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Abstract

In order to improve the utilization rate of renewable energy and comprehensively enhance the

economic efficiency and environmental friendliness of the microgrid, a multi - objective scheduling

model for the microgrid is proposed. The objective functions of this model are to minimize the power

generation cost, environmental cost, and wind and solar curtailment cost of the microgrid. The dream

optimization algorithm with an adaptive strategy is used to solve the model. Through comparative

analysis, it is verified that the proposed model has a better objective trade - off effect compared with

single-objective and dual - objective models. Compared with the scenario only considering generation

cost and environmental cost, the model can reduce the comprehensive operation cost by 2.9% and

lower the wind and solar curtailment cost by 63.44%. Meanwhile, the proposed algorithm is compared

with DOA, SSA, GWO, and PSO. It is concluded that the proposed algorithm has advantages in

solution quality, stability, and objective trade - off both in test functions and in specific cases.
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1. Introduction

With the increasing attention to environmental issues and power dispatching issues, the development of

microgrids (MGs), has been greatly valued (Uddin et al., 2023). MG scheduling optimization faces

multiple challenges, especially how to effectively integrate economic efficiency and environmental

friendliness in the process of scheduling, which becomes a key challenge in the design of optimization
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models. Moreover, the high penetration of renewable energy sources such as wind and solar energy

brings significant volatility and uncertainty, which affects the stability and reliability of the power

system (Ali et al., 2024). Research on MG optimization models mainly focuses on the

economic-environmental. Lin (Lin et al., 2023) taking into account the constraints of the flexibility

margin index of renewable resources and aiming to minimize the total operating cost, optimized

scheduling strategies for different time scales, such as day-ahead scheduling and intra - day scheduling,

are formulated, which reduces the operating cost and the wind curtailment rate. Even if studies like this

have taken wind and solar curtailment into account, them usually treat the optimization of wind and

solar curtailment cost as a constraint condition. This leads to the complementary advantage of weight

distribution among objectives and addresses the issue of insufficient optimization dimensions.

The MG scheduling problem is characterized by multiple objectives and multiple dimensions, making

it suitable for solution using computer algorithms. grey wolf optimizer (GWO) (Wang et al., 2020),

particle swarm optimization (PSO) (Raghavan et al., 2020), sparrow search algorithm (SSA) (Mortazi

et al., 2023) have been applied in the MG scheduling problem. However, these traditional algorithms

all have drawbacks such as being prone to getting trapped in local optima and having insufficient

convergence accuracy.

In response to the above issues, this paper constructs a three-objective scheduling model for MG that

includes generation cost, environmental cost, and wind and solar curtailment cost. Moreover, an

improved dream optimization algorithm (DOA) named adaptive dream optimization algorithm (ADOA)

with an adaptive strategy is proposed to solve the optimization model. By breaking through the

limitations of traditional constraint conditions, the model treats the wind and solar curtailment cost as

an independent optimization objective, thus establishing a more comprehensive multi-objective

scheduling framework. Finally, through simulation verification, the model and algorithm proposed in

this paper can significantly reduce the comprehensive comprehensive operation cost of the MG, and

improve the MG's economic performance, environmental friendliness, and clean energy consumption

rate.

2. MGModel

This paper considers a MG operates in the grid-connected mode and can conduct power interaction

with the Grid. The MG contains distributed generation devices (wind turbines (WT), photovoltaics

(PV), microturbines (MT), fuel cells (FC)), and an energy storage system (ESS), and its structure is

shown in Figure 1.
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Figure 1. Schematic Diagram of MG Model

2.1 WT Model
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In the above equation, CWT,OM is the operation and maintenance cost of the WT, kWT,OM is the unit

operation and maintenance cost coefficient of the WT, PWT(t) is the unit operation and maintenance cost

coefficient of the WT, and T is the scheduling cycle.

2.2 PV Model
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In the above equation, CPV,OM is the operation and maintenance cost of the PV, kPV,OM is the unit

operation and maintenance cost coefficient of the PV, PPV(t) is the output power of the PV in the tth

time period.

2.3 MT Model

The operation and maintenance cost and fuel cost of the MT are as follows.
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In the above equation, CMT,OM is the operation and maintenance cost of the MT, kMT,OM is the operation

and maintenance cost of the MT, CMT,fuel is the fuel cost of the MT；PMT(t) and ηMT(t) are the output

power and working efficiency of the MT in the tth time period respectively；ρgas is the price of natural

gas, and LHV is the lower heating value of natural gas.
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2.4 FC Model
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In the above equation, CFC,OM is the operation and maintenance cost of the FC, kFC,OM is the unit

operation and maintenance cost coefficient of the FC, CFC,fuel and PFC(t) are respectively the fuel cost of

the FC and the fuel cost and output power of the FC；ηFC is the working efficiency of the FC.

2.5 ESS Model
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In the above equation, SOCESS(t) is the state of charge of the energy storage in the ESS after the end of

the tth time period；Pchr(t) and Pdis(t) are the charging amount and discharging amount of the ESS；ηchr

and ηdis represent the charging efficiency and discharging efficiency of the ESS, Ichr(t) and Idis(t) are the

charging state flag bit and discharging state flag bit of the ESS. are the charging state flag bit and

discharging state flag bit of the ESS, Ichr(t)=1，Idis(t)=0. When the ESS is discharging, Ichr(t)=0，Idis(t)=1.

CESS,OM is the operation and maintenance cost of the ESS；kESS,OM is the unit operation and maintenance

cost coefficient of the ESS.

2.6 Demand Response Model

With time-of-use (TOU) electricity pricing, the relationship between the load and the electricity price

can be expressed as:
24
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In the above equation, L(t) and L0(t) are the load and the initial load, ρbuy0 and ρbuy re the electricity

prices before and after the implementation of the TOU electricity pricing, E is the price elasticity

matrix.

3. Objective Function and Constraints

In order to uniformly coordinate the economic efficiency, environmental friendliness and improve the

consumption of wind and solar energy of the system operation, the optimization objective is considered

to be minimizing the comprehensive operation cost of the MG. The comprehensive operation cost of

the MG includes economic cost, environmental cost, and curtailment cost of wind and photovoltaic

power.
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3.1 Objective Function

3.1.1 Generation Cost

The generation cost consists of operation and maintenance cost, fuel cost, and power interaction cost.
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In the above equation, F1 is the generation cost, Cn,OM is the operation and maintenance cost of the nth

device；N is the total number of devices;；Pgrid,buy and Pgrid,sell are the interaction powers between the and

the Grid. ρbuy and ρsellare the electricity purchase price and the electricity selling price.

3.1.2 Environmental Cost

The environmental cost refers to the treatment cost of polluting gases generated when the MT, FC and

the Grid supply power.
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In the above equation, F2 is the environmental cost, km,emi is the pollution emission penalty coefficient

of the mth kind of polluting gas, λm,MT, λm,FC and λm,grid are the pollution gas emission coefficients when

the MT, FC and the Grid generate power.

3.1.3 curtailment Cost

The curtailment cost of wind and photovoltaic power is the cost of the power output of WT and PV that

has not been absorbed.

3 PV_p WT_p PV WT( )pF c P P P P    (10)

In the above equation, F3 is the curtailment cost, cp is the treatment cost per unit power for curtailed

wind and photovoltaic power, PPV_p, PWT_p, PPV and PWT are the predicted output powers of the PV and

WT and their actual output powers respectively.

3.1.4 Objective Function

The objective function of the multi-objective optimal dispatch problem of the MG is defined as,

1 1 2 2 3 3min F w F w F w F   (11)

1 2 3 1w w w   (12)

In the above equation, F is the comprehensive operation cost. w1, w2, and w3 are the weights of the

generation cost, environmental cost and curtailment cost when calculating the comprehensive operation

cost. In this model, it is taken that w1=w2=w3.

3.2 Constraints

3.2.1 Power Balance Constraint
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PV WT DE MT FC grid,buy grid,sell chr chr chr dis

dis

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

P t
L t P t P t P t P t P t P t P t P t I t I t


 

          
 

(13)



http://www.scholink.org/ojs/index.php/se Sustainability in Environment Vol. 10, No. 1, 2025

Published by SCHOLINK INC.
104

3.2.2 Power Constraint
min max( )n n nP P t P  (14)

In the above equation, Pn(t) is the output power of device, max
nP 和 min

nP 分 are the upper and lower

limits of the output power per unit time of devices。

3.2.3 Energy Storage Constraint
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In the above equation,
min
ESSSOC ,

min
ESSSOC are the upper and lower limits of the ESS capacity.

min
chrP ,

max
chrP ,

min
disP and

max
disP are the upper and lower limits of the charging and discharging power of the

ESS.

3.2.4 Ramp Rate Constraint

( ) ( 1)n n nP t P t R   (16)

In the above equation, Rn is the maximum ramp-up/down power of device n.

3.2.5 Interconnection Line Constraint
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In the above equation,
max
grid,buyP ,

min
grid,buyP ,

max
grid,buyP and

min
grid,buyP are the upper and lower limits of the

power interaction with the Grid per unit time.

4. Solution Algorithm

4.1 DOA

DOA is a new meta-heuristic algorithm inspired by human dreams. This algorithm divides the

optimization process into exploration and exploitation stages, and combines the strategies of partial

memory retention, forgetting, and supplementation. It can improve the convergence speed during the

exploration stage and enhance the ability to escape from local optima during the exploitation stage

(Lang et al., 2025).

4.2 ADOA

The DOA makes individuals execute the forgetting and supplementation strategy or the dream sharing

strategy according to a certain forgetting dimension in both the exploration and exploitation stages.

Among them, the calculation method of the forgetting dimension is:
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In the above equation, kq represents the number of forgetting dimensions of group q in the exploration

stage, kr is the number of forgetting dimensions in the exploitation stage, Dim is the dimension of the

problem. Randi (a, b) is a random integer selected within the range of [a, b].

During the operation of the initial algorithm, the selection of the forgetting dimension is completely

random, and the update may not be closely related enough to the historical optimal update relationship

in the development process. Considering the addition of an adaptive strategy, in the exploration stage,

the statistical information of the population fitness is introduced, and the forgetting dimension is

dynamically adjusted according to the improvement degree and diversity of each group of the

population. When the population is significantly improved, a larger search range is maintained, and

when the population is stagnant, the diversity of the population is dynamically increased according to

the iterative process; in the exploitation stage, the forgetting dimension that decreases non-linearly with

the iterative process is used.

This adaptive strategy based on renewing information can accurately reflect the search state. During the

exploration phase, when the update frequency of the optimal value in each group is high, maintain a

high forgetting dimension to enable individuals to search in a broader space. Conversely, reduce the

forgetting dimension to focus on local search. As the iterative process progresses, the search range is

gradually narrowed to balance global and local searches.

The optimized calculation method of the forgetting dimension is as follows:
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In the above equation, kq_max and kq_min is the maximum and minimum values of the forgetting

dimensions of group q in the exploration stage；I, Id and Imax are the current number of iterations, the

maximum number of iterations in the exploration stage, and the total maximum number of iterations.

ceil(a) represents rounding up the value of a, and cont is the success rate of updating the group's

optimal solution for each group in the current iteration.

4.3 Analysis of Algorithms

Using standard test functions for comparison can intuitively reflect the capabilities of the algorithms. In

this paper, three typical test functions are selected. Among them, f1(x) is a unimodal function with only
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one optimal solution, and f2(x) and f3(x) are multimodal functions, which have several local optimal

solutions and one theoretical optimal solution. The information of the test functions is shown in Table

1.

Table 1. Test Function

Fuction Range d
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The DOA, PSO, SSA, and GWO algorithms are compared with the ADOA algorithm, and a

comparative analysis is carried out from the aspects of convergence accuracy, stability, and

convergence speed. To achieve a fair comparison, for all algorithms, the population size is set to 100,

the number of iterations is set to 400, and all algorithms are subjected to 20 independent experiments to

avoid the randomness of the experiments. The average iteration curves of the five algorithms under the

same conditions are shown in Figures 2, 3, and 4. The best, mean, standard deviations, and average

running times of the test results are shown in Table 2. The parameter settings of PSO are w = 0.5, c1 =

1.5, and c2 = 1.5. For SSA, ST = 0.2, SD = 0.8, and PD = 0.7. For GWO, α∈ [2, 0].

Figures 2, 3, and 4 depict the evolutionary processes of the five algorithms when solving the optimal

solutions of different functions. Although the convergence speed of ADOA slows down, the quality of

the obtained optimal solution is higher than that of other algorithms, and there is a significant

improvement in the comprehensive solving ability compared with DOA.
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Figure 2. Algorithm Convergence Curve of f1(x)

Figure 3. Algorithm Convergence Curve of f2(x)

Figure 4. Algorithm Convergence Curve of f3(x)
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Table 2. Test Results

Function Algorithms Best Mean Std Tmean

f1(x) ADOA 4.9503E-04 0.1329 0.2148 0.5566

DOA 5.7372E-04 0.2421 0.5285 0.5588

PSO 1.8100E-05 5.3608 6.9764 0.5055

SSA 0.0738 6.4875 6.8274 0.7029

GWO 0.0811 3.9911 5.9540 0.5222

f2(x) ADOA -1 -0.9999 1.1919E-09 0.0217

DOA -1 -0.9649 0.0325 0.02178

PSO -1 -0.9968 0.0142 0.02126

SSA -1 -1 0 0.0826

GWO -1 -1 0 0.0253

f3(x) ADOA -959.6407 -959.5040 0.6086 0.0227

DOA -959.6406 -936.2017 27.0854 0.0224

PSO -959.6407 -867.6961 95.9855 0.0237

SSA -959.6407 -942.6777 37.6097 0.0828

GWO -959.6407 -934.5543 57.4254 0.0269

Table 2 describes the test results of the five algorithms. For f1(x) and f2(x), ADOA has advantages in

terms of the best, mean, and standard deviation. Although its average running speed is slightly longer

than those of PSO and GWO, it has obvious advantages in other indicators and shows the strongest

comprehensive superiority. For f3(x), ADOA still has advantages in the best, mean, and standard

deviation, and its average running speed is only second to that of DOA.

Combined with Figure 4, although when finding the same optimal solution, the iteration speed of DOA

is significantly slower than that of GWO, by comparing the mean, standard deviation, and average

running speed, it can be known that the optimization search effect of DOA is more stable and the

running speed is faster. From the differences with other algorithms, it can be analyzed that the

introduction of the adaptive strategy can improve the local optimization search ability of the DOA

algorithm. From the average convergence curve, it can be seen that the adaptive strategy improves the

ability to jump out of local optimal solutions, and from the best, mean, and standard deviation, it can be

known that adding the adaptive strategy can also make the optimization search effect of the algorithm

more stable and accurate.

Through the testing of the ADOA algorithm, it can be concluded that the ADOA algorithm has superior

capabilities in solving problems with multiple local optimal solutions and is suitable for analyzing the

optimal scheduling problem of MGs.
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5. Case Analysis

Table 3. Distributed Generation Devices Parameters

Minimum

capacity

(kW)

Maximum

capacity

(kWh)

Ramping rate

constrains

(kW)

Capacity

(kW)

Operation and

maintenance

(RMB/kW)

WT 5 30 - - 0.1

PV 0 30 - - 0.298

MT 6 30 -5/10 - 0.031

FC 3 40 -2/2 - 0.002

grid -30 30 - - -

ESS -30 30 - 200 0.012

Table 4. The Coefficients of Pollutant Emission and Treatment Price

Pollutant Pollutant Emission (g/kWh)

Remediation

cost

(RMB/kg)

MT DE FC Grid

CO2 724 697 441 889 0.21

SO2 0.0036 0.22 0.0022 0.8 14.84

NOx 0.2 0.5 0.00136 0.6 62.96

Table 5. Price Flexibility

Peak Off Peak Valley

Peak -0.1 0.016 0.012

Off Peak 0.016 -0.1 0.016

Valley 0.012 0.016 -0.1

To further verify the effectiveness of the proposed method, an experimental simulation was carried out

using a typical daily model of a certain MG. The basic parameters of its distributed energy sources,

pollutant emission coefficients(Xie et al, 2024), and price elasticity coefficients are shown in Table 3

and Table 4. The predicted output of clean energy is shown in Figure 5, and the electricity trading

price(Dey et al,2023) and the user load curve of the MG(Dey et al, 2022) are shown in Figure 6. Using

MATLAB to simulate the model.
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Figure 5. Predicted Output Curve of PV and WT

Figure 6. User Load and TOU Price

5.1 Algorithm Comparison Experiment

In order to compare the effects of the ADOA algorithm and the comparative algorithms in the MG

scheduling problem, the five algorithms mentioned in the previous section were used to solve the

model in this paper. The population size was set to 100, and the maximum number of iterations was set

to 400. Each algorithm was independently run 20 times under the same conditions, and the average

convergence curve, the optimal value, average value, standard deviation of the fitness value, the

average running time, as well as the fitness value corresponding to the optimal scheduling arrangement

obtained by each algorithm were recorded.

It can be seen from Figure 7 that the convergence speeds of the five algorithms in the early stage are

basically similar. The ADOA algorithm is slightly faster than the DOA algorithm, but slightly slower

than the other algorithms. Even so, when the maximum number of iterations is reached, the optimal

value found by the ADOA algorithm is the smallest. Therefore, it can be confirmed that when dealing
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with the multi-objective scheduling problem of MGs, the ADOA algorithm can jump out of local

optima to a greater extent, thus improving the quality of the solution.

Figure 7. Algorithm Convergence Curve

Table 6. Simulation Results

Function Algorithms Best Mean Std Tmean

F ADOA 353.1132 356.6688 1.74603 6.0203

DOA 355.5131 359.5700 2.1823 4.7686

PSO 369.4908 397.9500 14.9598 5.2751

SSA 353.9548 362.1102 5.36403 4.9013

GWO 381.8513 388.2561 3.2520 5.6478

Table 6 records the simulation results of the five algorithms. It can be seen that ADOA

comprehensively leads in terms of solution quality and solution stability, with the smallest best, mean,

and standard deviation. This indicates that its improvement strategy effectively enhances the search

ability. Although the computation time of ADOA is slightly longer than that of DOA and SSA, it

achieves better results at a reasonable time cost, making it suitable for scenarios with high-precision

requirements. As the original version of ADOA, DOA has the highest computational efficiency, but its

solution quality and stability are both inferior to the improved ADOA. Its performance verifies the

necessity of the improvement strategy.

Table 7 records the specific data of three types of costs corresponding to each algorithm at the optimal

fitness value. In terms of power generation cost, ADOA has the lowest power generation cost, while

GWO has the highest. PSO and SSA show medium-level performance. In terms of environmental cost,

DOA has the best environmental protection performance, and PSO performs the worst. The difference

between ADOA and DOA is extremely small (only 0.97). In terms of curtailment cost, SSA completely
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avoids wind and solar curtailment, ADOA is extremely close to the optimal value, and PSO performs

the worst.

Table 7. Fitness Value

Algorithms F1 F2 F3

ADOA 916.2759 145.8914 0.0962

DOA 943.8542 144.9213 0.2

PSO 923.8759 171.4377 13.1588

SSA 940.3068 150.7665 0

GWO 976.2745 164.1858 5.0938

Overall, ADOA has the lowest power generation cost, and its environmental cost and wind and solar

curtailment cost are both sub-optimal. It shows the best performance in multi-objective balance and has

the optimal comprehensive performance in the scenario of simultaneously optimizing the three types of

costs. This verifies the superiority of ADOA in solving the multi-objective scheduling problem of MGs.

5.2 Weight Sensitivity Analysis

To study the influence of the weight configuration of the objective function on the scheduling results

and verify the effectiveness of the multi-objective optimization strategy, seven additional scenarios

were set up. The ADOA algorithm was independently used to solve the problems in each scenario 10

times. The weight settings of each scenario and the optimal solution results are shown in Table 8.

Table 8. Scenario Setting and Cost Comparison

scenarios w F1 F2 F3 F1+F2+F3

1 w1=1, w2=0, w3=0 905.4721 168.7272 0.5436 1074.743

2 w1=0 w2=1 w3=0 965.0892 123.7257 0.9077 1089.723

3 w1=0 w2=0, w3=1 1070.4572 167.6081 0.0039 1238.069

4 w1=0.5 w2=0.5, w3=0 944.1756 143.5812 0.2631 1090.163

5 w1=0, w2=0.5, w3=0.5 966.7230 121.7289 0.0549 1088.507

6 w1=0.5, w2=0, w3=0.5 931.4945 158.9391 0.2010 1090.635

7 This paper 916.2759 145.8914 0.0962 1062.264

In Table 8, Scenarios 1-3 are for single-objective optimization. Under single-objective optimization,

the corresponding objective reaches the optimal state, but other objectives deteriorate significantly.

Scenario 1 (only F1): The power generation cost is the lowest, but the environmental cost is the highest.

Scenario 2 (only F2): The environmental cost is the lowest, but the generation cost increases by 6.58 %,

and the wind and solar curtailment rises slightly.
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Scenario 3 (only F3): The wind and solar curtailment is close to zero, but the generation and

environmental costs soar, resulting in the highest comprehensive operation cost.

Scenarios 4-6 are for dual-objective optimization. After the weights are distributed, the comprehensive

operation cost is lower than that in the single-objective scenarios, but the optimal balance is not

achieved.

Scenario 4 (F1+F2): The power generation and environmental costs are balanced, but the

comprehensive operation cost is still higher than that in Scenario 7.

Scenario 5 (F2+F3): The environmental cost and wind and solar curtailment perform well, but the

generation cost is relatively high.

Scenario 6 (F1+F3): The power generation cost is relatively low, but the environmental cost increases

significantly.

In this paper, considering the three-objective optimization, the comprehensive operation cost is the

lowest, which is 12.479 lower than that in Scenario 1 (the second-best). This indicates that the

algorithm is superior in global balance. It has an obvious balancing effect. The generation cost is close

to the optimal value in Scenario 1 (905.47 vs 916.28), but the environmental cost and curtailment cost

are moderate improved (168.7272 vs 145.8914, 0.5438 vs 0.0962). The environmental cost F2 is 13%

lower than that in Scenario 1, and the curtailment cost is 89% lower than that in Scenario 2.

In summary, the weight distribution directly determines the optimization direction, but it is difficult to

fully resolve multi-objective conflicts with fixed weights. The three-objective optimization mechanism

of this scheduling model achieves a better global balance among generation cost, environmental cost,

and wind and solar curtailment, reducing the comprehensive operation cost by 2.4%-14.2%.

Specifically, compared with the situation where the cost of wind and solar power curtailment is not

considered in the objective function, the cost of wind and solar power curtailment has been reduced by

63.44% to 90.38%, which verifies its effectiveness in practical applications.

5.3 Optimal Output Curve of the MG

Figure 8. Equipment Output Curves
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Figure 8 shows the equipment output curves corresponding to the optimal scheduling results of the MG

btained by the ADOA algorithm. The output powers of PV and WT are close to their predicted outputs.

During the periods from 00:00 to 06:00 and 12:00 to 15:00 when the electricity price is off-peak,

priority is given to charging the ESS. When there is insufficient power in the system, electricity is

purchased from the grid. From 7:00 to 11:00 and 16:00 to 22:00, the surplus power of the system is

sold to the grid. Throughout the day, MT and FC operate close to full load. This is because, compared

with purchasing electricity from the grid, using equipment such as MT and FC that burn natural gas is

more cost-effective in terms of environmental costs during most periods.

6. Conclusion

In this paper, aiming at the problem that the MG optimization model often only considers two

objectives, especially that the wind and solar curtailment cost is only used as a constraint condition and

not included in the optimization objectives, a multi-objective scheduling model for MGs is proposed,

which takes into account the power generation cost, environmental cost, and wind and solar curtailment

cost. The improved DOA algorithm, ADOA, is used to solve the model. The comprehensive

optimization performance of the proposed algorithm improvement method and the model is verified

through multi-algorithm simulations and multi-scenario weight configuration experiments. The

comprehensive performance of the ADOA algorithm is better than that of DOA, PSO, SSA, and GWO

when solving the test functions, with obvious advantages in terms of the optimal value, average value,

and standard deviation. Although it takes longer to find the optimal solution for some test functions, it

can obtain higher-quality solutions. Although the introduction of the adaptive forgetting dimension

slightly reduces the convergence speed, its ability to jump out of local optima and the quality of the

optimization are significantly improved. In addition, the simulation results of the MG data show that

the multi-objective optimization model performs excellently in the comprehensive objective

optimization, reducing the comprehensive operation cost by about 2.3%-16.4%, and reducing the wind

and solar power curtailment by 63.44% to 90.38%., compared with the single-objective optimization

scenarios and dual-objective optimization scenarios.

Based on the above comprehensive analysis, the model and ADOA algorithm proposed in this paper

can significantly enhance the environmental friendliness of the MG and the utilization rate of

renewable energy, thereby making certain contributions to sustainable development.
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