 pathway (Figure 6AB). At the same time, we performed GO Biological 

process and KEGG pathway analysis on 32 human-related IRI related genes, selected Pvalue<0.05 as the 

significant pathway and displayed the Top20 pathway (Figure 6 C-D). The results showed that mouse 

and human IRI related genes are mainly involved in biological processes such as cellular hormone 

metabolic process and progesterone metabolic process (Figure 6A, Figure 6C); regulate Protein 

digestion and absorption, 2-Oxocarboxylic acid metabolism, AGE-RAGE signaling pathway in diabetes 

complications and other pathways (Figure 6B, Figure 6D). 
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Figure 6. Biological Processes and Pathways Significantly Regulated by IRI Related Genes. (A-B) 

Biological processes and pathways significantly regulated by mouse IRI related genes; (C-D) 

Biological processes and pathways significantly regulated by human IRI related genes. The results 

show enrichment in cellular hormone metabolic processes, progesterone metabolic processes, protein 

digestion and absorption, 2-Oxocarboxylic acid metabolism, and AGE-RAGE signaling pathway. 

 

3.4 Screening Hub IRI Related Genes 

We further screened 34 IRI related genes using 4 methods: 

3.4.1 Method 1: WGCNA Analysis and Hub IRI Related Genes 

We performed WGCNA analysis on GSE98622, GSE52982 & GSE65656. We set the β value (power value) 

as 1-30, and calculated the corresponding correlation coefficient and gene adjacency function mean (Figure 

7A-D). In GSE98622, when β was 26, the established network was closest to the scale-free network, while 

in GSE52982&GSE65656, when β was 28, it was the closest to the scale-free network. 

After selecting the β value as the network construction parameter, we established a weighted co-expression 

network model, and then used the Dynamically cut tree algorithm to mine modules. We set at least 100 

genes in each module in GSE98622, and the maximum connection height as 0.95 (i.e., the parameters 

minModuleSize = 100 and cutHeight = 0.95 in the cutreeDynamic method). In GSE52982&GSE65656, 

there were at least 30 genes in each module, and the maximum junction height was 0.95. After obtaining the 

modules, we merged the modules with correlation coefficients greater than 0.8 (Figure 7E-F). 
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Figure 7. WGCNA Analysis Results. (A) and (C) are the correlation coefficients corresponding to 

different β values. (B) and (D) are the average connectivity of networks constructed with different β values. 

(E-F) are the results of module mining. Each black line in the upper half represents a gene, the lower half is 

the module where the gene is located. Dynamic Tree Cut is the module obtained initially, and Merged 

dynamic is the module after combining modules with correlation coefficients greater than 0.8. 
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We extracted the modules where the DEGs were located and screened for significant modules based on 

the differentially expressed P.adjust value (Figure 8A-C). For the case vs control group of GSE98622, we 

obtained turquoise as a significant module (Figure 8A). For the case vs sham group of GSE98622, we 

obtained black as a salient module (Figure 8B). The salient modules obtained by GSE52982 & 

GSE65656 were green and black, respectively (Figure 8C). We extracted the IRI related genes under the 

salient modules and obtained a total of 26 IRI related genes in GSE98622 (Figure 8D) and 13 IRI related 

genes in GSE52982&GSE65656 (Figure 8E). 

 

Figure 8. Screening IRI Related Genes by Module Significance Analysis. (A-C) Significance 

analysis of GSE98622 and GSE52982&GSE65656 modules based on differentially expressed P.adjust 

values; (D-E) Intersection of IRI related genes and significant module genes in GSE98622 and 

GSE52982&GSE65656. 

 

In the correlation analysis of IRI related genes and all modules, the results obtained for the GSE98622 

significant module black IRI related genes and black, greenyellow, turquoise correlation was higher; IRI 

related genes in the significant module turquoise and black, greenyellow, turquoise, salmon had a higher 

correlation (Figure 9A). In GSE52982 & GSE65656, the IRI related genes in the salient module black 

were highly correlated with black, greenyellow, and green, and the IRI related genes in the salient module 

green had higher correlations with black, greenyellow, and green (Figure 9B). We obtained IRI related 

genes that existed in significant modules of GSE98622, GSE52982 & GSE65656, and finally obtained 11 

WGCNA-related Hub genes (Acsm3, Akr1c14, Aldh1a2, Bcat1, C3, Cyp2d9, Hpd, Kdelr3, Neurog2, 

Pigr, Slc22a7) (Figure 9C). 
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Figure 9. IRI Related Gene and Module Correlation Analysis. (A-B) Correlation heatmaps showing 

the relationship between IRI related genes and significant modules in GSE98622 and 

GSE52982&GSE65656. The abscissa represents the IRI related genes under the significant module, the 

color bar above shows the module assignment, and the ordinate represents all modules obtained by 

WGCNA. (C) Venn diagram showing IRI-related genes common in significant modules of GSE98622 

and GSE52982&GSE65656, resulting in 11 WGCNA-related hub genes. 

 

3.4.2 Method 2: Immune Infiltration Analysis on IRI Samples and Correlated Hub Genes 

We obtained the corresponding human gene DEG expression matrix through the homology alignment of 

GSE98622, GSE52982 & GSE65656 genes. GSE98622, GSE52982 & GSE65656 were subjected to 
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immune infiltration analysis using ESTIMATE to obtain the sample fractions of stromal cells and 

immune cells. We used the Wilcoxon test to test the differences in immune cells in different samples in 

GSE98622, GSE52982 & GSE65656. Stromal cells were significantly different in different samples of 

GSE98622 and GSE52982 & GSE65656 (Figure 10A, Figure 10B). There were no differences in 

immune cells among different groups of GSE98622 samples (Figure 10C), but significant differences 

among different samples of GSE52982 & GSE65656 (Figure 10D). 

 

 

Figure 10. Differential Enrichment of Stromal Cells and Immune Cells. (A-B) Differential 

enrichment of stromal cells in GSE98622 and GSE52982&GSE65656 samples. (C-D) Differential 

enrichment of immune cells in GSE98622 and GSE52982&GSE65656 samples. Statistical significance 

is indicated by asterisks: ns: p > 0.05, *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001. 

 

We performed ROC analysis on stromal cells and immune cells in GSE98622 and GSE52982 & 

GSE65656. The ROC for stromal cells in GSE98622 and GSE52982 & GSE65656 was better, while the 

ROC for immune cells in GSE98622 and GSE52982 & GSE65656 was poor (Figure 11A, Figure 11B). 

From this, it can be obtained that stromal cells and immune cells are differently implicated in IRI, and 

suggest that IRI may have a relatively large impact on stromal cells but a small impact on immune cells. 

Then we used the Pearson correlation coefficient to analyze the relationship between the two cell types 

and the IRI related genes in the Case-samples (Figure 11C). 16 Hub IRI related genes related to immune 

infiltration (Aadat, Aldh1a2, Basp1, Bcat1, C3, Col3a1, Col15a1, Cyp2d9, Fos, Gem, Hpd, Id3, Mep1b, 

Pigr, Slc22a7, Slc7a13) were obtained (Figure 11C). 
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Figure 11. ROC and Correlation Analysis of ESTIMATE. (A-B) ROC analysis of stromal cells and 

immune cells in GSE98622 and GSE52982&GSE65656. (C) Correlation heatmap of stromal cells and 

immune cells with IRI related genes in case samples. The upper part shows all correlation results, and the 

lower part shows only results with |correlation| > 0.3. Genes highly related to stromal cells or immune 

cells are marked with *. 

 

3.4.3 Method 3: Screening of Hub IRI Related Genes by ANOVA and LASSO 

We performed ANOVA analysis on the GSE98622 and GSE52982 & GSE65656 datasets respectively, 

and obtained 34 IRI-related genes that were differentially expressed in GSE98622 and GSE52982 & 

GSE65656 (Figure 12A). Then we used LASSO Logistic Regression to further screen 34 IRI related 

genes. For GSE98622 we obtained 12 feature genes (Figure 12B). For GSE52982 & GSE65656, we 

obtained 14 feature genes (Figure 12C). We intersected the feature genes obtained from the two datasets 

to obtain 6 Hub IRI related genes (Aldh1a2, Basp1, Bcat1, Fos, Id3, Slitrk6) (Figure 12D). 
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Figure 12. LASSO Analysis to Screen Hub IRI Related Genes. (A) Results of ANOVA analysis on 

GSE98622 and GSE52982&GSE65656 datasets. (B-C) LASSO analysis results. The left panels show 

LASSO coefficient paths, and the right panels show cross-validation results with lambda.min and 

lambda.1se values indicated. (D) Venn diagram showing the intersection of hub IRI related genes 

obtained after LASSO analysis from both datasets. 
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3.4.4 Method 4: Screening of Hub IRI Related Genes by Consensus Cluster Plus 

We used Consensus Cluster Plus (Wilkerson et al., 2010) to perform cluster analysis on GSE98622 and 

GSE52982 & GSE65656. The results showed that when k=4 in GSE98622, the clustering effect was the 

best (Figure 13A, Figure 13C). When k=4 in GSE52982&GSE65656, the clustering effect was the best 

(Figure 13B, Figure 13D). When k=4, the consistent clustering results for GSE98622 and GSE52982 & 

GSE65656 are shown in Figure 13E and Figure 13F. 

 

Figure 13. Consensus Cluster Plus Analysis Results. (A-B) Concordant cumulative distribution 

function (CDF) plots showing optimal clustering when k=4. (C-D) Relative change in area under the 

CDF curve for different k values. (E-F) Consistent clustering heatmaps for GSE98622 and 

GSE52982&GSE65656 when k=4. 
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We performed multi-group differential expression analysis of IRI related genes according to Cluster. We 

selected IRI related genes with Pvalue <0.05 in GSE98622 and GSE52982 & GSE65656 as differentially 

expressed IRI related genes, and then took the intersection of the differential IRI related genes. Finally, 

we obtained 4 Hub genes (Col3a1, Pigr, Cyp2d9, Hpd) related to Consensus Cluster Plus (Fig 14A). We 

used boxplots to show the expression of these genes in different clusters of GSE98622 and GSE52982 & 

GSE65656 (Fig 14B-C). At the same time, kruskal.test was used to analyze the differences of hub IRI 

related genes in different clusters. The results showed that four hub IRI related genes were significantly 

different in the different clusters. 

 

Figure 14. Hub Genes Related to Consensus Cluster Plus. (A) Venn diagram showing hub genes 

associated with Consensus Cluster Plus analysis. (B-C) Boxplots showing the expression of hub IRI 

related genes in different clusters of GSE98622 and GSE52982&GSE65656. Statistical significance was 

determined using Kruskal-Wallis test. 
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Through the above four methods, we obtained hub IRI related genes under each method. In order to 

obtain a more accurate hub IRI related gene set, we selected hub IRI related genes that appeared in any of 

the three methods as the significant hub IRI related genes. Finally, 5 hub IRI related genes (Hpd, Cyp2d9, 

Aldh1a2, Pigr, Bcat1) were obtained. We extracted the expression values of the 5 hub IRI related genes in 

GSE98622 and GSE52982 & GSE65656, and performed the Wilcoxon Test. The hub IRI related genes 

were verified to be different between diseased and normal samples (Figure 15B, Figure 15C). Then, ROC 

analysis was performed and it was found that the AUC values of the five genes were relatively high 

(Figure 15D, Figure 15E). It can be concluded that the five hub genes are likely to have significant 

discriminant ability for both conventional IRI and diet-controlled IRI experiments. 

 

Figure 15. Analysis of Significant Hub IRI Related Genes. (A) Workflow diagram showing the 

screening of hub IRI related genes by four methods, resulting in five consensus genes. (B-C) Expression 

values of five significant IRI related genes in case and control samples. (D-E) ROC analysis results 

showing high AUC values for the five significant IRI related genes. 
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3.5 SVM Analysis of Significant Hub IRI Related Genes 

We obtained the expression values of 5 significant hub IRI related genes (Hpd, Cyp2d9, Aldh1a2, Pigr, 

Bcat1) in GSE98622 and GSE52982&GSE65656. The expression values for GSE98622 and GSE52982 

& GSE65656 were then combined. In performing SVM analysis, we used 70% of the combined samples 

for model training and 30% for model validation. After training the model, we input the training set and 

test set into the models to obtain sample scores, and performed ROC analysis on the sample scores to 

assess the effect (Figure 16A). 

At the same time, we performed SVM analysis on these five significant hub IRI related genes for the 

three datasets GSE39548, GSE182793 and GSE142077. Finally, we combined six datasets; GSE98622, 

GSE52982 & GSE65656, GSE39548, GSE182793 and GSE142077, and constructed an SVM model to 

analyze the prediction effects of these five consensus hub IRI related genes. Since the 5 consensus hub 

related genes were not present in all datasets, we used 3 shared hub genes (Hpd, Aldh1a2, Pigr) that 

appeared in all datasets for the analysis. The results obtained in the combined dataset of GSE98622 and 

GSE52982 & GSE65656, with the SVM training set and validation set based on 5 significant hub related 

genes showed very high values (AUC>90%, Figure 16A). In the combined dataset of GSE39548, 

GSE182793 and GSE142077, the SVM training set and test set established based on 3 significant hub 

related genes performed well (AUC>88%, Figure 16B). When we combining the six datasets GSE98622, 

GSE52982 & GSE65656, GSE39548, GSE182793 and GSE142077, the SVM prediction model showed 

AUCs obtained for both the training set and the test set as greater than 85% (Figure 16C).  

 

Figure 16. SVM Model Prediction Effect of 5 Significant Hub IRI Related Genes. (A) Combined 

dataset of GSE98622 and GSE52982&GSE65656; (B) Combined dataset of GSE39548, GSE182793 and 

GSE142077; (C) Combined dataset of all six datasets. All models show AUC values greater than 85%, 

indicating robust predictive performance. 
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All 3 SVMs had good prediction ability, which indicated that the 5 consensus hub genes are likely to be 

key players in IRI. In addition, we analyzed the correlation of 5 significant hub IRI related genes (Hpd, 

Cyp2d9, Aldh1a2, Pigr, Bcat1) in GSE98622 and GSE52982 & GSE65656.The results depicted several 

significant gene-gene correlations and showed that Cyp2d9 was highly correlated with Hpd and Pigr in 

GSE98622 and GSE52982 & GSE65656 (Figure 17, Figure 18). 

 

Figure 17. Correlation of 5 Significant Hub IRI Related Genes in GSE98622. Scatter plots with 

correlation coefficients showing pairwise relationships between the five hub genes. Cyp2d9 shows high 

correlation with Hpd (R=0.98) and Pigr (R=0.93). 
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Figure 18. Correlation of 5 Significant Hub IRI Related Genes in GSE52982 & GSE65656. Scatter 

plots showing similar correlation patterns as in GSE98622, with Cyp2d9 highly correlated with Hpd 

(R=0.88) and Pigr (R=0.91). 

 

3.6 Hub Gene-DEmiRNA-lncRNA Network Analysis 

We downloaded the IRI-related miRNA dataset GSE29495 from the GEO database, which contains 569 

miRNAs. We performed differential expression analysis of GSE29495 using the "limma" package for R. 

We screened miRNAs with P.adjust<0.01 and |log2FC|>2.5 as DEmiRNAs, and obtained a total of 473 

DEmiRNAs. We then predicted DEmiRNAs targeting significant hub IRI related genes from miRWalk 
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(http://mirwalk.umm.uni-heidelberg.de/) and obtained DEmiRNA-regulated lncRNA relationship pairs 

from ENCORI (https://starbase.sysu.edu.cn/). For DEmiRNA-significant hub IRI related gene 

relationship pairs, and DEmiRNA-lncRNA relationship pair integration, we finally obtained the hub 

gene-DEmiRNA-lncRNA relationship pairs. We used Cytoscape (version 3.8) software to construct a hub 

gene-DEmiRNA-lncRNA network (Figure 19A). The hub gene-DEmiRNA-lncRNA network consists of 

118 nodes and 247 edges. The 118 nodes contained 4 Hub genes, 37 DEmiRNAs and 77 lncRNAs. From 

the regulatory relationships, it can be obtained that Bcat1 is regulated by multiple DEmiRNAs, potentially 

playing an important role in altered biological function. We computed the Pearson correlation coefficient 

to analyze the relationships between the 37 miRNAs based on GSE29495 expression values. The results 

obtained showed highly positive correlations between miRNAs in the IRI experiments. 

 

Figure 19. DEmiRNA-related Regulatory Networks and Correlations. (A) Hub 

gene-DEmiRNA-lncRNA network constructed using Cytoscape, consisting of 118 nodes (4 hub genes, 

37 DEmiRNAs, 77 lncRNAs) and 247 edges. Bcat1 shows regulation by multiple DEmiRNAs. (B) 

Correlation heatmap showing positive correlations between the 37 miRNAs in GSE29495. 
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4. Discussion 

In the present study, using a suite of bioinformatics analyses we integrated multiple gene expression 

datasets and applied four different screening tools to identify the most relevant deregulated genes in renal 

IRI. Here, we integrated multiple datasets from IRI under conventional and dietary restriction conditions 

and identified 5 gene features with high predictive values. The analytical pipeline consisted of 

identification of IRI-related genes via differential gene expression analysis and functional enrichment 

analysis, followed by feature selection for hub IRI related genes using 4 different approaches based on 

discrete theoretical bases; WGCNA analysis, immune infiltration analysis, LASSO regression and 

Consensus Cluster Plus. This approach allowed the application of feature selection tools using different 

perspectives to identify key deregulated genes. WGCNA harvests pair-wise correlations to identify 

highly correlated gene modules, their association with metadata variables, and hub gene identification 

(Langfelder et al., 2008). Immune cell infiltration analysis was done using ESTIMATE algorithm derived 

immune scores (Ma et al., 2021) and correlating IRI related genes in case samples comprised a gene 

signature. This approach was directed at identifying key genes linked to immune and stromal cell 

deregulations in the IRI microenvironment. LASSO is a regularization based regression approach that 

has been widely used for biomarker discovery as it permits model and feature selection both (Tibshirani, 

1996; Owzar et al., 2011) Consensus cluster plus is a tool that permits unsupervised class discovery 

(Wilkerson & Hayes, 2010). Integrating these diverse biomarker discovery approaches we identified a 

gene-signature for IRI. 

The 5 IRI related genes that emerged as consensus genes identified by the 4 methods included Hpd, 

Cyp2d9, Aldh1a2, Pigr and Bcat1. The Hpd gene encodes for an enzyme 4-hydroxyphenylpyruvate 

dioxygenase, which is involved in tyrosine catabolism and is expressed in renal epithelial cells, as 

tyrosine is also degraded in the kidney and Hpd deregulation can produce renal tubular cell apoptosis 

(Endo & Sun, 2002). The Cyp2d9 codes for cytochrome P450, family 2, subfamily d, polypeptide 9 is 

located in the mitochondrion and found primarily in the liver, and renal injury in IRI shows marked 

degradation of cytochrome P450 proteins (Nakao et al., 2008; Renaud et al., 2011). Cyp2d9 genotype has 

been linked to adverse drug reactions after renal transplant (Miroševic et al., 2013). Aldh1a2 or aldehyde 

dehydrogenase 1 family, member A2 is involved in the retinoic acid pathway and is implicated in renal 

development (El Kares et al., 2010). Retinoic acid signaling in the tubular epithelium is protective in 

acute kidney injury by limiting macrophage-induced damage (Chiba et al., 2016). The polymeric Ig 

receptor (PIgR) is expressed in proximal tubular cells and glomerular parietal epithelial cells mediating 

the transport of secretory IgA (Rice et al., 1999). In diseased state, its expression in proximal tubular cells 

is upregulated in association with urinary secretory IgA levels, whereas it is downregulated in ischemia 

(Krawczyk et al., 2019). Branched chain amino acid transaminase 1 (Bcat1) activity is highly abundant in 

the kidney (Ichihara et al., 1966). Branched chain amino acid (BCAA) metabolism is implicated in IRI by 

promoting lipid peroxidation and deregulating glucose oxidation (Li et al., 2020). The restriction of 

BCAAs is a mode for dietary inhibition of the m-TOR pathway that results in improved resistance to 
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oxidative stress ((Fontana et al., 2016; Robertson et al., 2015). Bcat1 is shown to participate in m-TOR 

regulation via the PI3K/AKT/mTOR pathway (Shu et al., 2021). We found that Bcat1 was regulated by 

multiple DEmiRNAs. Thus, dietary protein restriction might downregulate Bcat1-mTOR signaling to 

attenuate renal IRI. In a related finding, KEGG pathway analysis showed protein digestion and 

absorption and BCAAs valine, leucine and isoleucine biosynthesis as enriched pathways in renal IRI. 

Functional enrichment analysis of the IRI related genes showed the highest enrichment of biological 

processes including cellular hormone metabolic process, progesterone metabolic process, carboxylic and 

organic acid biosynthesis processes. Progesterone receptors are implicated in ascorbic acid mediated 

protection from acute renal IRI (Sandhi et al., 2014). Bioactive oxidized phosphatidylcholine including 

carboxylic acid containing species are produced in renal IRI and correlate with the duration and severity 

of injury (Solati et al., 2018). The 2-Oxocarboxylic acid metabolism KEGG pathway was also found 

enriched. The AGE-receptor for advanced glycation endproducts (RAGE) signaling pathway in diabetes 

was among the top enriched pathways. Diabetes is an important risk factor for renal IRI, and in 

hyperglycemia AGE-RAGE signaling promotes oxidative damage in renal IRI (Leu et al., 2021). RAGE 

and its ligand High-mobility group box-1 (HMBG1) are mediated in IRI of several tissues (Zeng et al., 

2004) and in renal inflammation but not consistently associated with injury in renal IRI (Dessing et al., 

2012).  

Despite the comprehensive approach and valuable findings, this study has several limitations that 

warrant acknowledgment. First, the analysis was entirely based on publicly available transcriptomic 

datasets, which may introduce heterogeneity due to different experimental protocols, platforms, and 

batch effects, despite our efforts to normalize and correct for these variations. Second, our findings are 

primarily derived from mouse models, which may not fully recapitulate the complexity of human renal 

IRI, particularly given species-specific differences in metabolism and immune response. Third, the 

validation datasets used were limited, and experimental validation in independent cohorts or clinical 

samples was not performed. Additionally, our approach focused on mRNA expression levels and did not 

account for post-transcriptional modifications, protein abundance, or functional activity of the identified 

hub genes. Finally, the temporal dynamics of gene expression during IRI progression were not fully 

captured, as most datasets represented single time points rather than longitudinal changes throughout the 

ischemia-reperfusion process. 

The identification of five consensus hub genes (Hpd, Cyp2d9, Aldh1a2, Pigr, Bcat1) presents significant 

potential for clinical translation in renal transplantation and acute kidney injury management. These 

genes could serve as prognostic biomarkers for early detection of IRI, enabling clinicians to implement 

timely interventions and personalized treatment strategies. The robust performance of these genes in 

SVM models (AUC >85-90%) suggests their utility as a diagnostic panel for risk stratification in kidney 

transplant recipients. From a therapeutic perspective, the pathways associated with these 

genes—particularly BCAA metabolism, retinoic acid signaling, and cytochrome P450 

function—represent actionable targets for pharmacological intervention. Future research should focus on 
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validating these findings in clinical cohorts, developing non-invasive detection methods (such as urinary 

biomarkers), and investigating targeted therapeutic approaches. Additionally, exploring the temporal 

expression patterns of these genes throughout IRI progression could inform optimal timing for 

interventions. The integration of these molecular signatures with clinical variables and imaging data 

could enable the development of predictive models for IRI severity and recovery outcomes, ultimately 

improving transplant success rates and patient care. 

Together, the present study identified the most relevant genes and functional processes implicated in the 

pathogenesis of renal IRI using a rigorous, consensus-based feature selection approach applied to 

leverage multiple gene expression datasets. These genes can be considered valuable biomarker and 

therapeutic target candidates and should be validated in experimental and clinical research models.  

 

5. Conclusion 

Integrative bioinformatics analysis of multiple gene expression datasets pertaining to renal IRI under 

conventional and dietary restriction conditions was performed with a consensus-based approach for 

discriminant feature selection. A set of 5 genes: Hpd, Cyp2d9, Aldh1a2, Pigr, Bcat1 were identified as the 

top candidate biomarker and therapeutic targets in renal IRI.  
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