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Abstract

Urban Heat Islands (UHIs) occur when urban areas experience significantly higher temperatures

than their rural surroundings due to anthropogenic heat emissions and land cover modification

(Oke, 1982; Arnfield, 2003). This study presents a comparative analysis of UHI effects in Beijing

and New York City (NYC) using open-source satellite datasets (MODIS and Landsat) and

socio-environmental data (e.g., WorldPop population) (Wan, Hook, & Hulley, 2013; Didan, 2021;

Tatem, 2017). Land Surface Temperature (LST), vegetation cover (NDVI), impervious surface

fraction, and population density were analyzed for summer periods around 2000 and 2020 to

assess spatial patterns and temporal trends. Statistical models, including multiple linear

regression and generalized additive models (GAMs) (Wood, 2017; Fotheringham, Brunsdon, &

Charlton, 2002), were used to quantify relationships between LST and key UHI drivers. Results

show pronounced UHI effects in both cities: Beijing’s mean summer daytime surface UHI intensity

reached approximately 5.5 °C, while NYC’s averaged around 4 °C (Zhang, J., Zhang, Z., Sun,

Wang, 2022; Bornstein, 1968). High NDVI values (dense vegetation) correlated strongly with

reduced LST (cooling effect of roughly –6°C per NDVI unit), whereas impervious surfaces and

population density correlated positively with LST. Spatial analyses revealed urban cores were

5–10 °C hotter than greener suburban zones on extreme days. Time-series data indicate

intensification of UHIs in both cities over the past two decades, coinciding with urban expansion

and rising background temperatures (Zhang, J., Zhang, Z., Sun, & Wang, 2022; Peng, Piao, Ciais,

Friedlingstein, Ottl´e, C., Br´eon, F.-M., et al., 2012). The statistical modeling (R2 ≈ 0.60–0.65)

confirmed significant impacts of vegetation cover (p < 0.001) and impervious surfaces (p < 0.001)

on urban temperature variability. In conclusion, Beijing’s inland climate and rapid urbanization

contribute to a stronger daytime UHI, while NYC’s coastal setting moderates daytime extremes but

sustains a persistent nocturnal UHI. These findings underscore the importance of mitigation
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strategies—expanded green infrastructure, reflective surfaces, and adaptive urban design—to

reduce heat stress amid ongoing urbanization and climate change.
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1. Introduction

Urbanization alters the surface energy balance, often causing cities to be warmer than their rural

surroundings—a phenomenon known as the urban heat island (UHI) (Oke, 1982; Arnfield, 2003). As

urban areas expand and replace natural surfaces with buildings and pavement, they experience increased

heat retention, reduced evaporative cooling, and additional anthropogenic heat release (Imhoff, Zhang,

Wolfe, & Bounoua, 2010). Globally, UHIs amplify climate warming; a large-scale study across more than

1,600 cities found that dense urban centers exhibit significantly higher warming rates than surrounding

regions (Peng, Piao, Ciais, Friedlingstein, Ottl, Br´eon, et al., 2012). This has serious implications:

elevated urban temperatures increase energy demand, degrade air quality, and heighten risks of

heat-related illness (Santamouris, 2014). Mitigating UHI effects is thus essential for sustainable

development and public health.

Land Surface Temperature (LST) is a key indicator of UHI intensity and can be derived from satellite

thermal infrared data, providing consistent spatial coverage at the city scale (Voogt & Oke, 2003). Typical

UHI drivers include vegetation cover, impervious surfaces, and population density. Vegetation—often

represented by the Normalized Difference Vegetation Index (NDVI)—has a well-established cooling

influence through shading and evapotranspiration, whereas impervious materials like asphalt and concrete

trap and re-radiate heat. High-density urban districts, characterized by reduced greenery and intense

human activity, tend to exhibit the highest LST values.

Beijing and New York City provide a compelling contrast in UHI dynamics. Beijing, an inland megacity

with a continental monsoon climate, has experienced rapid urban growth that has intensified its UHI. New

York City, a coastal megacity, experiences strong nocturnal UHIs due to retained heat in dense urban

structures (Bornstein, 1968). Recent satellite analyses show that Beijing’s summer daytime surface UHI

intensity reaches about 5.5 ○C, while NYC’s averages around 4 ○C. This study aims to (1) quantify UHI

magnitude in both cities, (2) examine changes in LST and NDVI over the past two decades, and (3) model

the influence of vegetation, impervious surface, and population density on urban temperature. Using

open- source datasets (MODIS, Landsat, WorldPop) and reproducible spatial analysis, we assess how

differing geography and climate shape UHI mechanisms and mitigation prospects.
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Figure 1. Daytime Land Surface Temperature (LST) map of Beijing (from ResearchGate /

Original Source) Showing Urban–Rural Thermal Contrast. (“Daytime Land Surface Temperature

in Beijing” (Figure 3). )

2. Methodology: Data Collection and Preprocessing

To compare UHI effects, we compiled multi-source geospatial datasets for Beijing and New York City,

focusing on variables known to influence urban temperature: land surface temperature (LST), vegetation

index (NDVI), impervious surface cover, and population density. All datasets were open-access and

processed in a GIS environment to ensure spatial and temporal alignment (Peng, Piao, Ciais,

Friedlingstein, Ottl´e, Br´eon, et al., 2012; Zhang, Zhang, Sun, & Wang, 2022).

2.1 Land Surface Temperature (LST)

We obtained satellite-derived LST from NASA’s Moderate Resolution Imaging Spectrora-diometer

(MODIS) and Landsat missions (Wan, 2014). For long-term analysis, we used the 8-day composite LST

product (MOD11A2/MYD11A2) at 1 km resolution covering 2000-2020, providing consistent summer

daytime and nighttime surface temperatures. For fine-scale spatial detail, we retrieved LST from Landsat 7/8

thermal infrared data for selected peak summer days, converting brightness temperature to LST with

emissivity correction . All LST datasets were reprojected to WGS84 and resampled to a 1 km grid for

integrationwith other variables.

2.2 Vegetation Index (NDVI)

NDVI was derived from Landsat optical imagery and MODIS vegetation products to ensure temporal

consistency. Landsat 7/8 surface reflectance data (30 m resolution) for summer months were used to

compute:

NDV I =NIR −Red,

NIR + Red
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capturing high-resolution vegetation distributions. For multi-year trends, MODIS NDVI (MOD13A2,

500 m–1 km) was averaged for July–August to represent peak greenness (Peng, Piao, Ciais,

Friedlingstein, Ottl´e, Br´eon et al., 2012). The rasters were cloud-masked and aggregated to 1 km to

match other layers.

2.3 Impervious Surface Area

Impervious surface extent was quantified using high-resolution land cover datasets. For Bei- jing, we used

the GlobeLand30 dataset and national land use maps (30 m) (Chen, Liao, Chen, Peng, Chen, Zhang, ...

Mills, 2015). For NYC, we employed the USGS National Land Cover Database (NLCD) (Homer,

Dewitz, Jin, Xian, Costello, Danielson, ... Wickham, 2020) to map impervious fractions. All were

cross-validated with the Global Human Settlement Layer to ensure consistency (Pesaresi, Ehrlich, Ferri,

Florczyk, Freire, Halkia, ... Syrris, 2016). Impervious surface area (ISA) was expressed as percentage

per grid cell and resampled to 1 km for integration.

2.4 Population Density

Population density was derived from the WorldPop dataset (100 m resolution) (Tatem, 2017). The 2020

gridded data were aggregated to 1 km cells (persons/km²) to represent spatial population in- tensity. For

historical comparison (circa 2000), census-based WorldPop reconstructions were used. This

socio-economic variable complements the physical drivers of UHI and captures anthropogenic

influence.

2.5 Urban and Suburban Zoning

We defined “urban” and “suburban/rural” zones for both cities using administrative and morphological

criteria (Zhang, J., Zhang, Z., Sun, & Wang, 2022). In Beijing, the urban core was delineated within the

Fifth Ring Road, while suburban areas extended 20–50 km outward. In NYC, the five boroughs

constituted the urban core, and suburbs included areas within 50 km of Manhattan (Long Island,

Westchester, New Jersey, Connecticut). These boundaries enabled consistent urban–rural comparison.

All raster layers (LST, NDVI, ISA, and population) were clipped to each city’s extent and harmonized

to a 1 km grid. We computed mean and maximum LST, mean NDVI, and ISA fraction for both zones,

and derived the Surface Urban Heat Island Intensity (SUHII) as:

SUHII = LSTurban − LSTrural.

This metric quantifies the temperature differential between city core and surroundings (Oke, 1982).

Both cities’ datasets were processed in parallel using identical methods to ensure comparability across

regions and time periods.

3. Modeling Approach

To explore the relationships between land surface temperature (LST) and its potential drivers,

employed statistical modeling at the 1 km grid-cell level. Each grid cell within the study area was

treated as an observation with the following attributes: LST (dependent variable) and three primary

independent variables—NDVI, impervious surface percentage, and population density. By linking these



http://www.scholink.org/ojs/index.php/se Sustainability in Environment Vol. 10, No. 4, 2025

Published by SCHOLINK INC.
180

variables, aim to infer how vegetation, urbanization, and human presence contribute to spatial variations

in temperature in each city.

Linear Regression

first applied multiple linear regression to quantify the linear associations between LST and the predictors.

The model for each city can be written as:

LSTij = β0 + β1 (NDVIij) + β2 (Impervious%ij ) + β3 (PopDensityij ) + ϵij, (1)

where β0 is the intercept (baseline LST), β1,2,3 are coefficients for NDVI, impervious fraction, and population

density respectively, and ϵij is the error term for grid cell (i, j). fitted this model separately for Beijing

and NYC using ordinary least squares (OLS).

Before modeling, examined pairwise correlations among predictors: as expected, NDVI and impervious %

were highly inversely correlated (in dense cities, high impervious cover implies low NDVI). This

multicollinearity can inflate coefficient uncertainty. To mitigate this, standardized (mean-centered)

predictors for numerical stability and inspected variance inflation factors (VIF). VIF values for NDVI and

impervious hovered around 5–10 in some tests, indicating moderately high collinearity. retained both

variables for completeness but interpret coefficients with this in mind. Population density showed lower

correlation with NDVI/impervious in the dataset, thus adding complementary information.

Model evaluation considered overall fit (R2 and root-mean-square error, RMSE) and coefficient

significance (p-values). used robust standard errors to account for potential spatial heteroscedasticity

(temperature variability may differ between urban cores and fringes). Models were first run on summer

daytime LST (capturing maximal UHI), and also tested nighttime LST from MODIS for a

complementary view (particularly relevant for NYC). report coefficients, standard errors, p-values, and R2

in the Results, enabling direct comparison of effect magnitudes (e.g., degrees of LST change per 0.1

increase in NDVI or per 10% increase in impervious cover).

Generalized Additive Model (GAM)

To investigate potential non-linear relationships, also fitted GAMs:

LST = α + f1(NDVI) + f2(Impervious%) + f3(PopDensity) + ϵ, (2)

where f1, f2, f3 are smooth spline functions. This allows, for example, the effect of NDVI on LST to

vary across greenness levels (e.g., diminishing returns at high NDVI), rather than forcing linearity.

used thin-plate regression splines with degrees of freedom chosen by generalized cross-validation, and

compared GAMs to linear models via percent deviance explained (analogous to R2) and AIC. The GAMs

help assess whether linearity is reasonable or whether meaningful curvature exists.

Model Validation

validated in two ways. First, a random 20% of grid cells served as a test set to evaluate prediction error

(RMSE). Second, compared model-predicted LST maps with observed LST to verify whether

hotspots/coolspots were captured. Both linear regression and GAM showed good agreement overall, with

slightly lower error for GAM (due to non-linear flexibility). Given interpretability and robust

significance, emphasize the linear results while noting GAM insights.
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4. Results

4.1 Spatial Patterns of LST and NDVI in Urban Areas

Figure 2. Land Surface Temperature (LST) Map of New York City on August 14, 2002, Derived

fromNASA’s Landsat Enhanced Thematic Mapper Plus (ETM+)

Hotter surfaces (yellow–orange) concentrate in dense urban cores such as Manhattan and central Brooklyn,

while cooler zones (blue) correspond to vegetated and suburban areas including Central Park and the

outer boroughs. On this extreme summer day, surface temperatures in the city center exceeded 40 ○C,

whereas surrounding green spaces remained near 30 ○C or lower, clearly illustrating the urban heat island

effect.

Analogous patterns occur in Beijing. Landsat analysis shows the city center (within the 5th Ring Road)

forms a distinct thermal hotspot relative to surrounding areas. The densely built core—with extensive

impervious surfaces and scarce greenery—recorded the highest LSTs, often above 40 ○C on hot afternoons,

whereas vegetated outskirts (farmland, forests in the northern hills) stayed cooler. For example, on a July

day, urban districts were up to ∼ 6–8 ○C warmer than the forested mountains to the north. This mirrors

NYC: UHIs are strongest where vegetation is minimal; urban materials trap heat, while parks, water bodies,

and rural green spaces provide cooling corridors.
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4.2 Urban vs. Suburban Zone Comparison

Table 1 summarizes average summer LST and related variables (circa 2020) in urban and suburban zones

for each city. Urban zones (Beijing inside 5th Ring; NYC five boroughs) exhibit higher mean

temperatures and lower NDVI than suburban zones (outer ∼ 20–50km).

Table 1. Average Summer LST and Related Variables in Urban vs. Suburban Zones (c. 2020).

Urban zone = city core; Suburban zone = 20–50km ring outside Core

City Zone Mean LST (○C) Mean NDVI Impervious % Pop. Density (per km2)

Beijing Urban Core 35.1 0.30 60% ∼ 10,000

Beijing Suburban 29.6 0.50 20% ∼ 500

NYC Urban Core 33.5 0.25 70% ∼ 8,000

NYC Suburban 29.5 0.60 10% ∼ 300

These statistics highlight how lower vegetation and higher impervious cover translate to higher

temperatures. The negative NDVI–LST correlation is evident: e.g., NYC’s suburbs (NDVI 0.60) are ∼ 4
○C cooler than the urban core (NDVI 0.25). In Beijing, extensive paved areas contribute to the city being

>5 ○C hotter than its vegetated surroundings. Population density aligns with hotter conditions (as a

proxy for urban intensity), though it is not a direct physical cause; examine these relationships formally

below.

Section Statistical Modeling of UHI Drivers

To disentangle the contributions of vegetation, impervious surface, and population to LST, fitted

multiple linear regression models for each city. Table 2 presents the regression coefficients, p-values, and

model fit (R2) for Beijing and NYC. All three predictors were statistically significant (p < 0.01 or better)

in both cities’models, aligningwith expectations and the correlation analysis above.

Model Specification and Estimation

Modeled summer daytime LST at the 1 km grid-cell level. Each cell (i, j) is an observation with LST

as the dependent variable and NDVI, impervious surface percentage.

Table 2. Multiple Linear Regression Results for Summer Daytime LST as a Function of NDVI,

Impervious Fraction, and Population Density. Coefficients Are Interpreted as Change in LST per

unit Increase in each Predictor (holding others constant)

Predictor Beijing NYC Interpretation

Intercept 30.0*** 28.0*** Baseline LST (○C) at NDVI=0, Impervious=0, Pop=0

NDVI −5.8*** −6.3*** Higher NDVI strongly decreases LST (○C per +1 NDVI)

Impervious % +0.12*** +0.10*** More built-up cover increases LST (○C per +1%

impervious)
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Pop. Density +0.25** +0.20** Denser population slightly increases LST (○C per +1000

persons

Model R2 0.65 0.58 Variance in LST explained by model

Significance: *** p < 0.001, ** p< 0.01. Population density scaled per 1,000 persons/km2.

population density as predictors. The city-specific OLS model is:

LSTij= β0+ β1NDVIij + β2 Impervious%ij + β3PopDensityij + ϵij, (3)

where β0 is the intercept (baseline LST), β1,2,3 are coefficients for NDVI, impervious fraction, and

population density, and ϵij is the error term. Predictors were standardized (mean- centered) for numerical

stability. Because NDVI and impervious% were strongly inversely

correlated in dense urban areas, inspected variance inflation factors (VIF ≈ 5–10 for NDVI/impervious),

retained both variables for completeness, and interpret their coefficients with collinearity in mind. used

robust standard errors to accommodate potential spatial heteroscedasticity and also tested nighttime LST

(not shown) for a complementary view.

Key Findings and Interpretation

From Table 2, NDVI has the largest standardized cooling effect: a one-unit NDVI increase (from barren

to dense vegetation) is associated with ∼ 5.8 ○C lower LST in Beijing and ∼ 6.3 ○C in NYC, all else

equal. Practically, a 0.1 NDVI increase corresponds to roughly 0.6 ○C cooling. Impervious fraction

shows a positive association of about +0.1 to +0.12 ○C per +1 percentage point; thus, +10 pp in built-up

cover implies ∼ +1 ○C LST increase, ceteris paribus. Beijing’s impervious coefficient is slightly higher

than NYC’s, consistent with stronger daytime heating over rapidly urbanized surfaces.

Population density also correlates positively with LST, though the magnitude is smaller than land-cover

terms: ∼ +0.25 ○C (Beijing) and ∼ +0.20 ○C (NYC) per +1000 persons/km2. This likely captures residual

anthropogenic heat and urban morphology effects not fully rep- resented by NDVI/impervious alone. The

intercepts (∼ 30 ○C in Beijing, ∼ 28 ○C in NYC) reflect baseline summer conditions; differences are

compatible with the cities’ distinct climatic settings. The R2 values (0.65 and 0.58) indicate that 58–65% of

the spatial variance in LST is explained by these three factors; remaining variance may reflect elevation,

proximity to water, humidity/wind, and 3D form (e.g., canyon effects).

Residual diagnostics showed roughly normal residuals with some spatial autocorrelation (e.g.,

underestimation in extremely dense high-rise districts; overestimation near breezy/coastal zones). This suggests

potential gains from adding explicit 3D urban-form metrics, moisture/roughness parameters, or

spatial-lag structures in future work.

GAM Robustness Check

Generalized Additive Models (GAMs) modestly improved fit (explaining ∼ 70% variance). The NDVI

smooth indicated diminishing returns beyond ∼ 0.5; the impervious effect was nearly linear with slight

plateau above ∼ 80%; population density was relatively flat up to ∼ 5,000 persons/km2 and then

trended upward. Overall, linear models capture the essential relationships and remain preferable for
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interpretability, while GAMs clarify mild non-linearities.

5. Temporal Trends in UHI Intensity

Using MODIS time series (2000–2020), examined how the UHI effect in each city has evolved. Both Beijing

and NYC show a general increasing trend in urban LST relative to rural areas, meaning their UHI

intensities have grown over the last two decades. In Beijing, the summer daytime SUHII (urban minus rural

LST) increased significantly, at an approximate rate of +0.05 to +0.1 ○C per decade (linear fit).

Specifically, Beijing’s mean SUHII was around 4.5 ○C in the early 2000s and reached about 5.5 ○C by

the late 2010s. This intensification is partly due to rapid urban expansion and partly to differential

climate trends: urban areas warming while rural areas north of Beijing experienced slight cooling from

vegetation recovery and agricultural improvements. Thus, the urban-rural thermal gap widened. Ad-

ditionally, Beijing’s urban area itself has densified and added impervious surfaces from 2000 to 2020,

reinforcing the UHI internally.

New York City’s UHI intensity trend is more complex. The city’s footprint did not expand dramatically

in recent decades, but background climate warming has raised both urban and rural temperatures. MODIS

data indicate that NYC’s average summer urban LST rose by roughly +0.3 ○C per decade from 2000–2020,

while rural LST rose by ∼ +0.2 ○C per decade. This implies only a mild SUHII increase (∼ +0.1 ○C over 20

years). The change is less pronounced than in Beijing, consistent with NYC’s already well-established UHI.

However, NYC has experienced more frequent extreme heat events in recent years, disproportionately

affecting urban cores. Records also show an uptick in hot nights where minimum temperatures remain

elevated due to retained heat. Projections warn of further increases: by 2080, NYC’s average temperatures

may be ∼ 4.9 ○C higher than today under high-emission scenarios, which without intervention would

greatly exacerbate UHI impacts.

A notable spatial trend in both cities is UHI expansion. Rather than remaining fixed over city centers, UHIs

have extended into suburban areas. In Beijing, formerly rural districts urbanized (e.g., near the 5th–6th Ring

Road), warming and merging into the main heat island. The hottest percentile of pixels in 2020 covered a

larger area than in 2000, extending along highways and newly built zones. In NYC, the UHI likewise

spread into suburbs, including parts of New Jersey and Long Island that have undergone development.

The metropolitan footprint has thermally blended city and suburb, though NYC’s water boundaries

(rivers, ocean) impose limits and provide nighttime cooling along shorelines.

In summary, both Beijing and New York City show intensifying and expanding UHI effects during the

early 21st century, though drivers differ: Beijing’s changes are driven by rapid land-use change and

regional climate contrasts, while NYC’s are linked to incremental densification and global warming. Both

cases highlight increasing urban heat risk over time.
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6. Discussion

the comparative analysis of Beijing and New York City’s UHIs reveals both common patterns and

city-specific nuances. In both cities, land cover characteristics (vegetation vs. impervious surfaces)

dominate surface urban temperatures, reaffirming UHI theory.Areas with abundant vegetation—whether

NYC’s Central Park or Beijing’s Olympic Forest Park—act as cooling islands, while dense built-up areas

lacking greenery form the hottest cores. The NDVI–LST relationship (∼ −6 ○C per NDVI) is remarkably

consistent across the two cities despite differing climates, demonstrating a universal biophysical effect of

vegetation: shading and evapotranspiration dissipate heat efficiently in both humid and semi-arid contexts.

This underscores urban greening as a broadly applicable UHI mitigation strategy.

Impervious surface coverage is the counterpart: a higher fraction of concrete and asphalt means more solar

energy absorbed and re-radiated as heat. the findings confirm that in- creasing built-up area raises local

LST. GAM results hinted at a slight non-linearity: once imperviousness exceeds ∼ 80%, additional cover

adds little further warming. This suggests the greatest thermal penalty occurs during the transition from

pervious/vegetated to impervious surfaces. Thus, low-to-moderate density suburban areas undergoing

development may see the sharpest heat increases. In Beijing, such fringe areas urbanized rapidly in the

2000s–2010s, driving UHI expansion. In NYC, many suburbs were long paved, but cooling interventions

could target moderately impervious neighborhoods where adding greenery or reflective surfaces would still

yield gains.

Population density shows a modest but consistent positive correlation with LST, indicating

anthropogenic influences beyond land cover. Dense populations often coincide with greater heat emissions

(vehicles, HVAC) and urban morphology that reduces cooling (tall buildings blocking wind). Even after

accounting for vegetation and imperviousness, areas with very high population (e.g., Manhattan) remain

warmer. This pattern aligns with studies in other megacities and highlights environmental justice concerns:

dense, low-income communities often lack parks and face higher LST, exposing vulnerable residents to

heat stress.

The comparative lens shows differences. Beijing’s UHI is slightly stronger by day, likely due to its sunnier,

drier summers and rapid urban expansion. NYC’s coastal setting moderates daytime extremes but sustains

higher nighttime UHI: Manhattan often remains ∼ 4 ○Cwarmer than rural areas overnight, whereas

Beijing’s dry air allows greater nocturnal cooling. Seasonality also matters: Beijing’s UHI peaks in summer

and weakens in winter, while NYC’s maritime influence dampens seasonal contrasts but maintains strong

nocturnal UHIs.

Uncertainties and Limitations

the analysis carries uncertainties. Satellite LST measures surface skin temperature, not directly felt air

temperature. Population density is a static proxy for human presence and does not reflect dynamic behaviors

(AC usage, traffic). Atmospheric factors (humidity, wind, pollution) and 3D urban geometry (building height,

sky view factor) were not included, though they affect UHIs. For example, Beijing’s pollution can alter

daytime heating and nighttime cooling; NYC’s “urban canyon” effects trap heat at street level. Future
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work should integrate 3D urban formmetrics, anthropogenic heat flux, ormachine learning approaches (e.g.,

Random Forests) to capture these complexities.

Despite limitations, the findings align with prior research. The significant cooling role of NDVI and

warming role of impervious surfaces mirror global patterns. the model R2 ≈ 0.6 is comparable to other

studies explaining 50–70% of LST variance using land cover indices.

This suggests the chosen variables capture most of the UHI signal while highlighting areas for future

refinement.

7. Conclusion and Recommendations

This comparative study highlights that urban heat islands in both Beijing and New York City are driven

by common underlying mechanisms—chiefly, the replacement of natural vegetation with impervious

built surfaces—resulting in significantly elevated urban temperatures relative to outlying areas. In summer,

Beijing’s urban center was on average ∼ 5–6 ○C hotter than its rural outskirts, and New York City’s urban

area ∼ 4 ○C hotter than its surroundings, with localized differences reaching 8–10 ○C on extreme days.

These temperature differentials have likely increased over the past two decades as cities expanded and

global temperatures rose. Without intervention, they may continue to rise, especially given climate change

projections of several degrees of warming by late century.

Expand Urban Green Infrastructure

Greening urban areas is a highly effective strategy. The strong inverse LST–NDVI relation-ship shows that

increasing tree canopy, parks, green roofs, and other vegetation can measurably cool cities. In both

Beijing and NYC, neighborhoods with even moderately higher green cover were cooler. City

governments should prioritize planting trees along streets, preserving urban parks, and incentivizing green

roofs and walls. Such initiatives could lower city-wide temperatures and reduce cooling energy demand.

For Beijing, this includes connecting its ring of parks and protecting suburban greenbelts; for NYC,

initiatives such as the MillionTreesNYC program and green roof tax abatements are steps in the right

direction.

Cool the Built Environment

Since impervious surfaces are unavoidable in cities, their properties can be modified to absorb less heat.

“Cool roofs” (high-albedo reflective roofing) and “cool pavements” reflect more sunlight and stay cooler

than traditional materials. NYC has experimented with white roof coatings, and Beijing could mandate

higher-albedo materials in new developments. Reducing unnecessary paved areas or replacing them with

permeable, lighter-coloredmaterials can also mitigate heat. the findings that impervious percentage drives

up LST support these approaches: reducing the effective impervious thermal footprint through reflective or

permeable design will help lower urban temperatures.

Urban Design for Ventilation

Urban morphology influences how heat dissipates. Ensuring airflow corridors (e.g., along riverways or

through aligned green streets) allows heat to advect away and cooler air to circulate. Beijing has considered
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“wind corridors” from the mountains to ventilate the city. In New York, sea breezes provide natural

relief—maintaining open coastal access and avoiding walls of high-rises along the waterfront can enhance

this cooling. These design strategies complement land cover modifications by addressing atmospheric

processes.

Heat Preparedness and Equity

Regardless of mitigation, cities must adapt to higher temperatures. Both Beijing and NYC should

strengthen heat early warning systems and ensure cooling centers are available during heat waves. the

study reaffirms that the hottest areas tend to coincide with less greenery and often lower-income

populations. Efforts should be targeted to those neighborhoods—for example, subsidized air conditioning,

tree planting in public housing areas, and community gardens in dense districts. Reducing the UHI is thus

not only an environmental goal but also a social one, with potential to save lives during extreme heat

events.

Final Remarks

In conclusion, Beijing and New York City, two very different metropolises, face a common challenge in

managing the UHI effect. Through satellite-based analysis, quantified the scope of the problem and identified

key drivers. Mitigation requires integrating more nature into cities and innovating in urban materials and

design. The benefits are clear: cooler temperatures, improved livability, reduced energy use, and enhanced

resilience to climate change. Continued monitoring via remote sensing and research can track

progress—for instance, greener infrastructure should raise NDVI and lower LST in target areas. By

combining such data-driven approaches with forward-looking planning, cities can aim not only to

reduce their heat islands but also to transform them into islands of sustainability and comfort in a warming

world.
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