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Abstract

Based on the experimental impedance spectra, the electrochemical reactions that are deposed at the 

electrode-electrolyte interface can be modeled by equivalent electrical circuits. Each element used in 

the circuit must have a physical correspondence in the electrochemical system. In this work, a model 

has been proposed to a NiMH battery electrode to describe, in detail, the electrochemical process at 

the interface of this electrode. The theoretical impedance of a proposed circuit is a function of several 

variables. These adjusted variables to reach a good agreement between the theoretical spectra and the 

experimental spectra in the studied frequency. The Z-simplex software allows refining the experimental 

results. These results show a good superposition between the experimental spectra and the theoretical 

spectra corresponding to the proposed electric circuit. This leads to the conclusion that the proposed 

circuit describes the phenomena that take place at the interface of the hydride electrode. 
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1. Introduction

Nowadays, the commercial portable energy storage devices such as lead-acid battery, Lithium Ion 

Battery (LIB), and nickel-based alkaline battery are frequently used in electric vehicles because of their 

large energy density. Hydrogen is a resource-rich element and generated by water electrolysis reaction. 

A typical hydrogen-based energy storage system consists of a water electrolyser. Many metals, alloys 

and intermetallic compounds of type AB5 have the property of storing hydrogen with good properties 

in terms of safety, energy efficiency and long-term storage. However, to be able to respond to 

applications, they must have a high capacity, a good reversibility and a great reactivity. Besides the 

utilization for hydrogen storage, these compounds can be use as negative electrode in NiMH batteries. 

The surface properties of the Metal Hydride (MH) particles in the MH-anode are further very important 

for a functional electrode. To understand the different phenomena that flow to the electrode-electrolyte 

interface, different electrochemical method such as Chronopotentiometry, Chronoamperometry and 

cyclic voltammetry, are techniques in large signals that only inform the slowest step of the 

electrochemical process. Modeling electrochemical impedance spectroscopy is usually done using 

equivalent electrical circuits. These circuits have parameters that need to be estimated properly in order 

to make possible the simulation of impedance data. Electrochemical impedance spectroscopy it used to 

analyze the electrochemical response of a system subjected to a small amplitude perturbation around a 

given operating point characterized by the current-potential (I0, E0). In this paper, we have we have 

determined the impedance spectra of the MmNi3.55Mn0.4Al0.3Co0.4Fe0.35 compound. Basing on 

experimental spectra, we propose an equivalent electrical circuit and fitting by Zsimplex software to 

determine certain electrochemical parameters.

2. Theory

This method allows theoretically discerning, according to their time constant, the various processes 

involved in the electrode. This method, it also used to determine the kinetic parameters such as the 

exchange current density and the diffusion coefficient of hydrogen in the alloy. These parameters are in 

direct relation with the mechanisms of insertion and desertion of hydrogen during cycling. The 

experimental and theoretical values of impedance represented in two distinct types of diagrams:

- Representation of Nyquist: the curve is drawn in the complex plane (-imaginary of Z noted “-ZIm” as a 

function of real of Z noted “ZRe”). 

- Representation of Bode: this graph, separated in two parts, presents the phase φ of the impedance as 

well as its modulus, according to the logarithm of the perturbation frequency.

The impedance spectra, in one or other of the representations, reflect the phenomena that take place on 

the surface of an electrode such as oxidation-reduction reactions and mass transfer phenomena. Their 

modeling, which forms the essential part of the study of these spectra, requires the use of an equivalent 

electrical circuit to describe the electrochemical processes at the interface. The theoretical impedance 

of a proposed circuit is a function of several variables. These adjusted variables to reach a good 
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agreement between the theoretical spectra and the experimental spectra in the studied frequency 

domain. Thus, information concerning the electrochemical process can be determined by the 

interpretation of these variables. For example, the impedance of the electric circuit shown in Figure 1 is 

given by equation 1:

            (1)
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This impedance is a function with several variables (R1, R2, R3, C1, C2 and ω). Once the parameters of 

the equivalent circuit are determined, the impedance Z becomes a simple function of the frequency ω 

and an impedance spectrum is obtained.

Figure 1. Electrical Circuit with Different Variables

Since the phenomena that take place at the interface are very complicated, modeling requires the use of 

more complex electrical elements that depend on the frequency. In this case, the CPE (Constant Phase 

Element) denoted Q, will be used to replace a capacitance C. Indeed, in the case of most of the solid 

electrodes, a deformation of the impedance diagrams in the complex plane is often observed. This 

deformation can be attributed to the heterogeneity of the surface in terms of porosity and surface 

roughness, causing a distribution of the different absorption sites. To explain this behavior of the 

electrode, the model of the EPC has been proposed. This model predicts a rotation of the capacitive 

loops in the complex plane. This rotation is at a 90 ° angle (1-n), where n is the fractional parameter (0 

< n < 1) representing the degree of depression of the semicircle. In this case, the impedance of this 

Constant Phase Element (CPE) which replaces the capacity of the double layer is written:

, where T is a constant expressed in F Cm-2 Sn-1
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Similarly, the diffusion phenomena is represented by a Warburg impedance which is written by the 

equation 2: 
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where, Yo is determined by smoothing the impedance branch corresponding to that of Warburg.

This impedance appears in the Nyquist plane as a straight line with a slope of 1. It is given by equation 

3: 
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If we make the equality between the two equations (2) and (3) we get the equation 4: 
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This expression allows us to determine the diffusion coefficient of hydrogen in the material. Impedance 

spectral modeling is performed by the software “Zsimplex”.

This software makes it possible to determine the parameters of the proposed circuit. Each element used 

in the circuit must have a physical correspondence in the electrochemical system. Table 1 gives a list of 

the elements, their symbols, their transfer functions and the smoothing parameters given by the 

Zsimplex software.

Table 1. List of Elements, Their Symbols and Their Transfer Functions

Elements Symbol Transfert fonction Fitted parameters

Admittance (Y) Impédance (Z)

Resistance

Capacitance

Warburg

CPE

R

C

W

Q

1/R

j C ω

Yo(j ω)1/2

T (j ω)n

R

1/(jCω)

1/Yo(j ω)1/2

1/T(j ω)n

R

C

Yo

T et n

Before starting the fitting, it is necessary to represent each electrical circuit proposed by a code. The 

parentheses are used to say that the electrical elements are in parallel. For example, R (RC), to say that 

R and C denoted by (RC) which are in parallel, are connected in series with a resistance R. The circuit 

code presented in Figure 1. It is written: R1 (C1 (R2 (R3C2))). The procedure for fitting the impedance 

spectrum using the Zsimplex software is as follows:

i) Draw, by Zsimplex software, the experimental impedance spectrum in the Nyquist or Bode plane, 

ii) Propose an electrical circuit, which can describe the various electrochemical phenomena that take 

place at the electrode, 

iii) Transform this circuit into code,

iv) Fitting the experimental data by the software,

v) Evaluate the quality of smoothing (general error),

vi) Repeat steps from (i) to (v) until a good fit.

In general, a well-fitted spectrum has an overall error of less than 10% on all parameters. This error is 

given by the software as a curve (error as a function of frequency). Similarly, the quality of the 

smoothing by Zsimplex software is given by the equation 5:
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Where N is the total number of experimental points, Ze and Zp the values of the experimental and 

theoretical impedances corresponding to the frequency ωi. For a well-refined spectrum, the value of χ2 

 5 10-3.

3. Equivalent Circuit of a Hydride Electrode

The aims of the electrochemical impedance modeling are 1) the search for an appropriate electrical 

circuit whose behavior with respect to a low-amplitude perturbation around an operating point is 

equivalent to the actual behavior of the electrode, and 2) the determination of the values of its different 

components.

Since the overall current flowing through the surface of the electrode is the sum of a faradic current IF 

and a capacitive current IC, the interface can be represented in the case of small disturbances by the 

circuit shown in Figure 2. In the Zsimplex program used, the code assigned to this circuit is Re (RBF 

(Qdl (RtcQBF (RtmW)))). Determining the values of the components of this circuit makes it possible to 

calculate the values of the kinetic parameters. Namely the capacity of the double layer, the charge 

transfer current density, the diffusion coefficient of the hydrogen in the material, the capacitance of the 

high frequency loop, the charge transfer resistance and the mass transfer resistance, which describe the 

different electrochemical processes that take place at the electrode surface.

Re: Electrolyte resistance,  QBF : Capacity of the low frequency loop,

Qdl : Double layer capacity,  Rtm : mass transfert resistance,

Rtc : Charge transfert resistance W: Warburg impedance.

RBF : Resistance of the low frequency loop, 

Figure 2. Equivalent Electric Circuit of the Phenomena Occurring at the Interface Hydride 

Electrode-Electrolyte

Re

W

RtmQBFRtc

RBF

Qdl
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4. Results and Discussion

Figure 3 gives the spectra measured after different number of cycles for a state of charge of 10% and 

calculated using the software Zsimplex and that for respectively the MmNi3.55Mn0.4Al0.3Co0.4Fe0.35 

compound. The Z-simplex software allows refining the experimental results by using the equivalent 

electrical circuit given in Figure 2. The errors on the phase φ and moduls are represented by the Figure 

4. These Figures show a good superposition between the experimental spectra and the theoretical 

spectra corresponding to the proposed electric circuit. This leads to the conclusion that the proposed 

circuit shown in Figure 2 describes the phenomena that take place at the interface of the hydride 

electrode. The parameters of this circuit are and the values of the corresponding kinetic parameters are 

given in Table 2.
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Figure 3. Calculated and Measured Impedance Diagrams of the Compound 

MmNi3.55Mn0.4Al0.3Co0.4Fe0.35 as a Function of Cycling for a State of Charge of 10%
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Figure 4. Errors between Measured and Calculated Values of the Phase φ and Moduls
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Table 2. Calculated Values of the Different Components of the Equivalent Electrical Circuit and 

the Corresponding Kinetic Parameters for the Electrode MmNi3.55Mn0.4Al0.3Co0.4Fe0.35

Re() Rtc() Cdl(µF) RBF() CBF(mF) Rtm() I0(mA cm-2) DH(cm2s-1)

Cycle0 0.55 2 282 859 189 0.4 12.8 3.92 10-11

Cycle1 0.7 1.3 78 132 192 0.47 20 6.75 10-11

Cycle2 0.65 1.3 63 89 186 0.6 20 7.08 10-11

Cycle4 0.6 2 48 83 177 1 12.8 7.08 10-11

Cycle5 0.55 2 42 73 199 1 12.8 8.1 10-11

Cycle6 0.52 2 44 55 184 1 12.8 22.7 10-11

Cycle16 0.55 2.5 41 40 166 1.6 10.5 24.9 10-11

Cycle17 0.55 2.5 41 36 163 1.6 10.5 32.7 10-11

Cycle18 0.55 2.5 43 31 160 1.8 10.5 71.8 10-11

Cycle19 0.55 2.5 40 30 158 1.8 10.5 157 10-11

Cycle20 0.55 2.5 40 27 148 1.9 10.5 380 10-11

These results show that the value of the resistance of the electrolyte Re is independent of the cycling, it 

is about 0.6 . However, the charge transfer resistance Rtc varies from 1.3 to 2.5 . We notice that the 

hydrogen diffusion coefficient increases during cycling. In fact, during cycling the insertion and de-

insertion of hydrogen into the metal causes cracking and decrepitation of the grains of the alloy and 

therefore increases the reaction surface. As a result, the diffusion of hydrogen becomes easier. This 

decrepitation is not without harmful consequences. Indeed, the phenomenon of corrosion will be more 

and more accentuated when the particles will be more and more exposed to electrolyte.

4. Conclusion

The experimental impedance spectra, determined at different numbers of cycles, are modeling by an 

equivalent electrical circuit allowing the ZSimplex software to; determine the different kinetic 

parameters, namely the charge transfer current density and the load coefficient. diffusion of hydrogen 

in the material at different charge rates and the parameters which describe the different electrochemical 

processes taking place at the electrode/electrolyte interface, namely the capacity of the high frequency 

loop or the capacity of the double layer, the charge transfer resistance and mass transfer resistance 

(impedance spectroscopy). The results obtained show that the proposed circuit describes well the 

electrochemical processes that take place at the electrodes-electrolyte interface.
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