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Abstract 

The aim of this study was to investigate the effects of air flow movement through high use front 

entrance doors of a college building with large flows of people. The objectives were to visualize and 

quantify the resultant energy losses through the entrance doors, coupled with investigating any 

potential improvements that can be obtained through improved design. The findings of the study 

suggest that the heat loss from the front entrance design can contribute to up to 2.8% of the buildings’ 

energy loads. It was also seen that a vestibule creates a tunnel effect for cold ambient air to enter the 

building without hot air escaping from the vestibule. Rather hot stale air exits through openings at the 

ceiling height. Potential solutions with entrance design are investigated and their results compared to 

the outcomes of a similar model designed using Computational Fluid Dynamics (CFD).  
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1. Introduction 

Exterior doors and entrances of non-residential buildings can be major sources of energy losses. Air 

infiltration or exfiltration due to the frequent use of doors contributes to this phenomenon, coupled with 

pressure differences across each door, created by the wind, stack effect or ventilation systems. 

Early designs of revolving doors were seen in the late 1800’s, but only in 1970’s due to the oil crisis, 

the revolving doors became more popular. One of the requirements with revolving doors is fitting of a 

separate door for disabled access. Stalder (2009) discussed the revolving doors and legislation 

requirement for disabled access. Although revolving doors were seen as an ideal solution to energy 

conservation, Schijndel et al. (2003) identified that further research is required to compare the energy 

saving from revolving to sliding doors. However, it further identified that revolving doors are effective 

solutions for retaining heat in buildings, but are less suited for handling the large flows of people. 

To establish the challenges faced by organizations expecting heat loss from high use doors with large 

flows of people, a typical focus of investigation would be the airports and supermarket industry. Major 
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supermarkets have rolled out a program for store extensions to front entrances in order to reduce energy 

losses. Allard (1998) suggests that an average of 36% to 51% of air acting on the external doors will 

flow into the main body of a store. Lawton (1995) explained the effect of air curtain and air movement 

over an open doorway and McNally (2008) discussed the importance of designing air curtains for 

effective use with conventional or high speed roller shutters. These studies followed Holzhauer (1986) 

qualifying the resultant increased heating loads owing to large doors remaining open for periods of 

time. 

In a study by Wan (2009), the air leakage through automatic doors was calculated. This involved 

investigating a UK hospital with wind and stack, using two separate entrances with automatic sliding 

doors. Yuill et al. (2000) discovered differing air flow coefficients dependent on vestibule arrangements 

and dimensions. Airflows in vestibules could then be considered with the varying states of sliding door 

openings. However, Cho et al. (2010) investigated the potential energy savings established from adding 

a vestibule to entrances. It concluded that although building energy software had the potential to 

calculate the energy impact of door openings efficiently, there were few studies on how to model the 

doors. Artman et al. (2010) calculated heat flows across doorways with an air curtain and wind lobby. 

This was established through calculating heat flow based on temperature and velocity data obtained 

from a Computational Fluid Dynamic (CFD) model. The CFD model was evaluated against real 

temperature data which was collected on site of a typical supermarket. 

Yan (2010) and Chen (2011) investigated a college’s post occupancy energy performance. They noted 

the heavy traffic of staff and students entering or leaving the building through the building’s sole 

entrance sliding doors and assumed that subsequent heat losses were being incurred. They also 

observed the large entrance opening aperture, coupled with the heavy traffic, causing both potential 

heat losses and thermal sensations of discomfort for the occupants working in the areas of the front 

entrance and reception. The discomfort of the occupants was not offset by the air curtain fan operating 

in the entrance area designed to counteract cold air entering the building. This would study the potential 

of the carbon energy loads being increased by the heat losses incurred through the common design of 

the front entrance.  

Therefore, in order to analyze the effects of resultant energy losses through the entrance door design 

forming a vestibule with large flows of people, a College in Leicestershire, UK, was selected. This 

building was also chosen because of the added opportunity to consider its internal atria and potential of 

any impact from stack effects.  

 

2. Method 

2.1 Case Study College Background 

The case study College building is a modern further education college constructed in 2005 with an 

extension opened in 2007. The building occupies an area of 16 000m2. It is ventilated through mixed 

mode, with electricity and gas heating the air supply, under floor heating and radiators.  
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A “street” forms an open spine the whole length of the building. With the exception of an atrium, 

opening windows are incorporated into the top of the “spine” of the building to release stale air. The 

College front entrance is the only authorized entry into the building. The energy efficiency rating of the 

College building is of a “C” SAP rating, which denotes “good” for the age of the building.  

Replacing entrance doors with revolving doors was discounted by the College following its own 

consultation with other college facilities managers owing to the high footfall and the maintenance 

issues rendering the concept uneconomical. A vestibule forms the font entrance with a volume of the 

40.42m3. Located at both ends of the chamber are two double sliding doors, which when open, present 

an aperture of 3.675m2. The street is open to ceiling level and provides access to the whole building. 

Consequently, air flow can move unhindered from the southern to the northern end. 

 

 

Figure 1. Image of the Front Entrance “Vestibule” 

 

2.2 Initial Investigation Method 

The early part of the study concluded that sliding doors were a more favored option for buildings with 

high volume and high occupancy. Chen (2011) investigated the college’s post occupancy energy 

performance. This study observed the large entrance opening aperture, coupled with the heavy traffic, 

causing both potential heat losses and thermal sensations of discomfort for the occupants working in 

the areas of the front entrance and reception. The discomfort of the occupants was not offset by the air 

curtain fan operating in the entrance area designed to counteract cold air entering the building. This 

would study the potential of the carbon energy loads being increased by the heat losses incurred 

through the common design of the front entrance.  

2.2.1 Understanding Air Flow Movement 

In order to analyse the behaviour of the airflow movement in the College building understanding it 

visually and calculating the quantity required experimentation. To observe the behaviour and direction 

of air the movement, a smoke machine was used to mix with the outside air and understand its 
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movement from outside to inside the building. The smoke test was conducted with the assistance of the 

maintenance team of the College.  

Video cameras were strategically placed to allow a panoramic internal view from the entrance to other 

open areas of the College. The cameras captured the smoke infiltration from both angles of the inside 

of the entrance to the building. The outside weather was recorded and shown in Table 1. 

 

Table 1. External Weather Conditions During Smoke Test 14.02.2012 

Outside Dry Air Temperature 2.9oC 

Wind Direction North West 

Wind Speed 3.22 m/s 

Outside Air Pressure 1 028.1bar 

 

In order to establish a condition where only natural air flows could be observed, the HVAC plant was 

isolated for the duration of this experiment. Once commenced, the smoke initially blew across the face 

of the front entrance doors whilst in a closed position and started to rise up across the face of the 

building. Once the path of the smoke was established, within 15 seconds of the doors opening, the 

vestibule started to fill with smoke. With the increased regularity of the doors being opened, the more 

the smoke filled the vestibule. After a further 35 seconds, smoke flowed into the building as a constant 

stream, then under increasing velocity. The smoke spread across the open areas internally maintaining a 

distribution at low level. No airflow was observed to travel outside through the doors.  

Playback of the videos demonstrated that once the smoke had completely filled the vestibule from 

outside, it then “tumbled” into the College foyer area. It then remained at a lower level at a height of 

approximately 1.2m. Thus stratification was evident and the smoke travel was one directional from 

outside the building to inside. Irrespectively if the two door sets did not open at the same time, the 

vestibule still filled with smoke and entered the building when the internal set of doors opened and 

continued to do so when the outer doors were closed. This established that further experimental 

investigation would be required to quantify the heat losses through the entrance. 

2.2.2 Calculating Air Movement and Heat Loss Energy 

An analogue anemometer was used to measure the air flow velocity through the vestibule. Door 

contactors were connected to both automatic doors and data loggers to measure the open and close 

duration and frequencies. Also a minimum opening duration of the opening of the inner door would 

assist in calculating steady state calculations. Data loggers also recorded the dry bulb air temperatures 

externally in a shaded location and internally; in the vestibule and entrance foyer. For the foyer 

monitoring, a probe was positioned on a column at a height of 1.1m above the finished floor level 5.8m 

from the entrance. This location was earlier seen to be affected by the smoke in the video.  

As weather could impact the airflow into the building, local weather monitoring from the College’s 
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annually calibrated weather station collected data every 30 minutes. The station’s anemometer 

measured both wind speed and direction. Quantitative energy measurements were collected from the 

College’s online remote data facility of natural gas and electricity consumption. The fuel consumption 

for the whole College at any time could be analysed to observe patterns and linkages to overall activity.  

Fixed monitoring equipment recorded data for a two week period commencing on Monday 27th 

February 2012 including the movement of the entrance doors and the external/internal dry air 

temperatures. The busiest time of the College activity in the entrance was identified by the staff 

working in the reception, which experienced the discomfort in thermal sensation. This was identified as 

Monday mornings between 08.30 and 09.00hrs. This period was monitored using a mobile anemometer 

in the foyer, just inside the vestibule. An aggregate was used in these periods to measure the airflow 

velocity. 

 

3. Results 

3.1 Results from Data Collection 

The overall data analysis of the temperature probes and door contactors was restricted to the College 

building’s occupation period of 08.00-21.00 hours Monday to Thursday and 08.00-17.00 hours on 

Fridays.  

Building heating set point for the street location was 19 oC (+/- 1oC). Table 2 illustrates the temperature 

differences from the foyer to the outside temperatures, then the foyer to the inside temperatures. The 

foyer to outside ΔT appear to have a constant difference (+/- 1oC), whilst the foyer to inside ΔT appear 

to reflect the changes in the outside conditions, i.e., the colder the conditions outside, the larger 

temperature differential could be seen between the entrance area and the main body of the building. 

This outcome might explain some of the relationship of the sensations of thermal discomfort 

experienced by the reception staff.  

The experimental data used for heat loss calculation through the entrance doors is also shown in Table 

2. The wind direction or velocity appeared to have an impact on the airflow velocity measured just in 

the foyer through either increasing velocity by 0.5m/s or by switching direction from a south westerly 

to a north or north westerly. This is seen from a snapshot sample of three separate days. 

 

Table 1. Experimental Temperature and Air Flow Data 

Reading and location 
27.02.2012 

@ 08.30 

05.03.2012 

@ 08.30 

12.03.2012 

@ 08.30 

Outside temperature 7.2 4.1 5.2 

Foyer temperature from probe 17.8 13.9 14.4 

T of foyer to outside temperatures 10.6 9.8 9.2 

Inside temperature from probe 19.9 18.7 19.6 
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T of foyer to inside temperatures -2.1 -4.8 -5.2 

Airflow velocity in foyer entrance; (mean taken from anemometer) 0.5m/s 1.0m/s 0.5m/s 

Wind velocity from exposed weather station 1.3m/s 3.6m/s 1.8m/s 

Wind direction from exposed weather station WSW N WNW 

 

In order to analyze the effects further, a comparison was considered with the effects of the wind on the 

temperatures experienced inside the building. Table 3 demonstrates the impact of the wind velocity or 

direction over two separate days. 

 

Table 2. Summary of Wind Velocity and Direction 

Reading date and time Wind Velocity Wind Direction 

 2.01m/s W 

05.03.2012 @ 09.00 4.19m/s N/NE 

 

The temperature variations for the stated weather conditions are shown in Figures 2 and 3. The main 

internal temperature is generally stable throughout the occupancy period. The external temperatures 

demonstrate much lower temperatures. However, the graph of Figure 3 illustrates a much larger 

temperature difference (average of 5oC) between the foyer and the internal temperature in comparison 

to the average temperature difference of 1oC in Figure 2. In addition, the foyer temperature is 

fluctuating throughout the day. This suggests that effects of a wind direction change aimed at the front 

entrance coupled with a stronger wind velocity of 4.19m/s had an impact on the foyer temperature 

fluctuations.  

 

College Building 27th February 2012
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Figure 2. Collected Occupancy Temperatures for 27.02.12 
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College Building 5th March 2012
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Figure 3. Collected Occupancy Temperatures for 5.03.12 

 
A steady state heat loss method was chosen to calculate the heat loss from the building entrance doors. 

To complete the calculations, a mean of the temperatures for inside and outside the building was 

established as To=8.27°C and Ti=20.83°C. The heat loss via ventilation can be expressed as: 

Qv=C ρ q (Ti - To) 

where; 

C=1.03 *103 J/(kg·K) 

ρ=1.292 9 kg/m3 

q=1.837 5 m3/s 

Ti=20.83°C 

To=8.27°C 

ΔT=12.56°C 

The steady state ventilation heat loss was calculated as: Qv=30 734 W. 

With the location of the building being in the Midlands, a judgment was made to consider a thirty-six 

week heating season. The College students also have breaks with half terms and traditional holidays. 

These total six weeks through the heating season. As this was not measured during this period, these 

weeks have been discounted from the study. Therefore the total hours of doors operating over a 

representative heating season during full occupancy was established as 1830 hours. 

The door contactors offered variable data. With an overview of the readings, Monday 27th February was 

considered an average day. The doors opened and closed on 1963 occasions from 08.00hrs to 21.00hrs. 

The contactors were open for a total time of 8315s. As the doors open and close at 1m/s, it is clear that 

it would take 1s for the doors to open and close.  

As Qv=30734 W and the operational hours of the doors=1830hrs, then; 

(30 734W x 1 830hrs)/488s=115 252.5Wh 

Therefore the minimum potential heat loss through the front entrance doors could be a minimum of 

115.25kWh. Reflecting on the velocity of the smoke in the video through the building entrance, if the 
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steady state calculation was increased to a reasonable 1.0m/s, the potential heat loss through the front 

entrance doors would be considered to be 230.5kWh during a heating season. 

The heating strategies use both electricity and gas, the monitoring system cannot distinguish between 

the utility consumption rates. Therefore generic and overall utility consumption energy data was 

collected as shown in Table 4. The fuel energy loss would equate to heat loss/system efficiency. 

Therefore, judging on the age of the building an assumption was made that rated the overall system 

efficiencies at 80%. As the fossil fuel related energy that has been displaced from the front entrance 

doors cannot be identified, heat loss options and comparison were illustrated. Table 4 illustrates the 

front entrance heat loss against the total energy loss based on total electricity or gas consumption. 

 

Table 3. Impact of Front Entrance Heat Loss against Total Net Building Energy Loss 

Utility data readings: 

01.10.2011 to 30.04.2012 
kWh 

Fuel energy loss 

(kWh x 80%) 

Based on heat loss 

of 115.25kWh 

Based on heat loss 

of 230.5kWh 

Electricity Consumption 926 195 740 956 0.16% 0.31% 

Total Gas Consumption 10 4158 83 326 1.4% 2.8% 

 

To measure the carbon element of the fuel cost of the front entrance losses, Defra/DECC conversion 

factors were used. Table 5 illustrates the impact of the CO2 on the heat energy lost through the front 

entrance based on the average air flow velocity of 0.5 or 1.0m/s with either electricity or gas 

consumption. 

 

Table 4. Impact of Front Entrance Heat Loss on CO2: 1 Based on 0.5m/s; 2 Based on 1.0m/s Gas 

Fuel to CO2 based on heat 

loss through building 

entrance 

CO2 factor of fuel 
Based on heat loss of 

115.25kWh 

Based on heat loss 

of 230.5kWh 

kgCO2/kWh kgCO2 kgCO2 

Electricity 0.490 72 56.56 113.11 

Gas 0.184 83 21.30 42.60 

 

Using the data, potential heat loss outcomes were compared to the whole buildings’ energy 

consumption. This was used to offer some validation of the outcomes demonstrated. Further 

calculations were undertaken to consider the buildings’ CO2 emissions with respect to airflow into the 

front entrance and hot air displacement in the building as shown in Table 6. 

 

Table 5. Range of Results Following Data Analysis of Experimental Investigations 

Range of outcomes 

over period: 

Front entrance 

heat loss 

Front entrance heat loss (kWh) in comparison to 

the fuel energy consumption of building 
kgCO2 
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01.10.2011 to 

30.04.2012 

From 115.25kWh 0.16% 21.30 

To 230.5kWh 2.8% 113.11 

 

3.2 Building Dynamic Simulation 

Following the earlier video analysis in the front entrance, foyer, atria, café areas and the “street” further 

analysis was required, as these locations were affected by the smoke test. Integrated Environmental 

Solutions (IES) Virtual Environment software was selected to investigate airflow modelling through the 

IES Macroflo package.  

The building’s original CAD drawings were imported into the IES Modelbuilder. The rooms were all 

formed along with the floors and connections between the spaces. The fabric of the building was 

identified for all of the planes involved. Under the IES “Building Template Manager” and 

“Constructions” the fabric was assembled in the data for use and dissemination later e.g., the windows 

and walls allocated with appropriate thermal resistance properties. 

 

 
Figure 4. Plan View Schematic of the College Building; Red Areas Denoting Locations Simulated 

within IES 

 
Sensible and latent heat gains were described in terms of lighting, human occupancy and equipment 

such as computers. Solar gains would automatically be considered from the orientation of the building 

and the glazing type, location and size. The infiltration element of the ventilation was set at 1 air 

change per hour (ach). The mixed mode element of the ventilation was demonstrated through 

programming the opening windows in the stacks along the “street”. Wind and buoyancy pressures were 

also taken into consideration.  

Using macroflo, the opening threshold was set to open at temperatures over 22oC, replicating those 

used by the College. The heating strategy was entered into the building template manager with a 

minimum threshold of 18oC, and subsequent cooling of 22oC. The switching points were then 

established through APpro. The nearest geographical weather file was selected as Birmingham. 

“Suncast” established the heat and light gains, coupled with any effects of shading. The front entrance 
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doors were set as opening windows with College occupancy timings reflected and openable areas of 

15%.  

3.2.1 Simulated Front Entrance Designs and Results 

 

 
Figure 5. IES Modelled Designs (a) Original Design (b) Extended Existing Design (c) Additional 

Vestibule Design (d) Additional Vestibule Design with Opposing Doors for Entering Inside 

 

Four concepts, illustrated in Figure 5, were modelled and investigated. The first vestibule concept was 

the existing design. This could then offer a benchmark against other designs for the heating loads for 

the building under this concept. The second vestibule design simply extended the length of the original 

vestibule. The third design introduced a further construction to the outside incorporating a second 

vestibule and two further pairs of sliding doors. Consequently, resistance increased for any air paths as 

airflow had to turn 90o to enter the building. The fourth vestibule design maintained the additional 

construction of the third vestibule. It removed the internal pair of sliding doors and incorporated two 

pairs either side of this on the internal walls of the vestibule. Theoretical resistance was further 

increased to the air path as the airflow had to turn a total of 180o to enter the building. 

Simulations were run after implementing each design, expecting to demonstrate the direct effect of the 

outside air flow movement into the building through the front entrance. The results demonstrated 

increases in heat loads as each design was modelled.  

For the original design of the vestibule, the building simulation predicted an annual heating load of 

1.844MWh. The second vestibule design was predicted to have an annual load of 1.854MWh, an 

increase of 0.5%. The extended area would equate to 7m x 4m=28m2. The subsequent heat load being; 

10kWh/28m2=357kWh/m2.  

ECON19 indicates that a typical heat load from this type of building could be up to 201kWh/m2, 
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suggesting that 357kWh/m2 was too high. However, this model has two permanently opened doors 

(15% opening) at each end to simulate the front entrance air movement. Therefore with such an 

increase in the inevitable air changes, a significantly higher heat loss from this room could be expected.  

The third lobby design reduced the length of the first vestibule from the second design and then 

incorporated a second vestibule to introduce more resistance to the air flow paths as mentioned in 

CIBSE AM10: 2005. The heating load report predicted 1.867MWh, an increased load against the 

original design of 23kWh over the year (+1.3%). Again, the heat load increase could be explained by 

the outcomes of the previous design.  

The fourth lobby design further introduced more resistance to the air flow paths. Despite these 

strategies, the heating load report predicted 1.867MWh. Again, this was an increased load against the 

original design of 23kWh over the year (+1.3%).  

In order to recognise that the various designs would have increased the volume of the building and thus 

potentially increase the overall energy loads, the first and fourth designs were reprogrammed to make 

the vestibules unheated spaces. The resultant reports offered no change to the original outcomes.  

3.3 CFD Analysis 

Computational Fluid Dynamics (CFD) has been used widely to analyze natural ventilation. In this 

research CFD was used to investigate the flow patterns in the building caused by natural ventilation. 

3.3.1 Computational Domain and Boundary Conditions  

A full scale computational domain was built following the plans of the building. However, as with most 

CFD analysis the geometry was simplified. A hexagonal structured mesh with a resolution of 3 million 

nodes was employed for this study. The mesh constructed was considered appropriate when mesh 

independency was achieved. Air was selected as the working fluid. The floor was given the boundary 

condition of a distributed heat source with a heat input of 20W/m2 to represent heat gain in the building. 

The walls were considered adiabatic and assigned the “no-slip” boundary condition. An Automatic 

near-wall treatment was used which automatically switches from linear wall-functions (𝑢𝑢+=𝑦𝑦+ for 

𝑦𝑦+<11) to a low Re buffer layer region profile 11< 𝑦𝑦+<30 and a log-law profile for 𝑦𝑦+>30. In this study, 

all the openings such as windows and doors were closed, however small openings are created in order 

to mimic leaks from the building envelope. CFX (ANSYS, 2012) was used to run Reynolds Averaged 

Navier-Stokes (RANS) simulations with the RNG k-ε (Yakhot et al., 1992) turbulence model. The 

constants for the model are as follows: 

C1ε=1.42, C2ε=1.68, CμRNG=0.0845, σk=0.7194, σε=0.7194, ηo=4.38 and βRNG=0.012 

The convergence criterion for each time step was that the root mean square (RMS) residuals of the 

momentum, enthalpy and mass conservation equations should be less than 1×10-6. 

3.3.2 CFD results 

From plotting the velocity profile (Figure 6), it can be observed that air is drawn in from the ambient 

via the door opening. This cold air starts to heat, owing to the heat gains in the building, then rises up 

near the back wall and finally escapes via the atrium leakages at the top. The cold ambient air travels at 
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about 0.6m/s which is in line with the velocity measured in experiments. Vector plots (Figure 7) on the 

same plot further explains the flow pattern of air from outside into the building and further reveals the 

presence of a vortex, just above the stream of ambient air drawn in through the doorway. 

Streamlines plotted from the main entrance doorway illustrate the pattern of travel of the ambient air. 

Figure 7 demonstrates how much of the ambient air makes its way to the Bistro cafe area rather than 

along the “Street” of the building. Yan (2010) and Chen (2011) discussed the thermal discomfort 

experienced by the occupants, particularly the receptionist sitting near the entrance of the doorway. The 

CFD study shows how the ambient air travels in laminar streamlines about 6 meters into the domain 

before becoming turbulent. This turbulent flow causes spiral draughts that spin out towards the location 

occupied by the receptionist. This then explains the cold draughts in the area next to the doorway.  

 

 
Figure 6. Velocity Profile Span Wise through the Doorway 
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Figure 7. Vector Plots on a Plane through the Doorway 

 

 

Figure 8. Streamlines in the Computational Domain Plotted from the Doorway 
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4. Discussion 

The main aim of this study was to investigate the effects of air flow movement through high use front 

entrance doors. A range of strategies were employed i.e., smoke testing, instrument testing, building 

simulation and CFD to elucidate air flow phenomenon through the vestibule doors. The main 

investigations of the experimentation demonstrated potential steady state ventilation heat loss of 30.7 

kW and heat loss of 115.25kWh through a heating season. It also suggested that if the air movement 

velocity was increased to 1.0m/s, the heat loss could be 230.5kWh. The resultant CO2 produced ranged 

from 21.3kg and 113.11kg.  

The initial smoke testing suggested that front entrance vestibules can exacerbate heat energy loss by 

creating a “tunnel” for the air movement to be encouraged to flow. It also illustrated that the cold air 

could move into the building through the vestibule and hot air did not escape in an outward direction. 

The “tunnel” effect was also demonstrated with the outcomes in the CFD modelling when observing 

the laminar streamlines developed through the vestibule of the colder air entering the building. In 

attempting to reduce the cold airflows into the building, simulation software (IES) was used to model 

the building and then adapt the entrance design. The results did not appear to offer any significant 

reduction in energy use as identified by Cho et al. (2010) earlier. The is thought to be due to the stale 

air escaping the building from the outlets at the top sucks ambient air into the building regardless of the 

resistance that is employed to the ambient air entry.  

It was established that during the heating season, cold air will flow rapidly into the building through the 

main entrance vestibule, owing to its original design with the heating/ventilation strategies. As this 

papers’ design considerations may not reduce expected heat loads, other designs or strategies should be 

considered. With identifying laminar flows, further investigation would be recommended in reducing 

the impact of these. This could entail internal design proposals within the entrance/reception area, to 

create a separate boundary within the building being permanently pressurised using a variable speed 

fan. This could then resist the vortex identified in the CFD study and reduce the pressure differentials 

which encourage the flows into the building.  
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