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Abstract

The non-agriculturalization of cultivated land (NACL) poses a serious threat to food security and

sustainable development. This study aims to reveal the spatiotemporal evolution of NACL in Guizhou

Province, construct a hierarchical early-warning system, and propose recommendations for optimal

land resource allocation. First, geospatial statistical analysis (2000-2020) revealed that the spatial

pattern of NACL evolved from a scattered to a contiguously expanding one, with its rate increasing

markedly from 2.7% (2000-2005) to 9.65% (2015-2020). This process was primarily driven by four key

factors: population density, GDP, road network density, and cultivated land area. Second, the PLUS

model was employed to conduct multi-scenario simulations and early warnings for 2035. The results

indicate that the early-warning pattern exhibits a significant spatial differentiation, with higher levels

in the west and lower in the east. Under the natural development (NDS) and urban expansion scenarios

(UES), the risk of cultivated land loss in the western region is intensified, with most areas classified at

or above the moderate warning level. In contrast, the cultivated land conservation (CCS) effectively

curbs NACL and built-up land expansion, thereby not only reducing warning levels but also aligning

more closely with sustainable development goals. This study provides a scientific basis for refining

cultivated land conservation policies and promoting sustainable land use.
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1. Introduction

Cultivated land is a vital resource for human survival and development, serving not only as the

foundation for food production but also as a crucial link in maintaining ecosystem balance (GUO, JIN,

YANG et al., 2024; MA, WANG, & ZHONG, 2024). The non-agriculturalization of cultivated land

(NACL) refers to the conversion of land originally dedicated to agricultural production toward

non-agricultural purposes (CAI, YANG, & XU, 2013). In this study, NACL is defined as the process

through which land use changes from agricultural to other types of land uses. With the rapid

advancement of global urbanization and industrialization, NACL has become a significant form of land

use change. This process not only alters the land’s ecological functions (DENG, HUANG, ROZELLE

et al., 2006) but also indirectly disrupts ecosystem balance, exacerbating issues such as soil erosion and

agricultural non-point source pollution (ZHANG, SONG, & GAO, 2025; ZHANG, LONG, MA et al.,

2018; A W L, A D W, B S L, et al., 2019). These changes pose a potential threat to national food

security and ecological stability (CHIEN, 2015; COHEN-SHACHAM, EMMANUELLE, GUERRA, et

al., 2017). Consequently, studying this conversion process is crucial for providing a theoretical basis for

ensuring food security and promoting sustainable development.

As the world’s second-most populous developing nation with relatively scarce cultivated land resources,

China has undergone rapid urbanization and economic development over the past four decades. During

this period, the area of built-up land has expanded nearly tenfold, leading to significant encroachment

of cultivated land by construction activities (FANGFANG, & LIJIE, 2014; WU, QIU, OU et al., 2024).

This phenomenon is particularly pronounced in the southeastern coastal regions (RAMANKUTTY,

FOLEY, & OLEJNICZAK, 2002; JIYUAN, MINGLIANG, DAFANG et al., 2003), where some areas

are experiencing critical trends of land fragmentation and the disappearance of large, contiguous tracts

of cultivated land. Consequently, the scale and pace of NACL have been steadily increasing (CHIEN,

2015; WEI & YE, 2014). Although NACL has, to some extent, promoted economic development, rural

revitalization, and agricultural restructuring (SU, 2020), excessive conversion leads to problems such

as the waste of land resources and the infringement on farmers’ rights and interests. This poses a threat

to food security and sustainable development (MAESTRE, LE, DELGADO-BAQUERIZO et al., 2022).

Research on the impact of urbanization on land use has confirmed that economic and population

growth reliant on the consumption of agricultural resources are unsustainable and hinders the process

of rural development (GUASTELLA & PAREGLIO, 2014). As a populous nation and a major food

consumer, China finds the conservation of its cultivated land increasingly vital (YI et al., 2016). The

government places great emphasis on food security, explicitly mandating that limited cultivated land

resources be prioritized for grain production and that their conversion to other agricultural or

non-agricultural uses be strictly controlled (HAIPING, JUNLIAN, & XIANWEI, 2023). In 2019, the

Ministry of Natural Resources and the Ministry of Agriculture and Rural Affairs jointly issued the

“Notice on Strengthening and Improving the Protection of Permanent Basic Farmland.” This notice

strictly prohibits the use of permanent basic cultivated land for non-grain-producing activities, such as
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establishing fruit and forestry plantations, digging ponds for aquaculture, creating green belts, or

building livestock and poultry facilities, thereby curbing NACL (Notice of the Ministry of Natural

Resources and the Ministry of Agriculture and Rural Affairs on Strengthening and Improving the

Protection of Permanent Basic Farmland, 2019). Currently, Current academic research on NACL

primarily focuses on its spatiotemporal evolution (YIN, LI, X., LI, G., et al., 2020; CHEN, WANG, S.

Y., & WANG, Y. H., 2022), driving mechanisms (LIU, Y. X., LIU, S, L., SUN, Y. X. et al., 2021;

HUANG, ZHU, & LIU, n.d.), impacts on the ecological and socio-economic environment (WANG,

LIU, CAI et al., 2021; QU, HU, LI et al., 2020), and predictions of future trends (WU, TAO, YANG et

al., 2019; ZHANG & LU, 2021). The study areas have included the three major grain-producing

functional zones (ZHAO, XIAO, & YIN, 2023) and northwestern China (YAN, CHEN, WANG et al.,

2025). While the body of research on this topic is generally rich, there is a notable lack of studies on

the spatiotemporal evolution and multi-scenario early warning of NACL in karst mountainous areas.

Guizhou Province, characterized by its typical karst landform, presents a critical case. The restrictive

terrain in these areas results in highly fragmented and poor-quality cultivated land, which is unsuitable

for large-scale farming and is consequently more vulnerable to NACL. To address these challenges, this

study employed a land use transition matrix to describe the spatiotemporal evolution of NACL and a

Geodetector model to identify its driving factors. Furthermore, the PLUS model was used to predict

future land use patterns under three distinct scenarios: natural development, urban expansion, and

cultivated land conservation. A hierarchical early warning analysis is further conducted on NACL based

on the predicted results. The findings are intended to provide a scientific reference for cultivated land

management and optimal land resource regulation in similar ecologically fragile areas.

2. Materials and Methods

2.1 Study Area

Guizhou Province is situated in southwestern China, spanning from 103°36′E to 109°35′E and 24°37′N

to 29°13′N (Figure 1). It borders Hunan Province to the east, the Guangxi Zhuang Autonomous Region

to the south, Yunnan Province to the west, and Sichuan Province and Chongqing Municipality to the

north. The region experiences a humid subtropical monsoon climate characterized by mild winters, cool

summers, abundant precipitation, and concurrent rain and heat periods, with an average annual

temperature of approximately 15°C. Topographically, Guizhou lies on the northeastern part of the

Yunnan-Guizhou Plateau. Its terrain slopes from higher elevations in the west to lower ones in the east,

with a general descent from the central area toward the north, east, and south. The average elevation is

about 1,100 meters. The landscape is predominantly mountainous and hilly, which together constitute

about 92.5% of the total area, and can be categorized into the eastern hilly region and the western

plateau-mountain region. Guizhou Province is one of the most typical regions for karst landform

development in southern China. Karst areas, which exhibit significant spatial heterogeneity, are

extensively distributed across the province, covering approximately 61.9% of its total land area.
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Cultivated land, however, constitutes only about 18% of the provincial total and is predominantly

located in intermountain basins and river valleys. This distribution pattern, dictated directly by the

complex topography, results in the inherent scarcity and high fragmentation of cultivated land resources

in the region.

Figure 1. The Location and Land Use of the Study Area

2.2 Data Source and Processing

The data used in this study were obtained from the following sources. Land use data with a spatial

resolution of 30 m × 30 m were derived from the Resource and Environment Science and Data Center,

Chinese Academy of Sciences (RESDC; http://www.resdc.cn), with an overall accuracy of over 90%

(JIYUAN, JIA, WENHUI et al., 2018). Digital Elevation Model (DEM) data were acquired from

Geospatial Data Cloud (http://www.gscloud.cn); elevation data for Guizhou Province were extracted

via ArcGIS’s Extract by Mask tool, with slope and aspect subsequently derived using the platform’s

Spatial Analyst tools. Road and river network data were sourced from OpenStreetMap

(http://www.openstreetmap.org), and Euclidean distances to these features were calculated using

ArcGIS’s Euclidean Distance tool. Spatially distributed kilometer-grid data for Gross Domestic

Product (GDP) and population (POP) were also obtained from RESDC.

2.3 Methods

2.3.1 The Rate of NACL

The intensity of NACL in Guizhou Province was quantified using the cultivated land conversion rate.

This metric, defined as the proportion of cultivated land converted to non-agricultural uses over a

specified period relative to the cultivated land area at the period’s start, is calculated as follows:

Rt= St Lt ×100% (1)

Where t is the time period, Rt is the NACL rate (%) during a certain period; St is the NACL area (km2)

in the research region during a certain period; Lt is the cultivated land area (km2) in the research region

at the beginning of a certain time period.
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2.3.2 Land Use Ransfer Matrix

The land-use transfer matrix captures the quantitative changes and directions of transfers between

different land-use types from an initial to a final period, presented as a two-dimensional matrix. It is

used to analyze the mutual conversions between land-use categories over time, The calculation is as

follows:

Sij=

S11 S12 ⋯ S1n
S12 S22 ⋯ S2n
⋯ ⋯ ⋯ ⋯

Sn1 Sn2 ⋯ Snn

(2)

Where Sij represents the area of land converted from type i to type j; n is the number of land use types;

Each row of the matrix S represents the land use type at the current moment, and each column

represents the land use type at the next moment.

2.3.3. Spatial Analysis Method of NACL

Spatial autocorrelation analysis, which quantifies the dependency of spatial features based on their

attributes and locations, was employed to investigate the clustering of cultivated land conversion. This

analysis is primarily categorized into global and local spatial autocorrelation. The Global Moran’s I

index was used to determine whether cultivated land conversion exhibits a clustered distribution in the

study area. The value of Moran’s I ranges from -1 to 1: a value greater than 0 indicates positive spatial

correlation (clustering), a value less than 0 indicates negative spatial correlation (dispersion), and a

value of 0 suggests no spatial correlation. The formula is expressed as follows

I= i=1
n

j=1
n Wij�� (yi−y)(yj−y)

S2 i=1
n

j=1
n Wij��

(3)

In this equation, I represents the Global Moran’s I, n is the total number of spatial units, yᵢ and y ⱼ are

the rates of NACL for units i and j, respectively, ȳ is the mean rate, Wᵢⱼ is the spatial weight, and S² is

the sample variance.

The Global Moran’s I is limitations in capturing local spatial patterns and heterogeneity. To address

this, the Local Moran’s I* statistic is employed to detect spatial correlations at specific locations and

their neighboring units. This measure helps identify spatial agglomeration patterns of NACL, which

can be categorized into five types: high-high, high-low, low-high, low-low, and non-significant clusters.

The formula is as follows:

I∗ = xi−x
1
n (xi−x)2� j≠i

n wij(xi−x)� (4)

Where I* is the Local Moran’s I; Wij is the spatial weight value; n is the total number of study units;

is the rate of NACL for each study unit, and is the average non-agriculturalisation rate for all study

units.
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2.3.4 The Geodetector Model

The geodetector is a statistical tool that identifies the driving forces behind a phenomenon by detecting

the effects of multiple factors and their interactions, based on the principle of spatial heterogeneity[34].

(1) Factor Detector

The factor detector is employed to quantify the spatial heterogeneity of cultivated land

non-agriculturalization NACL and to assess the explanatory power of a given in-fluencing factor. Its

calculation formula is as follows:

q=1− n=1
L Nℎσℎ

2�
Nσ2

(5)

In the formula: q represents the explanatory power of the factor with respect to NACL, ranging from 0

to 1. with a value range of [0,1]. A higher q value indicates stronger explanatory power, whereas a

lower value denotes weaker explanatory power. L stands for the number of strata (or categories) of the

factor. Nh is the number of spatial units in stratum h; N is the total number of spatial units across the

study area; σ_h^2 denotes the variance of NACL within stratum h; σ2 is the overall variance of NACL

across the entire study area.

(2) Selection of Driving Factors

Changes in cultivated land use generally result from the interactions among natural environmental

conditions, socioeconomic factors, and agricultural location characteristics. In this study, nine

influencing factors (table 1) were selected across three dimensions: natural environment,

socioeconomic conditions, and locational attributes. Within the natural environment dimension,

elevation, slope, and aspect were chosen as key topographic factors. Variations in elevation create a

vertical zonation of climate, leading to differences in crop types and growing seasons. Differences in

slope and aspect affect sunlight exposure, moisture availability, nutrient distribution, and temperature.

Steep slopes and north-facing slopes often require greater labor and material inputs, making such areas

more prone to conversion to other land uses or abandonment (QIANQIAN, ZHEN, XIAORUI et al.,

2024). Agricultural location conditions are also critical, as the proximity of cultivated land to roads and

water bodies affects soil fertility, product transportation, and irrigation. Furthermore, socioeconomic

factors significantly influence farming decisions; key elements include the level of regional economic

development, governmental policies, cultivation costs, and transportation convenience. However, due

to limitations in data availability, this study selected three representative socioeconomic drivers: Gross

Domestic Product (GDP), population density, and road network density.

Table 1. Indicators of Influencing Factors for NACL

Influencing factors Indicators Explanation of indicators

Natural

environment

Elevation(X1) Mean elevation of the study unit

Slope(X2) Mean slope of the study unit



http://www.scholink.org/ojs/index.php/se Sustainability in Environment Vol. 11, No. 1, 2026

Published by SCHOLINK INC.
91

Aspect(X3) Mean aspect of the study units

Socioeconomic

factors

GDP(X4) Total GDP of the study unit

Population density (X5) Total population total of the study unit

Road network density(X6)
The road lengths total of the study unit

divided by the area of the study unit

Agricultural

location conditions

Cultivated land area(X7) Total cultivated land area of the study unit

Distance from the road(X8) Distance to major roads

Distance from the water(X9) Distance to water bodies

2.3.5 The PLUS Model

The PLUS model, introduced by Liang (LIANG, GUAN, CLARKE et al., 2021), represents an

advanced framework for land use simulation, engineered to achieve superior simulation fidelity and a

more authentic quantification of landscape pattern evolution. The model’s architecture, illustrated in

Figure 2, is founded upon three integral modules (Figure 2). First, the Land Expansion Analysis

Strategy (LEAS) module is dedicated to extracting the underlying rules of land use transition. Second,

the Cellular Automata (CA) component employs a multi-type random patch seeding mechanism

(CARS) to generate spatial patches. Third, the pre-dictive simulation module projects future land use

distributions based on the outputs of the preceding modules.

Figure 2. Schematic Diagram of the PLUS Model Structure

(1) The LEAS module first identifies the land use expansion areas from the initial to the final period.

Subsequently, based on the Random Forest Classification (RFC) algorithm, it derives the transition and

inertia probabilities for each land use type to reveal the associations between driving factors and land
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use change. The probability is calculated as follows:

Pi,k(X)d = n=1
M I[ℎn X =d� ]

M
(6)

Where the parameters are defined as: X denotes a vector composed of multiple driving factors.hn(X)

represents the predicted land use type from the n-th decision tree; d takes a value of 0 or 1, with 1

indicating a transition from other land use types to type k, and 0 indicating no transition to type k; M is

the total number of decision trees; Pi,k(X)d denotes the expansion probability of land use type k at spatial

unit i under the given value of d; I[﹒] is the indicator function of the decision tree ensemble

(2) The CARS module is a Cellular Automata (CA) model based on a multi-type random patch seeding

mechanism, designed for the dynamic simulation and spatial allocation of land use change. The model

determines the overall transition probability for each land use type by coupling three key factors: (1)

the basic development probability derived from the LEAS module; (2) the neighborhood effect, which

reflects local spatial interactions; and (3) the land use demand constraint, which ensures the total

quantity aligns with predefined targets. The probability is calculated using the following equation：

OPi,k
d=1,t=Pi,kd ×Ωi,k

t ×Dkt (7)

OPi,kd is the overall transition probability for land use type k at spatial unit I; Pi,kd is the basic

development probability for land use type *k* at unit i; Ωi,k
t is the neighborhood effect at time t; is the

demand constraint factor at time t.

(3) To evaluate the reasonability of the model’s parameter settings and its ap-plicability in the study

area, a simulation accuracy validation was conducted. The Kappa coefficient was used to measure the

overall consistency between the simulated and actual results, while the Figure of Merit (FoM)

coefficient focused on quantita-tively testing the location accuracy at the cellular scale. The validation

process in-volved simulating the 2020 land use pattern based on 2015 data and comparing it with the

actual 2020 map. The results show an overall accuracy of 92% and a Kappa coeffi-cient of 0.86.

According to the Kappa evaluation standard (0.81-1.00 is “excellent”), the simulation met the accuracy

requirements. Concurrently, the calculated FoM coeffi-cient of 0.20 falls within its common effective

range (0.01-0.25), further confirming the model’s spatial locational accuracy. In summary, the

simulation demonstrated high accuracy and good performance, indicating that the model can be reliably

used for predicting future land use change in the study area.

(4) To investigate the characteristics of land use change under different develop-ment pathways, this

study simulated the land use patterns for 2035 under three dis-tinct scenarios, using the 2020 land use

data as a baseline. The objective is to provide a scientific basis for regional land use planning and

policy optimization. The specific parameterizations for each scenario are as follows: Natural

Development Scenar-io (NDS): This scenario assumes that historical land use change trends from

2015-2020 will continue without any additional policy intervention, serving as a baseline refer-ence.

Urban Expansion Scenario (UES): Informed by the national new-type urbaniza-tion plan, this scenario

prioritizes urban development. Based on the historical transi-tion probabilities, the probability of
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conversion from cultivated land, forest, and grassland to built-up land was increased by 30%, while the

probability of conversion from built-up land to other types was decreased by 30%. Cultivated land

conservation Scenario (CCS): This scenario is based on strict cultivated land use control policies aimed

at implementing the permanent basic cultivated land conservation system. Consequently, the

probability of conversion from cultivated land to built-up land was reduced by 40%, and the probability

of conversion to grassland and forest land was also reduced by 20%. Integrating these scenario

objectives with historical data, the land use transition matrix parameters for simulating the 2035

multi-scenario land use patterns in Guizhou Province were established (Table 2).

Table 2. Parameters for the Multi-scenario Land Use Transition Matrix

Land use

type

Natural Development Urban Expansion
CultivatedLand

Conservation

a b c d e f a b c d e f a b c d e f

a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

b 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

c 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

d 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0

e 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0

f 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Note. (a-f: represent cultivated land, forest land, grassland, water body, built-up land, and unutilized land

respectively; 1 indicates convertible, and 0 indicates non-convertible.)

The neighborhood weight (Table 3) is a key parameter that quantifies the intrinsic ex-pansion capacity

of each land use type, thereby influencing land use transitions. This weight, ranging from 0 to 1,

indicates a land use type’s expansion tendency: values closer to 1 signify a stronger tendency, while

those closer to 0 signify a weaker one. In this study, the weight is calculated via range normalization, as

follows：

X∗ = X−Xmin
Xmax−Xmin

(8)

Where X* denotes the range-normalized value, X represents the changed area of a given land use type

between two periods, Xmax is the maximum area change among all land use types, and Xmin is the

minimum area change among all land use types.
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Table 3. NeighborhoodWeight in Land Use Simulation

Cultivated land Forest land Grassland Water body Built-up land Unutilized land

NDS 0.42 0.01 1.00 0.80 0.98 0.64

UES 0.30 0.01 0.82 0.69 1.00 0.56

CCS 0.93 0.01 1.00 0.90 0.97 0.76

3. Results

3.1 Temporal Evolution Characteristics of NACL

To investigate the characteristics of NACL in Guizhou Province across different periods, a quantitative

analysis of its outflow dynamics was conducted using a land use transition matrix. This approach

precisely quantified the area converted from cultivated land to other land types in each period, thereby

identifying the primary conversion pathways, their proportional areas, and their evolutionary trends, as

presented in Table 4. Overall, from 2000 to 2020, NACL in Guizhou Province was predominantly to

forest and grassland, with forest accounting for the largest share. The conversion peaked during the

2015-2020 period, reaching 2789.29 km2 and 1101.30 km2 for forest and grassland, respectively. This

shift can be largely attributed to national ecological conservation policies and agricultural restructuring.

A key driver was the implementation of two phases of the “Grain for Green” program, under which the

government provided free seedlings and per‑mu planting subsidies to encourage farmers to restore

cultivated land that was unsuitable for cultivation or ecologically vulnerable to grassland and forest.

During the study period, the area of cultivated land converted to built-up land exhibited a sharp

increasing trend, rising from 16.23 km² in 2000-2005 to 693.61 km² in 2015-2020—a net increase of

677.38 km². This dramatic expansion is primarily attributed to national policies such as the “Western

Development Program” and “Targeted Poverty Alleviation,” implemented since 1999, which

accelerated urbanization and infrastructure construction in Guizhou Province and resulted in the

encroachment of cultivated land by built-up land. In contrast, conversion to water bodies reached its

highest proportion in 2010-2015, accounting for 10.51% of total NACL, while conversion to unutilized

land remained minimal across all four periods, with proportions consistently close to 0%.

The non‑agriculturalization rate was calculated for each period using Formula (1). During 2000-2005,

the area of NACL was 1,342.31 km², corresponding to a rate of 2.70%. In the subsequent period

(2005-2010), the converted area decreased slightly to 990 km², with a rate of 1.99%. From 2010 to

2015, the converted area rose to 1,054.76 km² and the rate increased to 2.13%. During 2015-2020,

however, the extent of conversion increased markedly: the converted area reached 4,735.94 km² and the

rate rose sharply to 9.65%. In this most recent period, the proportions of converted cultivated by

receiving land type, in descending order, were forest land, grassland, built‑up land, water body, and
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unutilized land. With the exception of unutilized land, the areas converted to all other types increased

substantially in this phase. Overall, NACL in Guizhou Province exhibited a trend from relatively stable

development during the earlier periods to a rapid surge in the final period.

Table 4. Area and Proportion of NACL in Guizhou Province

Time

Perio

d

Area(km2)

Proportion

(%)

Foret

Land

Grassla

nd

Water

Body

Built-up

Land

Unutili

zed

Land

Sum

Rate of

NACL

2000-

2005

Area 1076.32 245.34 4.3 16.23 0.12 1342.31
2.7%

proportion 80.18 18.28 0.32 1.2 0 100

2005-

2010

Area 517.34 218.44 104.09 150.06 0.07 990
1.99%

proportion 52.26 22.06 10.51 15.16 0 100

2010-

2015

Area 571.9 189.69 8.75 283.82 0.6 1054.76
2.13%

proportion 54.22 17.98 0.83 26.91 0.06 100

2015-

2020

Area 2789.29 1101.3 151.12 693.61 0.62 4735.94
9.65%

proportion 58.9 23.25 3.19 14.65 0.01 100

3.2 Spatial Evolution Characteristics of NACL

Based on land use change data from 2000 to 2020, the spatial differentiation pattern of NACL rates

across counties in Guizhou Province was visualized, as shown in Figure 3. During the study period, the

spatial pattern of NACL underwent significant phased evolution: in the 2000-2005 period, NACL

exhibited a south-high-north-low pattern, with areas having a non-agriculturalization rate exceeding 5%

mainly distributed in Leishan, Majiang, Jianhe, and Ziyun counties, among which Jianhe County’s rate

surpassed 7%. Between 2005 and 2010, NACL was concentrated in western regions; from 2010 to

2015, it was scattered. Over 2000-2015, the overall pattern of NACL exhibited “low-value contiguous,

high-value scattered” spatial differences, with high-value areas concentrated in a few regions of central

Guizhou (Guiyang and its surrounding areas), and most counties having rates below 3%. However, by

2015-2020, the area and extent of NACL expanded dramatically: the minimum county-level NACL rate

rose to over 5%, the coverage of high-value areas (>7%) broadened significantly, and a “high-value

clustering” spatial pattern emerged. Overall, the spatial pattern of NACL in Guizhou Province

exhibited an evolutionary trajectory transitioning from a “localized, scattered” pattern to a “contiguous,

widespread” one. In the early stage, it occurred sporadically around the core of central cities; in the

later period, both the intensity and scope of NACL increased significantly.



http://www.scholink.org/ojs/index.php/se Sustainability in Environment Vol. 11, No. 1, 2026

Published by SCHOLINK INC.
96

Figure 3. The Spatial Distribution Pattern of NACL in Guizhou Province

The spatial agglomeration characteristics of the rate of NACL in Guizhou Province were examined

using GeoDa software. The calculated global Moran’s I* indices for the four study periods were 0.283,

0.334, 0.245, and 0.506, all of which passed the signifi-cance test at p < 0.05. These results indicate a

statistically significant positive spatial autocorrelation in the distribution of NACL across the province.

Identifying local spa-tial clusters of NACL plays a critical role in optimizing land resource

management and addressing practical issues related to cultivated land protection. According to Fig-ure

4, during 2000-2005, High-High clusters were primarily distributed in eastern counties and Luodian

County in the south, while Low-Low clusters were mainly con-centrated in parts of Guiyang City, Bijie

City, and Wuchuan County in Zunyi City. From 2005 to 2010, High-High clusters shifted toward the

central region, forming a concentration centered on Guiyang City; concurrently, Low-Low clusters

expanded northward, reaching northern Bijie City and Zunyi City. Between 2010 and 2015, High-High

clusters exhibited a scattered distribution, primarily in Tongren urban area, Guiyang urban area, and

Hezhang County in Bijie City. In contrast, Low-Low clusters extended from Zunyi City to parts of

Tongren City, with scattered occurrences in Liu-zhi County and Qinglong County. During 2015-2020,

the spatial pattern of NACL was most concentrated: High-High clusters aggregated in Guiyang City,

while Low-Low clusters clustered in Zunyi City.
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Figure 4. The Spatial Agglomeration Characteristics of NACLRates in Guizhou Province

3.3 Drivers of NACL

3.3.1 Factor Detection Analysis

The results of the factor detector are shown in Figure 5. During 2000-2005, culti-vated land area,

population density, and GDP were the primary driving factors of NACL, with explanatory powers

exceeding 0.1. In contrast, slope had the minimal im-pact, with an explanatory power of 0.028,

indicating that this period was predomi-nantly influenced by agricultural and economic factors. From

2005 to 2010, population density, GDP, road network density, and cultivated land area exhibited

explanatory powers above 0.1, where population density and GDP exerted the greatest influence and

became the dominant factors. Between 2010 and 2015, the explanatory powers of road network density,

population density, cultivated land area, and GDP increased compared to the preceding two periods,

reaching values above 0.2. During 2015-2020, the explanatory power of all driving factors increased

significantly relative to the three preceding periods, with population density and cultivated land area

reaching 0.445 and 0.35, respectively. Taken together, cultivated land area, population density, road

net-work density, and GDP consistently constituted the most influential factors across all four periods.

The underlying mechanisms for these persistent drivers are twofold. First, population expansion

substantially increased the demand for built-up land (for resi-dential, public service, and infrastructure

uses), thereby driving urban spatial expan-sion and the consequent occupation of cultivated land.

Second, high‑density road net-works enhanced regional accessibility. This improvement not only

reduced transporta-tion and transaction costs for land development, making even average‑location

culti-vated land more accessible, but also stimulated land value appreciation along the routes. The

resulting capital accumulation in land development further accelerated NACL.
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Figure 5. Results of NACL Factor Detector

3.3.2 Interaction Detection Analysis

The interaction detector within the Geodetector model was used to examine how the interplay between

any two factors influences their explanatory power regarding NACL. The results (Figure 6) show that

all pairwise interactions led to either bivariate or nonlinear enhancement. This indicates that the spatial

pattern of NACL in Guizhou Province did not result from any single factor but emerged from the

synergistic inter-play of natural environmental, socio-economic, and agricultural location conditions.

during the first two periods, the interaction between GDP and natural environment factors substantially

amplified their combined impact on NACL. During 2000-2005, the interaction between GDP and

elevation had the strongest explanatory power for NACL, with a q-value of 0.241. By 2005-2010, the

dominant interaction shifted to GDP and aspect, which yielded a q-value of 0.233. In the latter two

periods, the role of culti-vated land area became prominent, as its interactive effects with both

population den-sity and road network density were significantly enhanced. Specifically, the interaction

between cultivated land area and road network density reached its peak in both peri-ods, with q-values

as high as 0.526 and 0.557, respectively. This was followed by its in-teraction with population density,

with corresponding q-values of 0.427 and 0.549.
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(a) 2000-2005 (b) 2005-2010

(c)2010-2015 (d)2015-2020

Figure 6. Detection of Interaction Effects among Driving Factors

3.4 Multi-Scenario Simulation of Land Use in Guizhou Province

3.4.1 Spatial Distribution of Land Use in 2035 under Different Scenarios

This study employed the PLUS model to simulate the 2035 land-use patterns of Guizhou Province

under three scenarios: NDS, UES, and CCP, comparing them with the 2020 baseline (Figure 7). The

results reveal that the spatial patterns under the NDS and UES are similar, both characterized by

extensive conversion of cultivated land to built-up land, with new built-up areas scattered sporadically

across the province. In contrast, the CCS effectively curbs this conversion trend. Under this scenario,

scattered built-up land and other agricultural plots adjacent to existing cultivated land are reclaimed and

consolidated, resulting in a more contiguous cultivated land distribution pattern.

Differences were also observed in the quantitative structure of land-use patterns across the scenarios

(Figure 8). Under the NDS, forest land was the primary land use type (49.92%), followed by cultivated

land (26.34%) and grassland (19.41%). Compared to 2020, cultivated land, forest land, and unutilized

land decreased by 1883.61 km², 5281.33 km², and 3.37 km², respectively, with forest land experiencing

the largest reduction. Conversely, grassland, water bodies, and built-up land increased by 3174.51 km²,
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1252.7 km², and 2741.1 km², respectively. This suggests that, without policy constraints, the expansion

of built-up land and grassland would exacerbate the loss of cultivated land. Under the UES, urban

sprawl became the dominant driver, leading to a rapid increase in built-up land. This scenario resulted

in severe cultivated land loss, with an area reduction of 2114.36 km². This highlights the immense

pressure of urban expansion on cultivated land resources. In the CCS, the implementation of strict

cultivated land retention constraints curbed the trend of cultivated land loss. This scenario led to a net

increase in cultivated land area of 4488.63 km². The results confirm that strict governance over the

quantity and use of cultivated land is an effective approach to achieving cultivated land protection

goals.

Figure 7. Simulated Land Use Patterns under Different Scenarios

Figure 8. Proportion Chart of Different Land Use Types (Area:km2)
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3.4.2 Graded Early Warning of NACL under Different Scenarios in 2035.

The early warning levels for NACL in 2035 are classified into five tiers: Mild (0%-5%), Moderate

(5%-10%), High-level (10%-15%), Severe (15%-20%), and Extreme (20%-100%). As shown in figure

9, Overall, the early-warning pattern for NACL exhibits a distinct east-west spatial disparity. Warning

levels in the western counties are generally higher than those in the eastern counties. Specifically, areas

with moderate-to-severe warnings are predominantly concentrated in the west, whereas low-level

warnings are continuously distributed across the eastern region. Under the NDS, 2 counties are at an

Extreme level and 1 at a Severe level, with an additional 10 counties classified as High. The UES

exhibits a largely similar warning pattern. In contrast, under the CCS, the trend of NACL is effectively

mitigated. The highest warning level is High, affecting only a single county; ten counties in the

southwest remain at a Moderate level, while all others are classified as Mild.

Figure 9. Graded Early Warning of NACL under Different Scenarios

4. Discussion

4.1 Spatiotemporal Characteristics of NACL

This study indicates that the rate of NACL in Guizhou Province exhibited an accelerating trend from

2000 to 2020, increasing from 2.7% to 9.65%, which suggests that this process has not been effectively

curbed. The period from 2015 to 2020 was the most intense, driven by a combination of factors. During

this time, China poverty alleviation strategy prompted large-scale relocation programs, rural population

decline, and infrastructure improvements. Concurrently, investment in the tertiary sector increased,

with its share of GDP rising from 46.3% in 2015 to 52.1% in 2020. These interconnected dynamics

collectively led to the extensive occupation of cultivated land. Our research further indicates that a

significant portion of cultivated land loss is due to conversion to forest land and grassland, a trend

largely driven by policy-led ecological restoration. Confronted with mounting ecological pressures

from economic and urban expansion, the government enacted stringent protection measures.
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Consequently, local authorities have rezoned marginal some cultivated land for ecological purposes[37]

to align with the national mandate for “ecological civilization,” which has directly spurred the

conversion of cultivated land to forests. Another key driver is the passive process of cultivated land

abandonment followed by natural regeneration (QIANQIAN, XIE, XIAORUI et al.. 2024). The

inherent marginality of land in the Karst region, characterized by rugged terrain, thin soils, and severe

fragmentation that worsens with elevation and slope (LIANG, PAN, CHEN et al., 2021; B W XA, C X

J A B, B J LA, et al., 2020), renders cultivation economically unviable. This forces farmers to abandon

the most challenging plots. Subsequently, aided by the region’s favorable water and heat conditions,

these abandoned lands naturally succeed to grassland or forest over time.

4.2 Multi-scenario Early Warning of NACL for 2035

Using the PLUS model, we simulated and analyzed the spatial patterns of land use under three

scenarios for 2035: NDS, UES, and CCS. The results indicate that under the NDS and UES, cultivated

land and forestland areas would experience significant reduction, while built-up land would expand

rapidly. This phenomenon suggests that the current land use regulation model, which relies on a natural

development approach, is inadequate for balancing the multiple demands of ecological protection,

agricultural production, and urban development during rapid urbanization. This leads to the

increasingly prominent issue of NACL, necessitating the optimization of land use allocation through

targeted regulatory measures. In contrast, the CCS exhibits a more optimal land use pattern. By

implementing measures such as strengthening cultivated land protection constraints, enforcing the

requisition-compensation balance policy, and strictly controlling built-up land expansion, this scenario

achieves a significant increase in regional cultivated land area, effectively ensuring food security.

Concurrently, the expansion of built-up land is curbed, and the early warning level for NACL is

reduced from “severe” to “moderate” or lower. These simulation results are more aligned with the

requirements of sustainable development and are consistent with previous research findings (WANG,

ZHENG, TANG et al., 2021; ZHOU, JOHNSON, SHI et al., 2025).

4.3 Suggestions

To effectively curb NACL, several measures are recommended. Firstly, a stricter land use approval

system should be implemented to control, at the source, the encroachment of urban expansion onto

high-quality cultivated land. Secondly, to address the issue of cultivated land abandonment caused by

high fragmentation, advanced equipment such as small-scale agricultural machinery can be introduced

to promote large-scale farming, thereby reducing cultivation costs and increasing yields. Concurrently,

financial subsidy policies should be utilized to attract and retain agricultural technical talent, enhancing

farmers’ motivation for cultivation and their overall profitability. Finally, given the significant spatial

heterogeneity in hydrothermal conditions and cultivated land suitability caused by Guizhou Province’s

complex terrain, the implementation of a differentiated, zonal management strategy is essential. for flat,

contiguous cultivated land areas, the priority should be to develop large-scale modern agriculture and

high-yield grain crops, reclaim converted cultivated land back to grain production, and construct
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supporting infrastructure such as reservoirs and roads. For gentle-slope cultivated land areas, the

promotion of terracing is recommended to reduce soil and water loss, coupled with the moderate

development of specialty cash crops. For steep-slope areas, which are of poor quality and unsuitable for

cultivation, the policy should be to implement the “Grain-for-Green” program (reforestation and

grassland restoration) or to develop under-forest economies.

5. Conclusions

Between 2000 and 2020, the spatial pattern of NACL in Guizhou Province evolved from scattered

patches to large-scale, contiguous expansion. This process markedly accelerated during 2015-2020,

with a converted area of 473,593.77 hm² and a rate of 9.65%. Spatial statistics confirmed a significant

clustering effect in the NACL distribution. Analysis using the geodetector revealed that the spatial

pattern of NACL is the result of combined effects from multiple factors, including natural environment,

socioeconomic conditions, and agricultural location. Among these, population density, GDP, road

network density, and cultivated land area were identified as the primary driving factors. Furthermore,

multi-factor interactions, particularly between socioeconomic and agricultural factors, further enhanced

the explanatory power for NACL. Multi-scenario simulations based on the PLUS model indicate that

the early-warning pattern for NACL exhibits a distinct east-west disparity, with higher warning levels

in the western counties than in the east. Areas with moderate or higher warnings are primarily

concentrated in the west, while mild warnings are continuously distributed in the east. Under the NDS

and UES, cultivated land loss is projected to intensify, leading to higher warning levels;

moderate-or-higher warning areas will be concentrated in southwestern Guizhou Province. In contrast,

the CCS effectively curbs cultivated land loss and significantly reduces the warning grades.
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