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Abstract

To explore the impact of landscape pattern index on air pollutant, this study takes the annual average

concentrations of PM2.5, O3, PM10, and NO2 at 14 national air quality monitoring stations in Hangzhou

from 2014 to 2021 as the dependent variables, and selects five landscape pattern indices of green

patches within 500m of the monitoring stations as independent variables. An enhanced regression tree

model was used to study the influence of landscape patterns on the concentrations of the four air

pollutants. The results show that the most significant influencing factors for the concentrations of PM2.5,

O3, PM10, and NO2 are the aggregation index, Shannon's diversity index, aggregation index, and

largest patch index respectively, with relative influence rates of 29.27%, 25.06%, 31.28%, and 28.58%,

respectively. The aggregation index has a significant impact on all types of air pollutants and plays a

good role in reducing air pollution. With higher regional patch aggregation index, the concentration of

air particulate matter and nitrogen oxides is greatly alleviated. The largest patch index is significantly
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negatively correlated with air particulate matter and ozone concentration, and an increase in green

areas has a good mitigating effect on these two types of air pollutants. As the Shannon diversity index

increases, there is a general trend of decreasing particulate matter concentration, while the

concentrations of nitrogen dioxide and ozone show a decrease as well. This suggests that the

complexity of landscape shape and boundaries is conducive to the reduction of nitrogen dioxide and

ozone concentrations to a certain extent.

Keywords

Concentrations of PM2.5, O3, PM10, and NO2, Landscape Pattern Index, Boosting Regression Tree,

Threshold effect, Influence mechanism

1. Introduction

In many cities around the world, air pollution has become a serious problem. The accelerated

industrialization process, vehicle emissions, and exhaust from coal-fired power plants continue to

release pollutants into the atmosphere. Major pollutants include atmospheric particulate matter,

nitrogen oxides, and ozone. Air pollution has become a significant challenge for cities worldwide. The

European Environment Agency has identified air pollution as the largest environmental health threat in

Europe (WHO, 2019). In 2018, between 168,000 and 346,000 premature deaths in EU countries were

attributed to exposure to fine particulate matter (Laurent, 2022). Thirteen of the 20 cities with the

highest annual average PM2.5 concentrations are in India (Gordon et al., 2018). Severe air pollution has

had a significant impact on the health of Indian residents. Although improved air quality is a common

phenomenon, in some cities, air quality has not significantly improved and in some cases, has even

worsened (Adam et al., 2021). For example, the U.S. Environmental Protection Agency provided

monitoring data that contradicted expectations, showing slightly lower than expected levels of

pollutants such as ozone, nitrogen oxides, and PM10 during this period, while the average concentration

of PM2.5 was slightly higher than expected (Bekbulat et al., 2021).

With the rapid advancement of urbanization in China in recent decades (Guan et al., 2018), the

concentration of the urban population and the increasing number of urban vehicles have led to a series

of ecological environmental issues for cities. Among them, urban air pollution, which is closely related

to residents' lives, has increasingly attracted people's attention and gradually become a research hotspot

(Gorai et al., 2014; Shi et al., 2013; Song et al., 2017). The main sources of air pollution are industrial

production activities, residential activities, and transportation. Air particulate matter, nitrogen oxides,

and ozone are among the main components of air pollution, which have a significant impact on human

health (Karimi et al., 2019; Li et al., 2021; Li et al., 2021). Although China has made some progress

in controlling air pollution, it still faces challenges. According to the 2021 China Ecological

Environment Status Report, in 2021, 39.7% of the days in 339 Chinese cities were heavily polluted

with PM2.5 as the main pollutant, 34.7% with O3, 25.2% with PM10, and 0.6% with NO2 as the main

pollutants. In the Yangtze River Delta region, the proportions of days exceeding the standard for PM2.5,
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O3, PM10, and NO2 were 55.4%, 30.7%, 12.3%, and 1.7% (MEEPRC, 2022), respectively. The control

of air pollution remains a long and arduous task. This study will focus on the analysis of two types of

air particulate matter, nitrogen dioxide, and ozone, which have been more severe in recent years.

Urban green spaces, as a natural part of the urban system, play an important role in adsorbing air

pollutants and reducing environmental air particulates (Li et al., 2014; Wu & Wang, 2007; Wu et al.,

2008; Zhu & Zhao, 2014). For example, investigated the impact of green space landscape pattern

characteristics on PM2.5 concentrations in Nanchang, Jiangxi Province, China, and conducted a

preliminary analysis of the emission reduction effects of urban green spaces on PM2.5. (Ventera et al.,

2024) studied the relationship between vegetation and air quality, finding that while urban greening

may improve air quality within certain areas, its effects are moderate and can even be detrimental at the

street level, depending on the type of vegetation and urban morphology. (Ren et al., 2023) employed

remote sensing and ArcGIS technologies to investigate the scale effects, spatial differentiation, and

synergistic effects of green space landscape patterns on PM2.5 and PM10 in Xi'an. They identified a

significant gradient change in the green space landscape pattern of Xi'an and concluded that increasing

the number and area of green space patches while reducing their overall dispersion can effectively

lower particulate matter concentrations. This study selected five urban green space landscape pattern

indices to investigate their relative impacts on four major air pollutants from both patch and landscape

perspectives, whereas previous studies primarily focused on the effects on particulate matter. Moreover,

delineating the key influencing factors of concentration variations in each air pollutant aids in

optimizing the landscape pattern of green spaces tailored to specific pollutants. The research in this

area can help understand the purification function of green patches on air pollutants and provide more

scientific guidance for urban green space development.

This study is based on air pollutant monitoring data from 2014 to 2021 at national control monitoring

points in Hangzhou, established a 500-meter buffer zone around each monitoring point. Five green

space landscape pattern indices were selected to analyze the distribution of PM2.5, O3, PM10, and NO2

concentrations. Using the Gradient Boosting Regression Tree model, the study quantitatively analyzed

the relative influence and threshold effects of green space landscape patterns on air pollutant

concentrations. It explored the impact of urban green patches on air pollutant concentrations and

examined the effects of different green space landscape pattern indices on these concentrations. The

objective is to provide a theoretical and methodological basis for optimizing urban landscape patterns,

improving air quality, and reducing air pollution. The findings offer scientific evidence for urban

planners and policymakers, supporting the rational layout and planning of urban green spaces.

2. Literature Review

2.1 Urban Landscape Pattern

From the perspective of urban landscape patterns, landscape is usually used to describe the inland

terrain, landforms, and scenery, such as water systems, forests, etc., or to describe the geographic
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features of a certain area (Wu, 2007). It has clear boundaries and spatial divisions (Wen, 2013). The

landscape is an embedded body composed of elements such as patches, corridors, and matrix, and can

be classified into artificial landscapes, natural landscapes, and small and medium-sized landscapes

according to different geographical types. An urban landscape is a typical artificial landscape. The

landscape pattern index is a method that can quantitatively analyze landscape patterns, can highly

condense landscape pattern information, and reflect the distribution and spatial changes of landscapes.

The study of urban landscape pattern can more clearly and rationally address various ecological

problems faced by the city through the quantitative analysis of the process of urban landscape pattern

evolution (Luo & Cao, 2022). Currently, the landscape pattern index is widely used in the analysis of

urban landscape patterns and the study of urban spatial forms. For example, Wang et al. (2022)

analyzed the relationship between urban green space landscape patterns and atmospheric pollutant

concentrations. The landscape pattern indices of urban green spaces (LSI, PD, PLAND) exhibit

significant threshold effects on the mechanisms influencing the concentrations of atmospheric

pollutants such as PM2.5, NO2, and SO2. analyzed the impact of land use/cover on the Air Quality Index

(AQI), PM2.5 concentration, and PM10 concentration, finding that land use/cover types significantly

influence variations in atmospheric particulate matter concentrations, at the scale of the 5000-meter

buffer zone, the quantity and density of forest patches are positively correlated with the concentration

of PM2.5. Jaafari et al. (2020) assessed the impact pathways of green spaces on air pollution, revealing

that maximizing green space area and cohesion while minimizing fragmentation and edge effects

contribute to reducing air pollution, particularly with respect to the most critical indicator, PM2.5. Urban

green spaces, serving as pivotal constituents of urban ecology, wield significant influence upon it. This

investigation endeavors to assess the relative impact of green patch landscape patterns on air pollutant

concentration by employing five pertinent green indices, namely patch density, aggregation index,

maximum patch index, area-weighted patch fractal dimension, and Shannon-Wiener index. When

selecting landscape metrics, high correlation among indices can lead to information redundancy (Rafiee

et al., 2009), complicating interpretation. Therefore, this study opted for five green indices with low

inter-correlation, thereby enhancing the accuracy of predictive outcomes. These indices describe the

structure and spatial distribution of green patches at both patch and landscape scales, providing a

clearer depiction of the quantity and connectivity of green patches within the study area.

2.2 Research Progress on the Influence of Urban Landscape Patterns on Air Pollution

From the perspective of influence on air pollution by urban landscape patterns, changes in urban

landscape patterns can affect the ecological environmental effects of surrounding areas (Schwarz et al.,

2012). Previous studies have found that changes in land use types can have a certain impact on the

concentration changes of major atmospheric pollutants such as PM2.5 (Cui, 2013; Wang et al., 2014).

For example, Xu et al. (2015) analyzed the coupling relationship between NO2, PM10, O3, PM2.5

concentrations, and landscape pattern, revealing a significant influence of land use/cover on the

variation of atmospheric pollutant concentrations in the study area, along with seasonal effects. Li et al.
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(2016) found that landscape patterns have a certain influence on the distribution of PM2.5

concentrations, with landscape area, density, fragmentation, and aggregation-dispersion being the main

factors affecting PM2.5 concentrations. Wu et al. (2015) selected five landscape pattern indices, namely

PLAND, PD, ED, SHEI, and CONTAG, to study their relative relationship with PM2.5 concentration.

They found that vegetation significantly reduces PM2.5 concentration, while farmland has a particular

impact on PM2.5 concentration. At the landscape level, SHEI and CONTAG are closely related to PM2.5

concentration.

2.3 Boosted Regression Tree Methods in Atmospheric Pollution Studies

The use of machine learning methods to predict the concentration of atmospheric pollutants has rich

examples, such as the use of neural network models to predict the concentration of atmospheric

pollutants at city locations on an urban scale (Kukkonen et al., 2003), and the use of gradient boosting

regression trees within reasonable buffer zones to predict the impact of urban morphological factors on

the concentration of atmospheric pollutants (Cui et al., 2022). The relationship between atmospheric

pollutants and meteorological factors, the method of principal component analysis is often used in

previous studies, which may ignore the correlation between independent variables, resulting in large

errors in the generated results. The use of enhanced regression trees can effectively eliminate redundant

information and improve the accuracy of model predictions. Current regression modeling is used as a

predictive tool in many fields due to its applicability and efficiency, especially in the prediction of air

pollution, and boosted regression tree modeling has recently been used in air pollution prediction due to

its better adaptive ability. Ge et al. (2017) utilized boosted regression tree model to analyze the

contributions of seven meteorological factors to the daily variations in PM2.5. Zhang et al. (2021)

employed boosted regression tree model to quantify the contributions of various land use types to

PM2.5 concentrations across different seasons. Li et al. (2021) selected 10 two-dimensional and

three-dimensional landscape pattern indices as independent variables and utilized a boosted regression

tree model to investigate their effects on the concentrations of four atmospheric pollutants. They found

that the proportion of impervious surfaces was the most significant factor influencing the

concentrations of NO2, SO2, PM2.5, and PM10, with relative contribution rates of 40.7%, 36.3%, 51.0%,

and 51.8%, respectively. Shaziayani et al. (2021) used Boosted Regression Trees (BRT) to predict

PM10 concentrations in Klang, Alor Setar, and Kota Bharu, Malaysia. Their results indicated that

quantile regression met the assumptions and served as a robust model for predicting maximum daily

PM10 concentrations using BRT. Suleiman et al. (2016) also explored the application of Boosted

Regression Trees (BRT) in air quality modeling. The study suggested that BRT models offer more

advantages in model interpretation and feature selection. When prioritizing model interpretability, BRT

can be used as an alternative to Artificial Neural Networks (ANN). This study uses enhanced regression

trees to quantitatively analyze the contribution rate and marginal effects of green patches' landscape

patterns to the annual average concentrations of PM2.5, O3, PM10, and NO2.



http://www.scholink.org/ojs/index.php/se Sustainability in Environment Vol. 9, No. 3, 2024

Published by SCHOLINK INC.
57

3. Materials and Methods

3.1 Study Area

The city of Hangzhou is located in the eastern part of Zhejiang Province, China, with a diverse natural

environment characterized by hills, plains, and mountains. According to the 2021 Ecological

Environment Bulletin of Hangzhou, the city had 321 days of excellent air quality, a decrease of 13 days

compared to 2020, with an excellent rate of 87.9%, representing a 3.4 percentage point drop (HZMEEB,

2022). The concentration of fine particulate matter PM2.5 and nitrogen dioxide NO2 decreased

compared to 2020, while inhalable particulate matter PM10 remained stable, and ozone O3

concentration showed an increasing trend.

The study area covers 14 national monitoring stations in Hangzhou, Zhejiang Province, China, with a

500-meter buffer zone established around each station (Figure 1 and Figure 2). This includes the

QianDaoHu station, HeMuXiaoXue station, ZhejiangNongDa station, WoLongQiao station, XiaSha

station, YunQi station, ChengXiangZhen station, LinPingZhen station, XiXi station, BinJiang station,

ZhaoHuiWuQu station, XiaoFangDaDui station, ZhenErZhong station, and ShiFuDaLou station

(hereinafter referred to by acronyms). Among these, the HMXX station, CXZ station, LPZ station, BJ

station, ZHWQ station, XFDD station, and ZEZ station are located near urban residential areas with

high building density and a high proportion of grey patches with scattered green spaces between

buildings, resulting in fragmented landscapes. The QDH station, WLQ station, YQ station, and XX

station are located in scenic areas, near large water bodies or surrounded by large-scale green spaces,

with generally high vegetation coverage and good ecological environments. On the other hand, the

ZJND station, XS station, and SFDL station are primarily located in areas designated for construction

use, but due to their location within a university or near a park, they also have relatively high

vegetation coverage.
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Figure 1. Satellite Image of the Study Area
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Figure 2. Map of Patches in the Study Area

3.2 Data Collection

The research data used in this study include the 2014-2021 China Land Use/Cover Dataset, covering

the study area where 14 national monitoring stations are located. The land use data comes from the

Earth System Science Data and is produced annually by the Landsat satellite and the China Land

Use/Cover Dataset (CLUD), with a spatial resolution of 30m and an accuracy of 79.31%. Raster

reclassification using ArcGIS divides land types into green space, forest land, construction land, and

water bodies. Frastats is used to calculate the patch density (PD), aggregation index (AI), largest patch

index (LPI), area-weighted fractal dimension (FRAC_AM), and Shannon diversity index (SHDI) of

green patches. Air pollution concentration data for the study area from 2014 to 2021 is obtained from

open source data at the national monitoring stations in Hangzhou, Zhejiang Province, China, including
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daily concentrations of PM2.5, O3, PM10, and NO2, with statistical time from January 1 to December 31

each year. The average concentrations of each station are extracted, totaling 75 sample data points over

8 years for the 14 stations.

4. Methodology

4.1 Landscape Pattern Index-Driven Method

The study selected 5 two-dimensional landscape indicators to investigate their correlation with urban

air pollutant concentrations, namely: Patch Aggregation Index (AI), Patch Density (PD), Largest Patch

Index (LPI), Area-Weighted Patch Fractal Dimension (FRAC_AM), and Shannon-Weiner Index

(SHDI). The calculation formulas and explanations of the indicators are shown in Table 1. Landscape

pattern indices of green patches within the buffer zone were calculated using Fragstats. The landscape

pattern indices of green patches were used as the independent variable, and the annual average

concentrations of atmospheric pollutants monitored at each site were used as the dependent variable to

analyze the relationship between them.

Table 1. Landscape Pattern Index

Metrics Formula Parameter Description

Aggregation

Index (AI)

AI

=
The degree of aggregation between various patches in

the landscape reflects the connectivity between the

patches. In the formula, represents the maximum

number of similar adjacencies.

Patch

density(PD) PD =

The number of patches per unit area in the landscape

reflects the overall fragmentation of the landscape. In

the formula, N represents the number of patches in the

landscape, and A represents the total area of the

landscape.

Largest Patch

Index (LPI) LPI =

Reflecting the dominance species in the landscape, as

well as the richness of internal species. Where:

represents the maximum patch area within the

landscape.

Area-weighted

mean patch

fractal

dimension

(FRAC_AM)

F =

This equation reflects the complexity of patch shapes in

landscapes. Here, P represents the patch perimeter; K is

a constant, and for general grid landscapes, K=4.
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Shannon’s

Diversity

Index (SHDI)
SHDI =

The proportion of patch types in the landscape

multiplied by the sum of that proportion, reflects the

richness of landscape types. In the equation: represents

the probability of patch type i appearing in the

landscape.

4.2 Boosted Regression Tree Model

The boosted regression tree (BRT) modeling type is used to investigate the contribution and threshold

effects of landscape patterns on urban air pollution. It uses recursive binary partitioning to remove

interactions between independent variables, iteratively fitting the tree-based model in segments and

identifying poorly modeled observations in the existing tree until minimal model bias is achieved. The

BRT equation package was invoked in the R platform for enhanced regression tree operation analysis,

the number of trees was set to 500, the shrinkage parameter was set to 0.01, 50% of the data were

extracted for training analysis and 50% for testing each time, the interaction depth was set to 3,

cross-validation was performed, and the final target results were presented visually.

5. Results

5.1 Contribution of Landscape Pattern Indices to Air Pollutant Concentrations

Table 2 present the historical landscape pattern indices for each research site. Figure 3 and Table 3

show the contribution of each landscape pattern index to the relative influence of annual average

pollutant concentration. The simulation experiment using an augmented regression tree to explore the

influence of landscape pattern index on PM2.5 concentration in green patches shows that the

contribution of each landscape pattern index is Aggregation Index AI (29.27%) > Patch Density PD

(20.99%) > Shannon-Wiener Index SHDI (18.45%) > Area-weighted patch dimension FRAC_AM

(17.59%) > Maximum patch index LPI (13.7%), which has a training set RMSE value of 7.347 and a

test set RMSE value of 13.1298, with excellent model accuracy. Simulation experiments on the effect

of landscape pattern indices on O3 concentration showed that the contribution of each landscape pattern

index was Shannon-Wiener index SHDI (25.06%) > Aggregation index AI (20.25%) > Area-weighted

patch dimensionality FRAC_AM (20.22%) > Maximum patch index LPI (17.71%) > Patch density PD

(16.76%), and its The RMSE value of the training set is 6.8904, and the RMSE value of the test set is

8.9523, the model accuracy is excellent; the simulation experiments of the influence of landscape

pattern index on PM10 concentration show that the contribution of each landscape pattern index is

Aggregation index AI (31.28%) > Area-weighted plaque subdimension FRAC_AM (21.01%) >

Shannon - Wiener index SHDI ( 18.68%)>Patch Density PD (14.98%)>Maximum Plaque Index LPI

(14.04%), with a training set RMSE value of 10.2132 and a test set RMSE value of 17.0765, which is

an excellent model accuracy; the simulation experiments on the effect of landscape pattern indices on

the concentration of NO2 showed that the contribution of each landscape pattern index was Maximum
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Plaque Index LPI (28.58%) > aggregation index AI (26.41%) > patch density PD (24.33%) >

area-weighted patch dimension FRAC_AM (11.89%) > Shannon-Wiener index SHDI (8.78%), with a

training set RMSE value of 4.3281 and a test set RMSE value of 5.5838, resulting in excellent model

accuracy. The major and minor influencing factors are shown in Table 2.

Figure 3. Contribution of Landscape Pattern Indices of the Green Patches on Air Pollutant

Concentrations in the Study Area

Table 2. Study Area Landscape Pattern Index (2014 Study Area Landscape Pattern Index)

Station PD LPI FRAC_AM AI SHDI

2014 ZHWQ 7.6422 0.4386 1.0390 38.8889 0.1540

2014 HMXX 3.8245 0.3512 1.0412 50.0000 0.0590

2014 WLQ 6.3853 52.2427 1.1693 90.6169 0.8950

2014 XS 21.6910 7.4692 1.1070 71.7117 0.6036

2014 YQ 2.5407 86.5267 1.1068 96.4044 0.3973

2014 ZJND 15.3653 6.7019 1.0908 73.7931 0.6499

2014 SFDL 10.1807 2.2787 1.0868 59.5238 0.4189

2015 Study Area Landscape Pattern Index

Station PD LPI FRAC_AM AI SHDI

2015 ZHWQ 8.9159 0.5263 1.0394 37.5000 0.1548

2015 HMXX 3.8245 0.3512 1.0412 50.0000 0.0590

2015 WLQ 6.3853 52.6825 1.1675 90.8621 0.8937

2015 XS 21.6910 7.4692 1.1070 71.7117 0.6036

2015 YQ 2.5407 86.5267 1.1068 96.4044 0.3973

2015 ZJND 15.3653 6.3492 1.0937 72.7915 0.6437

2015 SFDL 10.1807 2.5416 1.0843 61.5385 0.4202
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2016 Study Area Landscape Pattern Index

Station PD LPI FRAC_AM AI SHDI

2016 ZHWQ 11.4633 0.5263 1.0466 40.0000 0.1514

2016 HMXX 3.8245 0.3512 1.0412 50.0000 0.0590

2016 WLQ 7.6624 52.9464 1.1646 90.9247 0.8926

2016 XS 21.6910 7.4692 1.1117 69.8502 0.5932

2016 YQ 2.5407 86.3517 1.1046 96.5013 0.4006

2016 ZJND 15.3653 6.3492 1.0933 72.6316 0.6432

2016 SFDL 10.1807 2.8046 1.0851 62.8866 0.4209

2017 Study Area Landscape Pattern Index

Station PD LPI FRAC_AM AI SHDI

2017 ZHWQ 10.1896 0.7018 1.0472 48.7805 0.1415

2017 HMXX 3.8245 0.3512 1.0412 50.0000 0.0590

2017 WLQ 7.6624 52.9464 1.1646 90.9247 0.8926

2017 XS 21.6910 7.4692 1.1117 68.8502 0.5932

2017 YQ 2.5407 86.3517 1.1046 96.5013 0.4006

2017 ZJND 14.0849 6.3492 1.0982 72.8223 0.6426

2017 SFDL 10.1807 2.8046 1.0851 62.8866 0.4209

2018 Study Area Landscape Pattern Index

Station PD LPI FRAC_AM AI SHDI

2018 BJ 20.3614 4.2945 1.0821 62.9834 0.3221

2018 XX 5.0726 61.3100 1.2401 83.3809 0.8659

2018 QDH 3.8211 2.3684 1.0695 79.4643 0.2618

2018 XS 22.9669 7.4692 1.1027 69.9248 0.5923

2018 WLQ 7.6624 52.9464 1.1646 90.9247 0.8926

2018 ZJND 14.0849 6.3492 1.0982 72.8223 0.6426

2018 ZHWQ 10.1896 0.8772 1.0290 55.5556 0.1385

2018 HMXX 3.8245 0.3512 1.0412 50.0000 0.0461

2018 LPZ 6.3853 4.3096 1.1143 76.8421 0.2065

2018 CXZ 15.2979 2.5461 1.1054 52.8926 0.2286

2018 YQ 2.5407 86.3517 1.1046 96.5013 0.4006
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2019 Study Area Landscape Pattern Index

Station PD LPI FRAC_AM AI SHDI

2019 BJ 20.3614 4.2945 1.0821 62.9834 0.3221

2019 ZHWQ 10.1896 0.8772 1.0365 55.1020 0.1345

2019 CXZ 14.0230 2.5461 1.1084 53.9130 0.2213

2019 HMXX 3.8245 0.3512 1.0412 50.0000 0.0461

2019 LPZ 5.1083 4.3096 1.1164 78.4946 0.2039

2019 QDH 3.8211 2.3684 1.0695 79.4643 0.2618

2019 WLQ 7.6624 52.9464 1.1646 90.9247 0.8926

2019 XX 5.0726 63.0568 1.2247 85.4268 0.8310

2019 XS 22.9669 7.4692 1.1027 69.9248 0.5923

2019 YQ 2.5407 86.3517 1.1046 96.5013 0.4006

2019 ZJND 14.0849 6.3492 1.0982 72.8223 0.6426

Station PD LPI FRAC_AM AI SHDI

2020 BJ 20.3614 4.2945 1.0821 62.7778 0.3200

2020 XX 5.0726 65.2402 1.2082 87.3826 0.7810

2020 QDH 3.8211 2.3684 1.0695 79.4643 0.2576

2020 XS 22.9669 7.4692 1.1027 69.9248 0.5923

2020 WLQ 7.6624 53.1223 1.1644 90.9556 0.8921

2020 ZJND 14.0849 6.3492 1.0982 72.8223 0.6426

2020 ZHWQ 10.1896 0.8772 1.0365 55.1020 0.1345

2020 HMXX 3.8245 0.3512 1.0412 50.0000 0.0461

2020 LPZ 3.8312 4.2216 1.1205 79.7753 0.1986

2020 CXZ 14.0230 2.5461 1.1084 53.9130 0.2213

2020 YQ 2.5407 86.3517 1.1046 96.5013 0.4006

2020 ZEZ 1.2715 0.0876 1.0000 N/A 0.4598

2020 SFDL 8.9081 2.7169 1.0801 65.9794 0.4209

2021 Study Area Landscape Pattern Index

Station PD LPI FRAC_AM AI SHDI

2021 BJ 17.9005 4.0276 1.0889 57.9710 0.3247

2021 XX 6.3565 67.3913 1.1984 86.6838 0.7465

2021 XS 25.3678 7.7626 1.1058 64.1148 0.6020

2021 WLQ 5.0852 52.6316 1.1715 88.8764 0.9099

2021 ZJND 11.4811 5.2813 1.1164 66.3366 0.6043

2021 HMXX 3.8358 0.3452 1.0488 37.5000 0.0469
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2021 LPZ 3.8139 4.1190 1.1106 79.3651 0.1788

2021 CXZ 12.7714 2.6437 1.0912 54.1176 0.2200

2021 YQ 6.3638 14.0893 1.1861 73.1034 0.8284

2021 ZEZ 1.2728 0.1145 1.0000 N/A 0.4583

2021 SFDL 8.8991 2.5172 1.0862 60.8108 0.4188

2021 XFDD 7.6278 0.4577 1.0534 20.0000 0.3538

Table 3. Relative Influence of Landscape Pattern Indices on Air Pollutants in the Study Area

Atmospheric

pollutants

Main impact

factors
Secondary impact factor

PM2.5 AI 29.27%
PD

20.99%

SHDI

18.45%

FRAC_AM

17.59%
LPI 13.7%

O3 SHDI 25.06%
AI

20.25%

FRAC_AM

20.22%

LPI

17.71%
PD 16.76%

PM10 AI 31.28%
FRAC_AM

21.01%

SHDI

18.68%

PD

14.98%

LPI

14.04%

NO2 LPI 28.58%
AI

26.41%

PD

24.33%

FRAC_AM

11.89%

SHDI

8.78%

5.2 Threshold Effects on the Contribution of Landscape Pattern Indices to Air Pollutant Concentrations

Figure 4 shows the threshold effects of the factors affecting the annual average concentrations of the

four pollutants in order of contribution, i.e., how each factor affects the model regression. When the

plaque aggregation index is in the range of 50%-75%, an increase in the value of the plaque

aggregation index negatively affects the annual mean concentration of PM2.5, decreasing it from 43

μg/m3 to 33 μg/m3; whereas, when the aggregation index is in the ranges of 0-50% and 75%-90%, its

effect on the annual mean concentration of PM2.5 becomes flat. When the patch density was <5/100ha,

the annual mean PM2.5 concentration decreased sharply from 40 μg/m3 to 35.5 μg/m3, and when the

patch density was in the interval of 5-15/100ha, the increase in patch density had a positive effect on

the increase in PM2.5 concentration, with an increase in the concentration from 35.5 μg/m3 to 39.5

μg/m3, and then the relationship between the two tended to flatten out. Excluding the idiosyncratic

points caused by the source data, when the Shannon-Wiener index was in the interval of 0.1-0.7, it had

a negative effect on the annual mean O3 concentration, and the pollutant concentration decreased from

92.3 μg/m3 to 90.3 μg/m3 with the increase in the value of the Shannon-Wiener index, whereas there

was no significant change in the relationship between the patch aggregation index and the annual mean

O3 concentration. When the area-weighted patch dimension value is in the range of 1.08-1.11, the index

value and the annual average concentration of PM10 show a positive correlation, and the pollutant
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concentration increases from 64.5 μg/m3 to 71 μg/m3; after reaching the threshold value of 1.11, the

green space's ability of PM10 abatement is enhanced, and the two show a negative correlation, and the

pollutant concentration decreases from 71 μg/m3 to 67.5 μg/m3; when the agglomeration index value

increases from 92.3 μg/m3 to 90.3 μg/m3; and there is no significant change in the relationship between

patch aggregation index and O3 annual average concentration; when the aggregation index value is in

the range of 60%-80%, the stronger the green space's ability to reduce PM10, and the lower the annual

average PM10 concentration, from 74 μg/m3 to 59 μg/m3; and when the value of the Shannon-Wiener

index is in the range of 0.25-0.7, it is significantly positively correlated with PM10. When the maximum

plaque index value was >10%, its effect on the annual mean NO2 concentration was moderate; when

the aggregation index value was in the range of 50-80, the plaque aggregation index had a negative

effect on the pollutant concentration, which reduced the concentration from 43 μg/m3 to 34 μg/m3. The

above analysis generally indicates that the patch aggregation index, patch density, and area-weighted

patch subdimension number play a greater role in influencing the air pollution particulate matter PM2.5,

PM10, and NO2, but have a lesser effect on O3 pollutants.

Figure 4. Threshold Effects of Green Patch Landscape Patterns on Annual Average

Concentrations of Air Pollutants



http://www.scholink.org/ojs/index.php/se Sustainability in Environment Vol. 9, No. 3, 2024

Published by SCHOLINK INC.
67

5.3 Influence Mechanism of Landscape Pattern Index on Air Pollutant Concentration

In terms of the influence mechanism of landscape pattern index, the lower the aggregation index, the

more discrete the green patches are, and the weaker their adsorption and purification effect on PM2.5;

and with the increase of aggregation, the stronger their adsorption and purification effect on PM2.5, and

the lower the concentration of PM2.5; the increase of the density of the patches implies that the

fragmentation of the regional landscape is aggravated, and the purification ability of the overall

landscape for PM2.5 is reduced, so the annual average concentration of PM2.5 increases with the increase

of patch density. Therefore, the annual average concentration of PM2.5 increases with the increase of

patch density, and it is also pointed out in the study of (Li et al., 2022) that the fragmented regional

landscape will inhibit the dust stagnation played by various types of green patches in the study area,

and therefore the fragmentation of the landscape will lead to the reduction of PM2.5 concentration by

various types of landscapes; the maximal patch index represents the proportion of the largest green

patches to the total area, and it has a significant effect on the particulate matter, which is the largest

green patch in terms of the proportion of the total area. The maximum patch index represents the

proportion of the largest area of green patches to the total area, which has a mitigating effect on

particulate matter, and when the value of the maximum patch index is <90%, the stronger the

dominance of green patches is, the stronger the mitigating effect on PM2.5 is, and in the study of (Wang,

2021), etc., it was found that the maximum patch index was negatively correlated with the

concentrations of PM2.5 and PM10, and it was pointed out that the bigger the area of the green area is,

the better the coupling between green area and the concentration of particulate matter is, and the more

obvious the mitigating effect is on the particulate matter, and the fragmentation of landscape will lead

to the reduction of PM2.5 concentration by all types of landscapes. The Shannon-Wiener index reflects

the size of landscape type diversity, and to a certain extent also reflects the landscape fragmentation,

the higher its value, the richer the land use type, the greater the degree of fragmentation. For example,

in urban areas with rich land use types, the degree of landscape pattern fragmentation is higher, and the

PM2.5 concentration is correspondingly higher; the area-weighted patch dimension number has no

obvious effect on the PM2.5 concentration.

The reasons for the influence of the patch aggregation index AI and the maximum patch index LPI on

the annual mean PM10 concentration are similar to those of PM2.5. Based on the mitigating effect of

green space patches on particulate matter, urban areas with small green space patch aggregation have

relatively high PM10 concentrations; as the maximum patch index increases, the PM10 annual mean

concentration decreases accordingly; the patch density PD and the area-weighted patch subdimension

number FRAC_AM have no significant effect on the PM10 annual mean concentration.

Patch density PD, patch aggregation index AI, area-weighted patch sub dimensionality number

FRAC_AM, and Shannon-Wiener index did not have a significant effect on ozone concentration, while

ozone concentration decreased significantly when the maximum patch index of green patches

increased.
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The change of the maximum patch index value was not significantly correlated with the change in

annual average NO2 concentration; the aggregation index AI was negatively correlated with NO2

concentration, while the patch density was positively correlated with it. (Huang et al., 2022) and others

pointed out that the fragmentation of the landscape affects the NO2 concentration, and the more

fragmented it is, the weaker the effect of NO2 concentration reduction; the increase of the

area-weighted plaque dimension value will lead to the increase of the annual average NO2

concentration within a certain range, and with the increase of the index leading to the increase of the

spatial complexity within the landscape, the circulation of the air has been affected, which makes the

accumulation of NO2 in some areas lead to the increase of concentration; the Shannon-Wiener index

showed no significant correlation with the change of maximum plaque index; the aggregation index AI

showed a negative correlation with the NO2 concentration, while the density of plaques showed a

positive relationship with it. The Shannon-Wiener index is negatively correlated with the annual

average concentration of NO2. (Feng & Chu, 2017) et al., found that convective winds and turbulence

are generated between urban green spaces and buildings due to heat exchange, and the wind speed is

faster at the patch intersection coupling, and the mutual coupling between buildings and green spaces is

more conducive to the reduction of pollutant aggregation, which can alleviate the NO2 pollution to a

certain degree, while (Zeng & Kong, 2002) suggested that the fragmentation of the landscape as a

whole can lead to the increase of the NO2 concentration. The fragmentation of the landscape as a whole

leads to an increase in edge density, which in turn leads to an expansion of patch boundary coupling,

i.e., enhanced airflow between patches, thus leading to a decrease in NO2 concentration.

6. Discussion

6.1 Effect of Landscape Pattern Index on Air Particulate Matter

The analysis of the augmented regression tree regression model (Figure 5) shows that the air particulate

matter concentration and the spatial morphology distribution of green patches in the study area where

the monitoring stations are located show different degrees of negative correlation, in which the patch

aggregation index and the maximum patch index are significantly negatively correlated with both

particulate matters, while the Shannon-Wiener index is significantly positively correlated with the

concentration of particulate matter in a certain range, and the correlation of the density of patches with

the concentration of PM2.5 is higher than that of PM10, and it shows a positive effect on the increase of

PM2.5 concentration under the same change of patch density. concentration was higher than that of

PM10, which showed a positive effect on the increase of PM2.5 concentration under the same change of

patch density, while it did not have a typical pattern for the change of PM10 concentration. Landscape

green space is an important factor affecting the PM2.5 concentration reduction ability, within a certain

range, the larger the green space area, the stronger the PM2.5 reduction ability (Lei et al., 2018), the

lusher the vegetation in the landscape, the more significant the reduction of airborne particulate matter

concentration (Wang et al., 2021), while the fragmented regional landscape will inhibit the study area
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woodland, green space and other green patches of particulate matter dust retention effect, which will

lead to the increase of airborne particulate matter concentration. This will lead to the increase of

airborne particulate matter concentration and a decrease of air quality (Li et al., 2022).

6.2 Effects of landscape pattern indices on NO2

The influence of spatial pattern distribution of green patches on NO2 concentration is similar to that of

airborne particulate matter, the size of green space and the degree of landscape fragmentation will

affect the absorption and abatement of NO2 in the landscape, and the increase in the degree of discrete

green patches will obviously lead to an increase in the concentration of NO2, whereas the increase in

the density of patches will lead to the fragmentation of the landscape and make the concentration of

NO2 increase accordingly. Unlike particulate matter, the Shannon-Wiener index in the study area is

significantly negatively correlated with NO2 concentration, and the Shannon-Wiener index shows the

richness of regional landscape types, and the increase in the richness of landscape types in the study

area can increase the degree of coupling of various types of landscape boundaries (Zeng & Kong,

2002), and the coupling of plaque boundaries can produce strong air convection (Feng & Chu, 2017),

which is more conducive to the diffusion of NO2, and makes the concentration of its decreased.

6.3 Effects of Landscape Pattern Indices on Ozone

At the study scale of 500m radius of buffer size, the Shannon-Wiener index SHDI, patch aggregation

index AI and patch density PD did not show a significant correlation with annual average ozone

concentration, while the area-weighted patch dimension number was significantly positively correlated

with ozone concentration, and the increase of the area-weighted patch dimension value showed the

complexity of the shape of the patches, and the higher the complexity of the edge of the patch, the

better coupling degree between green and gray patches, and the better air exchange at the edge. The

higher the complexity of patch edges, the better the coupling between green patches and gray patches,

the better the air exchange is strengthened at the edges, and then ozone is not easy to be retained in the

built-up area; the maximum patch index is significantly negatively correlated with ozone concentration;

near-surface ozone comes from a series of photochemical reactions of nitrogen oxides and volatile

organic compounds in the atmosphere under the action of high temperature and strong light radiation

(Peng et al., 2023), and urban ozone concentration is positively correlated with the temperature (Ma et

al., 2019), and the increase in the size of the green space can effectively reduce summer air pollution

(Li, 2023), which has an inhibitory effect on the increase of ozone concentration.

7. Conclusion

Based on using GIS technology and Fragstats to obtain land use data and landscape pattern indices in

the study area, combined with the results of the analysis of the annual average concentration of air

pollutants, this study explores and analyzes the relationship between the landscape pattern of urban

green patches and the concentration of air pollutants from a spatial and temporal point of view and in

combination with the augmented regression tree. The main conclusions are as follows:
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(1) The distribution of urban green patches can influence the spatial distribution of air pollutant

concentrations. Study areas with a higher percentage of gray patch areas tend to have higher annual

average concentrations of air particulate matter and nitrogen oxides, and study areas with a higher

percentage of forested and cultivated land tend to have lower annual average concentrations of air

pollutants. The relationship between annual average ozone concentrations and the two is relatively

unstable.

(2) The landscape pattern of urban green patches indicates the spatial distribution characteristics of air

pollutants to a certain extent. The larger the values of the patch aggregation index and maximum patch

index, the lower the annual average concentrations of PM2.5 and PM10. The changes in the annual

average concentration of O3 had little correlation with the landscape pattern of green patches.

(3) The fragmentation of green patches will weaken the abatement effect of green space for

atmospheric particulate matter, resulting in the increase of regional PM2.5 and PM10 concentrations,

while when the green space is the dominant species in the landscape, the increase of its patch area can

effectively improve the dust retention effect of green space, reduce the concentration of atmospheric

particulate matter, and improve the connectivity between the green patches, which can play a better role

in the "negative effect" of green space for atmospheric particulate matter. "Negative effect"; and green

space for nitrogen oxides also play a role in abatement, but the landscape in a certain degree of

fragmentation can strengthen the air circulation between the regions, so that nitrogen oxides are not

easy to be deposited in the gray patches. Green patches, as an important part of the urban landscape,

play an important role in mitigating the urban heat island effect, regulating the urban microclimate, and

adsorbing atmospheric pollutants, but increasing the proportion of green space and striving to reduce

the fragmentation of the landscape may lead to the deposition of certain pollutants.
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