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Abstract 

A number of publications present the results of an experimental study of free oscillations of groundwater 

piezometric level in wells with their eigenfrequencies. The oscillations were initiated by a pulsed impact 

on the aquifer through the well. Also in a number of publications a theoretical interpretation was 

proposed for the established phenomenon. However, the existing theoretical ideas about free oscillations 

of the groundwater level seem to be incorrect. In the present work, a critical analysis of these available 

theoretical concepts is performed. The analysis served as an impetus to the development of a consistent 

theory of relaxation filtration of groundwater. 
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1. Introduction 

Bredehoeft, Cooper, and Papadopoulos in 1966 studied inertial effects in aquifers on the basis of analog 

modeling of GroundWater (GW) filtration [6]. The paper shows that one of the likely results of the 

manifestation of such effects may be the occurrence of waves in aquifers that determine the free 

oscillations of the piezometric level of GW in wells with eigenfrequencies. 

In the middle of the 70s I. Krauss in his works [20, 21] (published in German) presented the results of 

field experimental studies of some problems of GW dynamics were (Figure 1). Thus, in the experiments, 

free damped oscillations of the piezometric GW level in disturbing wells after pulsed excitation of the 

aquifer were recorded. The piezometric GW level in the test well was pressed out by compressed air for 

several tens of centimeters. After the level stabilization at a certain level, the air pressure in the well were 
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dropped abruptly, as a result of such a pulsed excitation of the aquifer in the well, free damped level 

fluctuations with eigenfrequencies were initiated. 

In the same papers [20, 21], the first theoretical interpretation of the observed wave effect was proposed. 

Subsequently, in a number of publications (see, for example, [5, 17, 18, 22]), the results of a theoretical 

interpretation of the process of free pressure oscillations p (or level H) in a fluid in an aquifer after its 

pulsed excitation were also considered, including those based on the model proposed in the works of I. 

Krauss [20, 21]. Later, at the end of the 80s, the works of S.F. Grigorenko [5, 17], devoted to the same 

problem. Its logical conclusion was the Ph.D. thesis [18] presented by Grigorenko in 1992. It should be 

noted that in his theoretical constructions he used a physical and mathematical model of GW movement, 

in principle, not different from that proposed by I. Krauss. 

The need of such a theory development is dictated by a number of reasons. On the one hand, such a 

development promises the creation of a fundamentally new experimental base in hydrogeology; interest 

in the problem of wave processes in aquifers has already been realized by the emergence of methods for 

experimental filtration testing (EFT) of water-bearing sediments and the interpretation of the results of 

these experiments [5, 17, 18, 20-22]. On the other hand, many aspects of these methods are poorly 

theoretically established and for a number of positions they are simply incorrect. 

Such situation required the creation of a theory that adequately represents the results of experimental 

studies of free oscillations of the piezometric level of the GW in disturbing wells. The theory received the 

name of the relaxation theory of GW filtration. The theory considering the phenomenon of free 

oscillations of a piezometric level in a well after pulsed excitation of an aquifer was completed in [7-15, 

30, 31]. The authors used a fundamentally different approach, in comparison with the one used I. Krauss 

and S.F. Grigorenko, to justificate a physical and mathematical filtering model. In these works the 

possibility of techniques for the EFT of aquifers construction is analyzed based on the theory proposed. 
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Figure 1. The Indicator Curve for Tracking of the Piezometric Level Oscillation Decrease in the 

Well (according to I. Krauss [20, 21]) 

Here  trS ,0  is the lowering of the level in the perturbing well; 0S —initial (pressurized by 

compressed air) lowering of the level at the time of the disturbance start. 

 

Accordingly, in the present work a critical analysis of the basic principles of the physical and 

mathematical model of the filtration of GW used in the papers by I. Krauss and S.F. Grigorenko has been 

carried out which prompted the development of the theory of relaxation GW filtration. 

It should be noted that in the process of such analysis it is not enough to declare the inconsistence of the 

available theoretical ideas being analyzed. The fact is that, according to the theory of evidence, such a 

statement is a negative statement. And it requires not only a detailed analysis of the available theoretical 

concepts, which allows answering the question why they are not correct, but also answering the next 

obvious question: which should be the correct theory? In other words, the negative statement made 

should be supported by the developed alternative theory that correctly represents the process in question, 

the phenomenon. 

 

2. Method 

2.1 Formal Problems of Description of the Pressure Wave Propagation in Aquifer 

By now, as it was already noted above, there are a significant number of publications that have studied 

wave processes in aquifers [2, 6, 20-22, 26, 32]. In these works, the data of studies of forced GW level 

oscillations in wells are mainly presented, although in [5, 6, 17, 18, 22, 21] the results of field 

observations were considered, during which the natural oscillations of the level were recorded. In [32], 
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the presence of the oscillations having eigenfrequencies was assumed a priori, and the frequencies of 

forced oscillations were substantiated, which provide resonance with their own. In the majority of 

published works, mechanical analogs were used in the formal description of experiments (self-damped 

oscillations of the load attached to the free end of the spring). Such mechanical analogs are the basis for 

the formalization of forced level oscillations. 

In some cases, the description of the propagation of waves with eigenfrequencies in water-bearing 

formations is carried out on the basis of the already accepted physical and mathematical concepts of GW 

motion (the main one being the linear filtration law and the filtration equation of parabolic type). 

However, such a description is incorrect and can not always be used in the analysis of wave processes. 

Let us explain what was said by example [7, 13]. In [20] an attempt was made to find a solution to the 

problem of natural GW level oscillations in a disturbing well and in an aquifer near it. It was supposed 

that these oscillations are initiated by an instantaneous decrease or increase in pressure in the well (Figure. 

2). The process of wave propagation is described by the well-known parabolic equation of a 

one-dimensional axisymmetric nonstationary filtration, written in the piezometric level declining as: 

 

 

Figure 2. Schematic Diagram of the Well—Aquifer 
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where  trS ,  is the decrease (increase) in the level of GW at the point of the reservoir with coordinate 

r at the moment of time t from the beginning of the experiment; 
*


T

—piezoconductivity of the 

reservoir (T—water conductivity, and μ*—elastic capacity of water-bearing sediments); mKT   (K 

is the filtration coefficient of water-bearing sediments, m is the thickness of the aquifer). 

Equation (1) was solved under the following boundary conditions [20]: 
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Here  tQ  is the rate of the axial flow of water in the wellbore (inflow of GW into the well or outflow 

from it); 2
FF rF  —the area of the internal cross-section of the perturbing well; Fr —radius of the 

internal cross section of the filter column; 0r —well radius (outer radius of the filter column). 

The solution of the problem with conditions (2) is presented in [20] as following: 

    terftrS , ,                                       (3) 

  1,1 2  iw ,                               (4) 

  1,12  w ,                              (5) 

where  rf  is a function of the r coordinate; —parameter; w —eigenfrequency; —damping 

parameter of natural oscillations. 

Substituting (3) into (1) leads to the ordinary differential equation: 


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the solution of which [1, 28] is: 

     rKCrICrf  0201 . 

Here 1C  and 2C  are the constants determined from the boundary conditions;  rI 0  and 

 rK 0 —modified Bessel functions of zero order, respectively, of the first and second kinds [1]. 

Without considering here the final form of the solution obtained in [20], let us analyze the approach for 

finding it. 

From equation (6) it is obvious that the value of  should be positive. However, in this case it turns out 

from (3) that the function  trS ,  increases indefinitely, and this is not possible, since additional 

energy does not enter into the well—aquifer system.  

In equation (5) value , as it could be easily seen, is negative for any 1 . Therefore, when substituting 

(3) into (1) instead of equation (6), we get the following equation [7, 13]: 
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The solution of the latter for natural oscillations, provided that the function  trS ,  must remain finite 

for 00 r , is represented as [23]: 
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   rJCrf  01 ,                             (8) 

where  rJ 0  is the Bessel function of the first kind of zero order [1]. 

If we substitute the value  from (5) into (3) and use the initial condition     00 ,, StrStrS F   

and   100 rJ  with 00 r  to find the constant 1C  in (8), then the final solution will be: 
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It follows that with an instantaneous decrease (increase) of the level in the well (at 0t ), the 

distribution of the decrease (increase) of the head in the reservoir will also instantly take the form: 

   rJ
S

rS
 0

0

0,
 

(see Figure 3). With time the change in the piezometric level at each point monotonously (without 

oscillation) decreases according to the law 
tw

eA





  12

 [7, 13]. 

Obviously, the solution shown has no physical meaning, since it is difficult to explain the occurrence of 

standing waves (if they can be called waves at all) in a reservoir unlimited in the radial dimension. In 

other words, it does not satisfy the requirement of monotonicity of the characteristics of GW motion (in 

particular, the pressure distribution) within the filtration area for equations of parabolic type in the 

absence of a periodic component of forced oscillations. 

If we specify  in the form of a complex number [7, 13]: 

 wi  

 

 

 

Figure 3. Graph of the Bessel Function of the First Kind of Zero Order 
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(here  is the oscillation damping parameter), similar to that specified in [20] from equation (4), and use 

the second condition from (2) to find the constant 1C  in (8), it is easy to show that this condition 

actually determines damped forced oscillations of the water level in a disturbing well. The detailed 

justification for such a problem for plane one-dimensional fluid motion is considered in [23]. In our case, 

the solution is represented as a cylindrical wave: 

   rJteStrS w
t  

00 cos, . 

So far, based on the assumption of presence of natural oscillations of the GW level, we have considered 

solutions corresponding to standing cylindrical waves. However, the latter can occur only in 

finite-volume media [23], and this contradicts the formulation of the problem adopted in [20] (the 

reservoir is assumed to be unlimited in the radial plane). For forced oscillations of the GW level in an 

unlimited aquifer, the solution of equation (7) should be sought in the form corresponding to a traveling 

diverging wave [23]. Therefore we get the following equation: 

       rHeStrS ti w   1
00, , 

where 
   rH 1
0  is the Hankel function [1]. 

Thus, neither the solutions obtained in [20] nor the equations presented above do not describe the natural 

oscillations of the GW level. Forced oscillations in unlimited aquifers can be determined by waves with 

arbitrary frequencies. Accordingly, the latter do not have any unambiguous connection with the 

geometric and filtration parameters of the aquifer, as assumed in [20, 21] for natural oscillations. In 

addition, the solution obtained in [20] has nothing to do with the formulation of the problem adopted in 

the paper (it is important to note that the experimental studies performed by I. Krauss, the results of 

which are presented in [21], correspond to the formulation of the problem but not its solution) about the 

instantaneous head decrease (increase) in a perturbation well with the linear law of GW flow leading to a 

filtration equation of a parabolic type. The correct solution of the problem in this formulation should be 

fundamentally different from that given in [20], mainly by the absence of a periodic component of the 

head change [7, 13]. 

It is not difficult to show that the latter equation in a simplified form in Laplace images (by 

Laplace-Carson) is: 
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Here  ptrS ,0  is the image of the function  trS , ; pt —conversion parameter;  01 rK   is a 

modified second-order Bessel function of the second kind [1]. The remaining notation is the same. 
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Solutions of a similar problem in a more general formulation (taking into account the imperfections of 

the perturbing well by the pattern and degree of opening of the aquifer, by the well and changes in the 

well filter radius), obtained using the method of integral transforms (Laplace and Laplace-Carson) are 

given in [16, 29] (in [29], moreover, a review of such solutions is given). 

The results of the numerical transform from images of the form (9) to the original, presented in [16, 29] in 

the form of reference curves make it possible to perform a qualitative analysis of the laws of the GW 

level restoration in a well after its instantaneous decrease or increase. Such an analysis clearly indicates, 

in particular (and this is the main thing), the absence of natural level oscillations. Thus, the description of 

such GW head oscillations in aquifers based on parabolic equations, as proposed in [20, 21], is incorrect. 

So, the formal problems of the pressure waves propagation in an aquifer were actually investigated above, 

but so far the consistency of the original physical and mathematical model of fluid motion has not been 

considered. Therefore, it remains unclear whether the noted discrepancy is a consequence of partial 

interpretation errors, or a consequence of the inadequacy of the physical and mathematical model used to 

describe the phenomenon observed in the experiments. We will try to analyze this physical and 

mathematical model here. 

2.2 Description of the Piezometric Oscillations in a Perturbing Well in a Hydrodynamic Form 

In accordance with the ideas of I. Krauss in the already mentioned papers, the process of damped 

oscillations of a load suspended from a spring fixed by one end acts as a mechanical analogue to the 

process of level oscillations in the well—aquifer system. This process is described by the following 

equation: 

02 2
2

2

 z
td

zd

td

zd
ww ,                      (10) 

where z is the coordinate of the displacement of the load relative to the equilibrium position (along the 

vertical axis z). The remaining notation is the same. Further in [20] the presented model is recorded for 

the liquid column in the wellbore. 

I. Krauss gives the solution of the problem of free oscillations of the load [20]; the same solution for 

damped oscillations is given in the book by L.D. Landau and E.M. Lifshits [25]. We will not dwell in 

detail on its presentation; we will consider only the physical assumptions used in the justification of 

equation (10) and well detailed in the same monograph [25]. In parallel, we will trace the derivation of 

the equation of motion obtained by I. Krauss on the basis of these assumptions. 

In work [25] it is indicated that when the body moves in the medium, the latter provides resistance, 

tending to slow down the movement, which, strictly speaking, results in damped oscillations. The energy 

of a moving body in this case goes into heat or dissipates. The process of movement under these 

conditions is no longer purely mechanical; its consideration requires consideration of the movement of 

the medium itself and the internal thermal state, both of the medium and of the body. However, as noted 

in [25], there is a category of phenomena for which motion in a medium can be described using 
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mechanical equations of motion by introducing some additional terms into them. These include, in 

particular, oscillations with frequencies that are small compared with those characteristic of internal 

dissipative processes in the medium. When this condition is fulfilled, it is permissible to assume that a 

friction force acts on the body, depending only on its speed. 

If this speed is small enough, then the friction force can be expanded in its powers. The zero term of the 

expansion is equal to zero, since the friction force does not act on a fixed body, and the first 

non-vanishing term is proportional to the velocity [25]. Accordingly, we will assume that the fluid 

moving laminarly in the wellbore experiences a resistance proportional to the first degree of movement 

velocity. Considering the liquid being purely viscous, and neglecting the change in its mass in the well, 

we can present the force of resistance (friction) as: 

td

zd
f f  ,                            (11) 

where  is a positive coefficient. The minus sign indicates that the force acts in the direction opposite to 

the direction of the velocity vector of the body (water column in the wellbore). 

At the bottom of the water column in the wellbore there is a pressure force from the aquifer: 

  trpprf FFp ,0
2  , 

where Fr  is, as before, the radius of the internal cross section of the filter column,  trp F ,  is the 

current value of pressure in the fluid in the opened part of the aquifer (in the well itself), and 0p  is the 

pressure in the fluid in the undisturbed formation. 

According to the Dalamber principle, the sum of the forces acting on the system of material points is 

equal to the inertia force [19]. The latter, in neglecting the change in the mass of fluid in the well, is: 
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where m is the mass of fluid in the wellbore; Hgp   and Hrm F
2 ; H—piezometric pressure 

in the well; 0H —piezometric head in an unperturbed well; 0t —characteristic time. 
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The last equation completely coincides with the equation of free damped oscillations of a water column 

in a well bore, used in [20, 21]. 

It is necessary to pay attention to the fact that the term on the right-hand side of equation (11) is included 

in the algebraic sum on the left-hand side of equation (12) in the form 
t

z

t

m





0

, in other words, in (12) 

it is assumed that 

0t

m
 .                                 (13) 

Such a transformation follows from the relation introduced in [25]: 




2
m

, 

determining the coefficient  through the parameters of the process of its own damped oscillations—the 

mass of the load fixed at the free end of the spring m, and the damping coefficient of the oscillations . 

Taking into account that 
02

1

t
  [8, 13], one can easily follow from the last expression to relation 

(13). 

When analyzing the obtained equations of free damped oscillations, it is necessary to pay attention to two 

circumstances that determine the physical features of the presented model, which were completely 

ignored in [20]. First, the model was based on a system with concentrated parameters. Accordingly, the 

mass of the moving body in (12) is assumed to be concentrated in a limited volume of space, so that, in 

accordance with the presentation of equations (10) and (12), the elastic force of the spring is applied to 

the whole body mass. Secondly, equation (12), as noted above, is true for an isolated dissipative system, 

and the system is limited only by the wellbore. In other words, in the model of damped level oscillations 

in the well, according to the condition, there is no provision for the exchange of energy and matter (water) 

between the well and the aquifer. The energy source of the level oscillations themselves can only be the 

energy of elastic compression of the fluid in the wellbore. 

In order to overcome this difficulty, in [5, 17, 18, 20, 21], the effect on the reservoir in the model is 

proposed to take into account by applying the boundary condition of the form (2), written in [20] in the 

following form: 
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Here  trH ,  is the piezometric head at the point of the aquifer with the coordinate r at the moment of 

time t from the start of the disturbance; the remaining notation is the same. 

We repeat, an isolated dissipative system cannot exchange mass with other systems, the exchange of 

energy for an isolated system is also prohibited. Thus, a condition of the form (14) connects two systems, 
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initially (when deriving the equation of motion), are not related. In this case, the damped oscillations are 

considered separately in an isolated oscillatory system—a well, and condition (14), albeit illegally, 

should provide a description in the model by I. Krauss and S.F. Grigorenko transfer the power of the 

oscillations of this system to the aquifer. In other words, according to the approach to describe the 

propagation of oscillations in an aquifer, two independent problems of fluid movement are taken: one 

describes the oscillations of a water column in a wellbore with eigenfrequencies (in an isolated system 

that does not exchange mass and energy with other systems, and the damping of oscillations in this 

system is determined only by the friction of the fluid on the inner walls of the well), the other describes 

the forced oscillations of the GW level in the aquifer (excluding the well itself)—an open system with the 

linear law of filtration and in the absence of the inertial component of resistance to the motion of a fluid. 

Both of these systems are artificially connected by condition (14). In this case, indeed, the propagation of 

waves in an aquifer can be described by a parabolic filtration equation, however, all the given 

constructions for the formal description of GW level oscillations with eigenfrequencies in the works by I. 

Krauss and S.F. Grigorenko are meaningless. 

An example of namely such a description of the propagation and registration of waves in aquifers can be 

found in the paper by A.Zh. Muftakhova [26]. In this paper are considered both, the reaction of a well in 

the riverine zone to oscillations in the level of GW caused by fluctuations in the water level in the river 

and the possibility to determine the filtration parameters of the aquifer based on the data tracking. At the 

same time, such oscillations are represented in [26] by one or several superimposed harmonics, and the 

plane flow of the GW is uniquely directed from the river to the well. Obviously, in this case, there are no 

doubts that the natural or forced oscillations of the level of GW are registered in the well. 

In general, it is puzzling that in the works by I. Krauss to build a physical and mathematical model of 

oscillations of a water column in a well with its eigenfrequencies, an analogy with the oscillations of a 

load suspended at the free end of a spring rigidly fixed by the other end, i.e. a kinematic model is used. 

Such a model does not provide an estimate of the eigenfrequencies based on the parameters of the system 

itself (for example, the water compression modulus, its density). 

Yet this possibility is obvious. After all, if we neglect a change in the mass of fluid in the wellbore, as it is 

used in the work by I. Krauss [20], then we inevitably come to the problem of longitudinal natural 

oscillations of the rod (length 0H ) with one end fixed, described in detail in [24] (a hydrodynamic 

model). And this solution already provides the possibility of calculating the eigenfrequencies of such 

oscillations, based on the parameters of the material (liquid) from which the rod is made, and its 

geometrical characteristics (length). Due to the isolation of such an oscillatory system, these frequencies 

are in no way dependent on the filtration parameters and spatial dimensions of the aquifer. 

It is necessary to emphasize the following. Earlier, in [13], with reference to the work [3, 4], the 

justification of the isothermal filtration process of a liquid in a porous medium was provided. At the same 

time, if there is a movement in a deformable body, then the temperature of such a body, generally 
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speaking, is not constant, but varies with time from point to point along the body. This circumstance 

greatly complicates the exact equations of motion. 

However, the situation is simplified due to the very slow transfer of heat from one part of the body to 

another (by means of simple thermal conductivity). If it can be assumed that heat exchange practically 

does not occur during periods of time on the order of the oscillatory motion period in the body, then each 

part of the body is considered to be thermally isolated, i.e the motion is adiabatic [24]. Accordingly, 

adiabatic values are taken as the calculated values of the compression modulus. 

Longitudinal oscillations in the rod (along the vertical axis z, coinciding with the longitudinal axis of the 

rod) are described by the equation of the form [24]: 

  0
2

2

2

2









 t

H

Ez

H

АD

,                     (15) 

where  
АD

E —adiabatic values of the compression modulus;  is the density of the rod material 

(water in the well bore) as mentioned before. The remaining notation is the same. 

In equation (15) there is no member that determines the resistance to the movement of fluid in the 

wellbore due to its wall friction . Accordingly, the oscillations are turn out to be continuous. Obviously, 

this is a definite abstraction, however, equation (15) provides a completely reliable estimate of the 

eigenfrequencies of water level fluctuations in a well. 

At the fixed end of the rod (at the top level of the pressure reservoir), with 0z , should be 0H , 

and at the free end (static piezometric water level in the well), with 0Hz  ,— 0



z

H
 [24]. 

The solution of equation (15) is found in the form [24]: 

   
АD

E
kkztAH




 ,sincos . 

All notation here is the same. 

From the condition when 0Hz   one can obtain   0cos 0 Hk , where for the eigenfrequencies is 

 
 12

2 0





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N
H

E
АD ,                  (16) 

where N is integer. 

The relationship of the adiabatic and isothermal modulus of water compression is expressed by the 

equation [24]: 
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,                   (17) 

where E  is, as before, the water compression modulus (isothermal); Τ—absolute water temperature; 

pc  is the specific heat of water at constant pressure;  is the relative change in the volume of water V 

when heated. 

Taking into account the fact that the water temperature in the wellbore during the initiation of level 

oscillations according to the method by I. Krauss and S.F. Grigorenko actually changes only by fractions 

of a degree, with great accuracy the relative change in the volume of water when heated  can be 

neglected, i.e. in the first equation in (17) we can assume     EE
АD

. In addition, as follows from 

equation (16), such a premise (including N = 0) provides the absolute minimum estimate of the 

eigenfrequency level oscillations. 

Let us perform here such an assessment. Taking the water compression modulus E 2.03·109 Pa [3, 

4], water density  = 1000 kg/m3, piezometric head 0H  100 m and N, as already noted, equal to 0, 

from equation (16) we get that the probable minimum eigenfrequency of oscillations of the piezometric 

level in the wellbore is   22.4 s-1. Obviously, as it follows from (16), with decreasing 0H  and 

increasing N, the eigenfrequencies should increase. 

From the above test, it follows that the characteristic minimum value of the eigenfrequency of the level in 

the well (we repeat, considered as an isolated system) significantly (approximately by 2-3 orders of 

magnitude) exceeds the frequencies obtained at the EFT of real aquifers and is equal in order of 

magnitudes  ·n·(10-2-10-1) s-1. This is primarily determined by the low value of water 

compressibility. Then it becomes unclear what, in fact, determines the water level oscillations in a well 

with eigenfrequencies of the order of  ·n·(10-2-10-1) s-1, recorded in experiments [20, 21]? 

So, the kinematic model of the oscillation of the load, suspended at the free end of the spring, used as an 

analogue for description of the free oscillations of the piezometric level in the well, does not allow to 

performe the test calculations to assess its applicability. It is simply not intended to calculate the 

eigenfrequencies using the “internal” parameters of the oscillating system—the mass of the suspended 

load, the geometric parameters (for example, the length) of the spring and spring rate; the model does not 

contain physical prerequisites for oscillations. By the way, for this reason, the entire physical 

interpretation of the natural oscillations of the level in the wells in the works by S.F. Grigorenko [5, 17, 

18] is reduced to the arguments about some “transient processes” in the system of a well—aquifer. 
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In addition, the absence of strict initial physical notions about the process allows to operate arbitrary and 

without any justification (including the introduction of new ones) with boundary conditions of the system. 

Thus, the water exchange condition is introduced into the kinematic model. 

The need to ensure consistent interpretation of the oscillation process of the piezometric level in the well 

involuntarily causes a direct association with the oscillating load in the well, fixed on the free end of the 

spring (see Figure 4), prompted by the concepts of oscillatory processes used in [20, 21]. Only in this 

case a source of energy necessary for initiation of oscillations appears, and the natural oscillations of the 

water column in the well will not be determined by the parameters of this column (its length 0H  and 

water compressibility), but by the characteristics of the spring and the inertia of the load suspended to it. 

Attenuation of oscillations will be determined by the friction of the load on the water. 

However, then the initial premise that both oscillations of the water column in the wellbore and pressure 

(or piezometric pressure) oscillations in the aquifer (outside the perturbating well itself) will become 

forced oscillations. And then it becomes indifferent what type of equation (parabolic or some other type) 

will describe the process of propagation of pressure waves in the aquifer. 

 

 

Figure 4. Scheme of Initiation of Oscillations of a Piezometric Level in a Well According to I. 

Krauss 

 

Thus, a system in which oscillations with eigenfrequencies can be observed should either be isolated but 

unified (i.e., oscillations should be considered as a single process at once in the entire system), or an open 

system, initially connected to another system, only in this case, the exchange of mass (water) and energy 

between the aquifer and the well is possible. In this case, the source of oscillations should be the aquifer, 

and the probe well should be considered as a reacting system, although the primary impact on the 

reservoir goes through the well. 

In order to open the system, you must enter the flow component [27]. As such a streaming component, 

for opening a mechanical system, we can consider the equation of GW filtration. In this case, the flow 
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component is considered as applied to the system (aquifer) with distributed parameters, therefore it 

should be of a gradient type. 

Let us repeat the derivation of an equation that provides a description of free decaying oscillations of a 

piezometric level in a well with eigenfrequencies, taking into account the flow component. 

So, the fluid in the well in accordance with the third law of Newton is acted upon by the fluid in the 

aquifer. Taking into account the relation of change in pressure in the aquifer in the process of its 

perturbation, and neglecting the change in the mass of fluid in the well, we will present this force as 

following: 

 trH
t

mf p ,0
0




 . 

Here 0t  is, as before, the characteristic time;  trH ,0  is the pressure at the point of the aquifer with 

the coordinate 0r  (on the borehole wall) at the moment of time t from the beginning of the disturbance; 

 is the Laplace operator. This is exactly the flow component that ensures the opening the well—aquifer 

system. 

The moving laminarly in the wellbore, fluid experiences resistance proportional to the first degree of 

movement speed. Assuming the fluid is purely viscous, and again neglecting the change in its mass in the 

well, we can present the force of resistance (friction), as in (11), in the following form: 

 
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tH
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m
f f 




0

. 

As before, according to the Dalamber principle, we consider that the sum of the forces applied to the 

system of material points is equal to the force of inertia. The latter neglecting the change in the mass of 

fluid in the well can be written as: 
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Hence, using the principle of continuity, in other words, assuming that    tHtrH ,0 , where 

 tH  is, as before, the piezometric head in the well, we obtain for 0rr   
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Since all the forces in equation (18) applied to the same mass of fluid, then this equation can be simplified 

and written as following: 
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where, as before, Hgp  . 
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Thus, the correct formulation of the problem leads to a completely different type of filtration equation, 

compared to that used in the works by I. Krauss and S.F. Grigorenko,—to the hyperbolic (wave) equation. 

At the same time, the introduction of the flow component fundamentally changes the characteristics of 

the system—the natural oscillation frequencies in such a system are determined by the geometrical and 

filtration parameters of the disturbed part of the aquifer. 

However, it is not yet clear from the last equation how the level oscillations in an aquifer with 

eigenfrequencies can be described, for now nothing has been told about the geometrical parameters of the 

disturbed region in the aquifer, but it has been repeatedly emphasized with reference to L.D. Landau and 

E.M. Lifshits [23], that the eigenfrequencies strongly depend on the geometric characteristics of this 

region, its limitations in the plane. In other words, the question comes to the fore, if oscillations of the 

piezometric level with eigenfrequencies are recorded during the EFT of an aquifer, then the condition of 

limitation in plane of the perturbation region should be a prerequisite for this. What physical 

prerequisites determine such a condition? Which in this case becomes the physical meaning of the 

characteristic time 0t ? Answers to these questions in accordance with the principle of constructivism 

actually require the development of a new filtration model (theory) that provides an adequate description 

of the process of propagation of pressure waves (or pressure) in an aquifer. 

 

3. Result 

A critical analysis of the available theoretical ideas about the process of pressure waves propagation in 

the aquifer is presented. These waves determine free oscillations of the GW piezometric level with 

eigenfrequencies in the disturbing well, through which the impulse impact on the aquifer was applied. 

Firstly, the description of such a process based on a parabolic-type filtration equation that does not take 

into account the inertial component of the resistance to the GW motion, without the need to specify the 

boundary condition determining the oscillations of the piezometric GW level in the well due to some 

extraneous influence, in principle is possible. And then these oscillations are not free, but forced, and the 

frequencies of such oscillations are determined by the given frequencies of such an external source of 

oscillations. 

Secondly, in the existing theoretical concepts, a perturbation well is actually considered as an isolated 

dissipative system. The estimation of the eigenfrequencies of the longitudinal free oscillations of the 

water column in the well significantly (by 2-3 orders of magnitude) exceeds the frequencies obtained by 

the EFT of real aquifer horizons. In other words, such a system cannot adequately represent the 

phenomenon of free oscillations of the piezometric level observed in the experiments in a probe well with 

eigenfrequencies. 

Thirdly, the correct formulation of the problem leads to a completely different type of filtration equation 

for the GW, as compared to that used in the existing theoretical concepts, to a hyperbolic (wave) equation. 

At the same time, the introduction of a flow component fundamentally changes the characteristics of a 

disturbing (experimental) well—aquifer system—it should become isolated, but uniform (ie, oscillations 



http://www.scholink.org/ojs/index.php/se                 Sustainability in Environment                     Vol. 6, No. 1, 2021 

139 
Published by SCHOLINK INC. 

should be considered as a single process within the whole system). Only in such a system the 

eigenfrequencies are determined by the geometrical and filtration parameters of the disturbed part of the 

aquifer. In this case, the source of oscillations should be the aquifer, and the probe well should be 

considered as a reacting system, although the primary impact on the reservoir has been made through this 

well. 

Namely these provisions that were used as the basis for the theory of relaxation filtration, developed by 

the author, and will be presented in subsequent publications in English. 

 

4. Discussion 

I believe that in this article I was able to convincingly show the inconsistency of the currently used 

theoretical concepts of free oscillations in the GW level in disturbing wells to describe the interpretation 

of these oscillations. There is an obvious need to develop a consistent physical and mathematical theory 

that provides such a description and interpretation. I have proposed a version of such a theory, which will 

be presented in subsequent publications in English. 
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