

Original Paper

Artificial Intelligence in Education: Potential Applications and Ethical Considerations for Future Classroom

Ogagaoghene Uzezi Idhalama¹, Oyaziwo Aluede (PhD)², & Ma'aruf Nuhu Batagarawa (Ph.D)³

¹ Department of Library and Information Science, Ambrose Alli University, Ekpoma, Edo, Nigeria

<https://orcid.org/0000-0003-3201-4127>, idhalamao@gmail.com

² Department of Guidance and Counseling, Ambrose Alli University, Ekpoma, Edo, Nigeria

<https://orcid.org/0000-0003-1667-9954>, oyaziwoaluede@gmail.com

³ Department of Educational Psychology and Counselling, Umaru Musa Yar'adua University, P.M.B.

2218, Katsina, Katsina State-Nigeria. maruf.nuhu@umyu.edu.ng

Received: December 22, 2025 Accepted: January 12, 2026 Online Published: February 3, 2026

doi:10.22158/wjer.v13n1p117 URL: <http://dx.doi.org/10.22158/wjer.v13n1p117>

Abstract

Purpose and objectives of this study include exploring the application of AI in education and learning, considering ethical challenges associated with its incorporation into future classrooms. The objectives of this study are to determine and classify AI technology employed within learning interfaces; explore how AI facilitates personalized learning based on learners' requirements; review AI support for educators by automating administrative tasks and providing learners with personalized review feedback; determine the capacity of AI to improve accessibility for learners with disabilities; two others.

Design/Methodology: Exploratory-expository design combined the results of exploratory research and secondary data with regard to AI and education, giving specific consideration to the context of Africa. The study was intended to categorize contemporary AI applications used in education, describe methods of personalized education, assess the use of AI in teaching and accessibility, and create an AI implementation ethics framework.

Results: There appears to be potential for the reduction of the administrative burden on the teaching staff to enable more time to spend on teaching and interacting with students through the help of AI. Teachers held ambivalent views of the technology, which were characterized by their optimism and pessimism regarding the potential effects of AI.

Pragmatic Implications: It recommends teacher training, building positive dispositions towards AI tools, and setting ethical standards for the protection of data and equity of access of the students.

Originality/Value: This paper has value because it highlights the applications of AI in education while emphasizing the ethical use of AI.

Keywords

Artificial Intelligence, Education and AI, Personalized Learning with AI, AI Ethical Framework, Teacher Perceptions of AI

1. Introduction

The last decade has seen the embedding of Artificial Intelligence (AI) in industries pick up enormous pace, revolutionizing industries like healthcare, finance, and transport on a large scale. Of these, the education sector is one that is most likely to be affected by the adoption of AI technologies. Possibilities for using AI in the education sector are numerous, from individualized learning to improved administrative effectiveness. Nonetheless, growing dependence on AI also raises stupendous ethical concerns which have to be addressed by policymakers, educators, and stakeholders. The purpose of this research is to explore both the uses of AI in education and the ethics which arise from its use, meeting both the below objectives: to discover and categorize the current AI technology in classrooms and; to examine how AI can be utilized to provide personalized learning experiences; to explain the application of AI in relieving teachers of administrative workload; to determine the effects of AI on students with special needs; to explore teachers' perceptions of AI in their teaching and; finally, to offer an ethical framework for implementing AI technology into classrooms.

Over the last decades, various AI technologies have entered educational institutions. They are intelligent tutoring systems, adaptive learning systems, chatbots, and learning analytics (Idhalama & Nwachukwu, 2025). Intelligent tutoring systems are meant to offer immediate, on-demand help to students through the use of algorithms to assess students' performance and modify course material accordingly. Adaptive learning systems advance it even more through the utilization of data analytics in tailoring the learning experience to student abilities, thus delivering enhanced education results (Hwang et al., 2020). In addition, chatbots can give instant feedback on quizzes to students while giving teachers time to conduct more complicated teaching tasks (Huang et al., 2021). The categorization of the technologies will offer the framework for learning about their individual potential and challenges in instructional settings.

Perhaps the strongest argument for AI in education is its capacity to provide customized learning. Students in today's classrooms come equipped with varying backgrounds, abilities, and learning styles. The standard one-fits-all method leaves many of them disillusioned or overwhelmed (Kukulska-Hulme, 2020). Scholars have demonstrated that AI-powered systems are able to analyze diverse aspects of students' data ranging from academic accomplishments to engagement metrics to provide tailored content and learning pathways (Li et al., 2021). Personalization not only enhances value in students' educational growth but also requests motivation and enthusiasm by respecting individual learning journeys for each learner. Investigating how AI tools can be made to accomplish this level of

customization will be most important for teachers and stakeholders who are undertaking inclusive and effective pedagogy practices.

Teachers form the backbone of the education system, but their jobs are now being relegated to secondary roles behind laborious managerial work. AI technologies can offer relief from this in the form of an out. Machine learning algorithms can take care of grading and feedback, allowing teachers to spend more time on direct instruction and student interaction (Long & Siemens, 2020). Also, AI can be used to automate course material management, attendance taking, and communication, so that the rest of the teaching process remains clear. Through examining the possibility of using AI as a teacher assistant, this study is trying to show the way technology can enhance the role of the teacher in the classroom rather than replace them.

Accessibility to education is also one area where AI can be a game-changer. Learners with learning disabilities or disability are greatly disadvantaged from equal participation and academic progress in mainstream classroom instruction (Almalki et al., 2021). Assistive technologies like speech recognition and automated captioning powered by AI are potentially able to make classrooms more accessible (Miller, 2022). This research will assess how AI solutions can break down access barriers so that everybody benefits equally from learning opportunities.

Besides taking into account practical uses, understanding the attitudes and perceptions of educators regarding AI integration is crucial for successful implementation. While there are teachers embracing the potential of AI, others are skeptical or concerned about its effects on pedagogy and learning by students (Knight et al., 2023). It is important to research these perceptions to facilitate effective integration alongside mitigating the possibility of resistance. Improved understanding of teachers' opinions will serve to guide professional development initiatives and training workshops for developing capacity in AI technology. Interesting as the potential for learning from AI may be, however, the morality of its application must be confronted. Data privacy, algorithmic bias, and dehumanization of learning are but a few of the ethical challenges that have surfaced (Lynch, 2022). Establishing an ethical framework of deploying AI for the responsible deployment it must be done in classrooms will guarantee that technology is applied in a way that respects student agency, encourages equity, and remains untainted with negative side effects. The framework has to integrate data protection, transparency, and inclusive practice regulations finally in sync with the general objectives of the learning mission.

Standing at the entrance of a new age in learning with the emergence of AI technologies, it is essential that we base our inquiry on serious study involving both envisioned uses and ethics. Through the identification and classification of different AI technologies, their application in personalized learning, teacher support, accessibility boost, and teachers' attitudes, this study will prove to be an insightful contribution to the effective and ethical deployment of AI for education. In the end, creating an ethical framework will act as a beacon for teachers, policymakers, and technologists to navigate through the foggy terrain of AI education.

Even though a lot of research exists on individual AI applications (intelligent tutoring systems, adaptive learning systems, chatbots, learning analytics), and on isolated topics like personalization, lessening teachers' workload, accessibility, teacher attitudes, or ethics, still, the current state of the field is piecemeal and lacks a unified, classroom-based evidence base, meaning few, if any, studies classify types of AI, measure empirical outcomes for learning and teaching practice, particularly for special needs students, and tease apart perceptions from a range of teachers, to name findings and apply them to a functional framework for ethics. This is a problem, because piecemeal implementations lacking taxonomies, a collective database on their outcomes, and a functional ethics framework may lock in biases, further a lack of equality, take away teacher autonomy, and shortchange special needs students.

2. Statement of Problem

Artificial Intelligence (AI) is increasingly utilized in various sectors, most notably education. Its presence in schools has many potential applications, ranging from customized learning to administrative efficiency. As technologies of AI grow, so do some far-reaching ethical questions to be resolved to allow equitable and accountable use, but among the most fundamental ones is access equity. Much as AI can be leveraged to tailor learning experience according to learning style and learning speed (Baker & Inventado, 2021), unequal access to AI technologies has the potential to increase the education gap among students from varying socioeconomic backgrounds. Apart from access, deployment of AI in education is threatened by data security and privacy. Educational AI platforms also need enormous amounts of personal data to work optimally, and this has raised issues over the way this information is gathered, stored, and used. The revelation of such details can be severe invasions of privacy (Kizilcec et al., 2023). Furthermore, the use of algorithms means that there has been fear over bias because AI platforms will mirror current disparities if not well designed and regulated. Unless resolved, marginalized students might be offered inferior learning experiences that reinforce systemic inequities (Schmidt et al., 2022). Ethical issues of AI in education are complex and encompass concerns of access, privacy, and bias. As schools use more AI technology, there is a critical need to develop frameworks addressing these issues holistically. Thus, this study aims to look into the potential for implementing AI in the classroom while critically assessing the ethical considerations that must inform its implementation to make the education system more inclusive and equal.

3. Research Objectives

1. To identify and categorize the various AI technologies currently being employed in educational settings.
2. To investigate how AI can be utilized to create personalized learning experiences tailored to individual student needs.
3. To explore the role of AI in supporting teachers through automation of administrative tasks and personalized feedback mechanisms.

4. To assess how AI can enhance accessibility for students with disabilities and learning difficulties in educational settings.
5. To analyse teachers' perceptions and attitudes towards integrating AI tools into their teaching practices.
6. To propose an ethical framework for the use of AI technologies in classrooms.

4. Research Methodology

Current researchers employed the exploratory cum expository research methodology. This was effectively achieved as the researchers' elicited data from wide-ranging sources: direct research outcomes and relevant secondary sources on Artificial Intelligence in Education and the potential applications and ethical considerations of Artificial Intelligence for future classrooms in Africa. Thus, the researchers, within the period of 4 weeks, visited several databases that included but were not limited to Ebscohost, Google Scholar, google chat gpt and Researchgate to access and retrieve published research reports and scholarly works or articles on the areas of interest for this work.

Furthermore, the research methodology is a literature review and conceptual analysis used to uncover available frameworks and theoretical models on AI in schools. Literature review entails critically reading published peer-reviewed journals, conference papers, and reports in the areas of educational technology, cognitive science, and ethics. The sources are chosen for their applicability in AI applications, such as personalized learning systems, AI tutoring, and content intelligent management. Qualitative and quantitative research are addressed with a perspective to placing within context the effectiveness of AI in improving educational achievement and accessibility.

In addition, there were conceptual examination to highlight major ethical issues surrounding AI in education, such as privacy issues, AI algorithm bias, and the effect of data usage on student agency. Ethical frameworks, for instance, the principles outlined within the UNESCO (2021) guidelines for education and AI, will be used in this section. The study seeks to provide a balanced view that balances the advantages of AI with possible moral challenges. After integrating the results, the study shall make an informed theoretical framework that policymakers and educators can apply in regulating successful and ethical AI technology integration in schools. The ultimate intention is to educate stakeholders in best practices while provoking critical argument regarding the ethical impact of AI deployment within schools.

Among the ethical considerations for this study are strict observance of already-existent best-practice guides, such as the UNESCO guidelines from 2021, to center student privacy, data protection, and the maintenance of student agency in critical consideration of potential harms such as algorithmic bias and inequities of access as pertaining to AI use in education. The literature review will adhere to strict transparency and rigor, noting and accounting for all searched sources and protecting all copyrighted intellectual property, and to account for potential biases in the literature synopses regarding selection and confirmatory bias. Lastly, the proposed study endeavors to responsibly contribute to AI use in

Africa by recommending best-practices to limit potential harm and maximize potential benefits to education with AI use in Africa.

5. Literature Review

5.1 Theoretical Framework

Adoption of Artificial Intelligence (AI) in education can be explained through Diffusion of Innovation (DOI) theory. The theory was given by Everett M Rogers in 1962 to define the way through which new ideas, products, or technology are adopted and disseminated in a social system (Rogers, 2003). In essence, the DOI theory identifies four primary elements that characterize the adoption of an innovation: the innovation, communication channels, the social system, and time (Rogers, 2003).

The technology is AI-based tools and platforms aimed at supporting teaching and learning. The technologies can vary from smart tutoring systems to AI-based assessment tools. For schools to adopt AI, it is important that its advantages and how it can be implemented within current curricula and pedagogy become acquainted with stakeholders (Surry & Ely, 2007).

The DOI theory also suggests an adoption curve, which divides adopters into five categories: innovators, early adopters, early majority, late majority, and laggards (Rogers, 2003). The innovators adopt the innovation earliest, generally risk-takers and innovators who have an affinity for new technology (Rogers, 2003). The early adopters are opinion leaders who adopt the innovation prematurely and persuade other people (Rogers, 2003). Early majority adopt the innovation upon realization of its advantages, while late majority hesitate and adopt the innovation once it is traditional (Rogers, 2003). Laggards are the few to adopt the innovation due to their resistance to change (Rogers, 2003).

Relative advantage, compatibility, complexity, trialability, and observability are among the adoption factors of AI in education (Rogers, 2003). Relative advantage is perceived value of AI, e.g., increased student success or teacher efficiency (Rogers, 2003). Compatibility is compatibility of AI with current values and norms in schools (Rogers, 2003). Complexity is simplicity of comprehending and utilizing AI-based tools and systems (Rogers, 2003). Trialability is the simplicity of trying out AI prior to adopting it, and observability is openness to noticing its worth (Rogers, 2003).

Knowledge of the DOI theory can guide educators and decision-makers through the deployment and acceptance of AI in the education system. Educators can create specific steps towards the effective use of AI in schools by learning about determinants of adoption as well as adopter categories (Surry & Ely, 2007).

5.2 Various AI Technologies Currently Being Employed in Educational Settings

Artificial intelligence (AI) integration into schools has demonstrated enormous potential of improving the process of learning and teaching. Watson et al. (2022) assert that numerous AI technologies are now used at both the K-12 and collegiate level, helping to exemplify the variety and potential of machine learning, natural language processing, and intelligent tutoring systems. These technologies have started

redefining conventional pedagogical activities through support of customized learning paths and responsive education. The most common AI technology used in education is intelligent tutoring systems (ITS). ITS apply algorithms to offer customized feedback and guidance to students, tweaking their responses as a function of the learner's performance (Miller & Darnell, 2023). These systems have gained widespread attention since they can mimic the feel of individualized tutoring. Studies have shown that students using ITS perform better on tests than students who get conventional instruction (Kumar & Lawson, 2021).

Besides ITS, natural language processing (NLP) technology enables schools to examine high amounts of text data and determine student engagement through sentiment analysis (Chen et al., 2022). NLP technologies also enable automated marking systems, thus easing the burden on instructors. For example, GraderAI uses NLP to grade student essays against pre-defined parameters and give real-time feedback, enabling an improved grading process (Smith & Lee, 2024). Another amazing application of AI is in the employment of chatbots in schools. Chatbots are automated personal assistants that help students instantly by responding to questions related to course content, registration processes, and study materials (Davis et al., 2025). The use of chatbots has been discovered to impact enormously on student satisfaction as they offer 24/7 help and create a more interactive learning environment (Lopez & Zhang, 2021).

Apart from that, predictive analytics make use of machine learning models to determine at-risk learners who tend to fail academically. Machine learning models can alert teachers to intervene early by examining patterns in learners' performance and behavior. Therefore, this improves the retention of learners (Anderson & Tran, 2023). Adaptive learning technology such as Smart Sparrow exploits machine learning to personalize content according to the individualized learning path of every student, essentially identifying areas of weakness and supplying personalized resources (Morris & Jacobson, 2024). Although AI in education promises to be gigantic, there still remain challenges and ethical concerns. Privacy issues regarding data protection and algorithmic bias are fuelling demands for open AI systems in schools (Black & Rivera, 2022). Institutions need to have policies in place to guarantee student confidentiality while utilizing the data for significant learning achievements. In general, AI systems such as intelligent tutoring systems, natural language processing, chatbots, and predictive analytics are revolutionizing education. These technologies not only improve instruction but also help make teachers conscious of and responsive to the needs of individual students. There will be a necessity in the future to grapple with ethical dilemmas to best utilize the potential of AI in order to make an education system more equitable and efficient (Idhalama, Makori, & Oredo, 2025).

5.3 How AI Can Be Utilized to Create Personalized Learning Experiences Tailored to Individual Student Needs

Conceptualization of differentiated learning by AI is becoming popular as an improved approach to addressing the varied needs of the learners. AI-supported individualized learning experiences have been indicated to enhance motivation, involvement, and educational achievement (Peters & Hughes, 2024). Educators can conceptualize differentiated learning environments that accommodate the exceptional needs, talents, and interests of each learner with different AI technologies. Leading personalized learning is adaptive learning technology, which utilizes AI-powered algorithms to modify the pace and difficulty of material according to individual students' performance (Chen & Thompson, 2023). Adaptive learning platforms utilize real-time data analytics to track student behaviors and learning patterns so that these systems provide adequate challenges and materials (Williams et al., 2024). For instance, DreamBox Learning, the most widely utilized adaptive mathematics platform, adapts lesson pathways based on the way students interact with the content so that students get suitable content based on their proficiency level (Johnson & Rivera, 2023).

Furthermore, AI-powered analytics also have the capability to report back to teachers a student's strengths and weaknesses. Tschida et al. (2025) elaborate on the extent to which AI-driven LMS can offer teachers detailed reports on how students are progressing and engaging. Teachers can use this data to provide targeted interventions, enabling them to have a more sensitive learning process that closes specific gaps in learning. Also, the AI system Knewton browses student data to suggest learning content based on the learner's individual requirements, offering one-to-one approach in content delivery (Jackson & Miller, 2022). Also, AI can increase personalization of learning by applying smart assessment technologies. These use formative assessments to test students' comprehension and offer instant feedback, which is extremely critical for iterative learning (Garcia & Thomas, 2023). By the use of AI to analyze test scores, instructors can identify student misconceptions and areas of knowledge gaps and tailor their instruction to reinforce fundamental concepts as a consequence.

Yet another engaging feature of AI in personalized learning is that it can offer multimodal learning experiences. AI technologies can determine the learning mode of students so that teachers can represent data in multiple forms, for example, visual, auditory, or interactive materials (Patel et al., 2022). For example, sites like Edmodo use multimedia material that adapts according to how students interact with it, so students can relate to the material in a manner that suits them. Personalized learning through AI has its limitations. Teachers must be well trained to work with the platforms (Garcia & Tran, 2025). Second, further research must examine the long-term effectiveness of AI-based personalized learning approaches. Although early findings are encouraging, additional empirical studies will solidify the application of AI in shaping pedagogical practice (Carter & Morgan, 2023). Overall, AI is a very effective tool to develop personalized learning tailored to the varied demands of students. Through adaptive learning technology, analytics, smart assessments, and multi-modal learning experiences, instructors can deliver personalized learning paths that maximize student interest and academic achievement. As innovation continues to advance, persistent investment in successful integration

strategies and educator professional development will be critical to unlocking AI to its full potential for the classroom.

5.4 Role of AI in Supporting Teachers through Automation of Administrative Tasks and Personalized Feedback Mechanisms

Artificial Intelligence (AI) is becoming a resource that is required more and more within the education sector, specifically in optimizing teacher effectiveness by means of automating administrative work and offering individualized feedback mechanisms (Idhalama & Oredo, 2024). The ever-increasing nature of complexity in learning environments demands out-of-the-box solutions that can support teachers in optimizing time and productivity. Clerical activities like assignments marking, student records, and attendance have been characterized as being among the most significant areas where AI can be employed to greatly reduce teachers' workload. Available literature indicates the revolutionary role played by AI-powered tools in the automating of routine tasks that are most likely to consume a lot of time and energy. For example, Wang et al. (2023) illustrated how AI solutions are employed to create automated student performance reports in an effort to allow teachers to channel their energies into instruction quality instead of administrative load. In like manner, Liu and Chen (2022) illustrated that AI tools grade not only effectively but also present actionable student performance trends insights, freeing teachers from grading duties to present them with individualized dashboards for decision-making.

Also, the capability of AI to offer bespoke feedback is yet another aspect that yields significant returns for instructors. Personal feedback programs are critical in the application of instructional strategies to address individual student needs. AI-powered programs, such as intelligent tutoring systems (ITS), have been shown to tailor feedback based on students' inputs, shaping the learning path real-time to enhance performance (Huang, 2022). These systems gather data on student participation and learning styles that can be utilized to inform teachers where specific students are and where they require improvement, thereby making targeted outside assistance more effective. But using AI in the classroom is not simply about automation; it also provokes necessary discussions regarding teacher autonomy. As increasingly more functions that used to be handled by teachers are now handled by artificial intelligence, it is worth investigating how this could impact the teacher's role in the classroom. Teachers must not just embrace such technologies but become adept at using them well within their pedagogical approaches. Training in the form of AI literacy is thus required, as believed by Smith (2024). Such education prepares teachers to employ the best of AI technology and hence not allowing the same to replace them but keeping them as the motivator for learning.

Although optimism about AI integration in school settings exists, problems with data privacy, algorithmic bias, and reliance on automated systems need to be addressed. Liu and Chen (2022) explained that security concerns and ethical handling of students' data need to have strong policies and procedures put in place before calling for masses. Equilibrating the benefit of efficacy and effectiveness with these hazards is an ongoing area of study and discussion. Typically, AI's function in assisting

educators includes automating routine administrative tasks and simplifying systems of individualized feedback. As teachers move more and more towards AI-powered technology, it is essential to get them ready not only to employ the tools but also to reflect on the effect it has on their teaching and the students whom they teach.

5.5 How AI Can Enhance Accessibility for Students with Disabilities and Learning Difficulties in Educational Settings

The application of AI technology in education has been found to be a turning point in providing accessibility to students with disabilities. AI provides several tools and applications that are aimed at creating inclusive learning environments, ensuring student engagement, participation, and academic achievement (Idhalama & Obi, 2019). Existing literature indicates several aspects of the impact of AI on accessibility, ranging from assistive technologies to adaptive learning environments. In the recent past, advancements in AI have powered innovation for advanced assistive technology bespoke for disabled students. An example is intelligent systems with speech recognition and text-to-speech capabilities, which greatly empower deaf or blind students (Johnson, 2022). Not only do these technologies level the playing field by making the learning material accessible to all the students but also enable disabled students to be self-sufficient. As Chair of National Federation of the Blind Ernesto pointed out, "AI tools empower students by providing customized learning experiences that enhance their autonomy and confidence" (Ernesto, 2024).

Apart from it, adaptive learning platforms driven by AI are a central force to generate course content specific to diversified learning needs. Machine learning-based platforms gather student data and tailor education material, speed, and tests. Graham et al. (2023) determined from their study that adaptive learning platforms increase students with appropriate disabilities' degree of knowledge and retention rate through interventions constructed through their own learning patterns. This accommodation also increases students' enthusiasm and confidence, and thus supports the importance of differentiated learning trajectories in schools. Yet regardless of how much access can be enhanced by AI, its deployment must be achieved fairly and responsibly. Equitable access to technology is still an issue, particularly for poor students. Chen et al. (2023) added that disparity in access to AI technology has to be addressed so that students from any given situation or otherwise get to utilize such innovation. Policy interventions include stocking schools with necessary infrastructure to enable optimal utilization of AI technologies and sensitizing instructors on how they can use such tools to greatest benefit.

Additionally, moral issues dealing with the use of AI in education are also common. Algorithmic bias issues can unintentionally exaggerate current inequalities if AI technology is not inclusive. In research conducted by Patel and Desai (2025), biased sources of information were discovered to lead to AI tools that cannot detect the diversified needs of the learners, thereby breaking the learning process. Therefore, developers and institutions must collaborate towards developing and integrating reachable AI technologies that are thoroughly tested for fairness and lack of prejudice. Partnership's role in making the fact that AI fuels accessibility less ignorable cannot be ignored. Educators, policymakers, and

technologists must collaborate in AI technology development and deployment that is responsive to the varying needs of students with disabilities. As asserted by Ramirez (2023), effective collaboration can offer scratch-built improvements that are productive and user-focused to guarantee learning improvement benefits everyone. Overall, AI will be a determinant of an increase in accessibility to education by enabling disabled and learning-disabled children. With the development of assistive tools and adaptive learning environments, AI allows such students to engage in the process of learning to their fullest potential like other learners. Equity, ethical considerations, and the necessity of cooperation, however, will become a necessity as schools work through levels of AI technology on instructional practice.

5.6 Teachers' Perceptions and Attitudes towards Integrating AI Tools into Their Teaching Practices

The use of Artificial Intelligence (AI) technology in educational institutions has been questioned over the past few decades, with studies focusing on teachers' attitudes and assumptions about these technologies (Elegbede et al. 2024). Teachers' assumptions were the significant determinants of whether to implement or not to implement AI-based tools in schools. Teachers who see AI as an asset will be more apt to incorporate such assets into teaching, according to Li and Ma (2022). This is in the semblance that AI can be utilized to facilitate personalized learning, increase administrative effectiveness, and provide instant feedback for students. Teachers' perceptions of AI technologies are conflicting, such as being optimistic and being prudent. For instance, whereas some teachers have optimism regarding the ability of AI to enhance efficiency in teaching and learning, other teachers worry about job displacement, ethics, and originality of AI-created content (Ucar et al., 2023). The dual nature of attitudes makes it necessary for teachers to have a superior support system, including professional training and infrastructure, in order to obtain positive attitudes towards integrating AI in schools.

Professional training is crucial as far as affecting the mindset of teachers toward the adoption of AI is concerned. Zhang et al. (2024) discovered that teachers who underwent specific training programs expressed more positive attitudes toward AI technology. Training programs are bound to focus on teachers' awareness regarding AI processes and therefore eliminate fear in terms of comparative ignorance. Increased exposure to AI technology decreases phobias and allows educators to harness such technologies to the highest extent (Garcia & Mendez, 2023). Shared experience and collaboration also influence teacher cognition. Shared teacher networks, where teachers exchange their experience in utilizing AI technology, have been found to contribute heavily towards positive attitudes towards such technology (Trinh & Bui, 2023). Whenever teachers observe others excelling with the application of AI tools, they will follow suit with the same practices, thus solidifying the modalities of positive perception among school communities.

In addition to professional growth and collaboration networks, institutional support is also crucial. The vision of leadership on how technology should be used in pedagogical activities sets the focus of teachers' mindset towards AI (Harrison et al., 2024). Teachers are likely to adopt the AI integration if

cultures within schools are encouraging innovation and technology adoption. But there is still one problem: teachers typically complain of being overwhelmed by the sheer pace of AI developments, indicating that they require ongoing, adaptive training in order to sustain their self-efficacy in using such tools effectively (Tate & Jeong, 2024). Teachers' attitude is also influenced by ethical issues relating to AI tools. There is evidence that most educators are reluctant to adopt AI due to fears over data privacy, bias, and the impact of AI decision-making on student performance (Brown & Smith, 2023). Ethical constraints can lead to a low level of trust in AI technologies, therefore limiting their integration into education practice (Osman & Kwan, 2023). It is necessary that teachers are given accurate guidelines and speeches regarding ethical usage so that relief regarding their fears can be provided and integration and affirmation of ethical practices can be carried out (Idhalama, Oredo, & Makori, 2025).

Lastly, the context of culture determines teachers' mindsets towards AI tools. Research suggests technology attitudes differ substantially across nations and educational systems (Zhang et al., 2023). Culture's outlook on innovation, technology, and authority affects what teachers think and leverage in terms of AI within the classroom environment. Senses must be attuned to differences in such regards in order to create customized strategies for using AI tools effectively within different education environments. Generally, teachers' attitudes and views on the application of AI tools depend on multiple factors, ranging from professional development, peer support, institutional support, ethics considerations, to cultural context. Education leaders need to assume these elements in enabling the uptake and integration of AI tools in teaching practice.

5.7 Proposition of Ethical Framework for the Use of AI Technologies in Classrooms

With more AI technologies vying for enhanced incorporation into the practice of education, having a solid ethical foundation stands as the most vital action in combating the sophistication that comes with their deployment in schools (Idhalama & Makori, 2024). Ethical standards are standards that inform educators on the best practices of effectively integrating AI tools in a way that they do not compromise their security and dignity and avoid pitfalls. Firstly, the ethical application of AI for learning must address student privacy and data protection. As Chen et al. (2022) posit, the spread of AI tools often entails the collection and processing of data for students. Therefore, safeguards on data must be instituted to ensure data is gathered, used, and stored responsibly, as mandated by legislations like Europe's General Data Protection Regulation (GDPR) and the United States' Family Educational Rights and Privacy Act (FERPA) (Davis & Kaur, 2023). Teachers should be trained both in the technicalities of applying AI and with regards to ethical considerations in dealing with data, for example, being sensitive to the gravity of procuring informed consent from students and parents when it is required.

In addition, restriction of bias in AI algorithms is another requirement of an ethical approach. AI technologies can actually reinforce current biases if designed and regulated inadequately (Lee et al., 2024). Educators should be able to comprehend how AI tools work and constantly questioning the materials and recommendations presented by such tools. In addition, the schools must prioritize

choosing AI tools that were created under conditions that actively reduce bias (Chung & Tan, 2023). Training teachers with training and tools needed and providing them can also ensure the tools used in the classroom support equal learning for all students. The ethics framework must also support transparency and accountability towards AI technologies used in education. As Wong and Ahmad (2023) point out, openness to how AI instruments work and the reasons they suggest specific things is central in establishing confidence with educators, learners, and guardians. Educators need to be able to answer for AI-produced results to their learners and be in a position to make sure they understand the role of the device in their education. Institutions should actively announce the AI tools that they employ so that there can be a society of properly informed users who are capable of critically engaging with technology.

Another issue that stands out is establishing an ethical culture of innovation within schools. Because innovation precedes the implementation of AI tools, schools are required to develop a culture in which ethical issues take precedence when implementing technology (Riley et al., 2024). Developing an ethics committee or task force will guarantee debate about the effect of AI technologies on teaching and thus guarantee teachers' experience and knowledge shape proposed ethical principles. Involvement of educators in shaping ethical principles acknowledges their unique voice while, at the same time, guaranteeing accountability ethics culture. Lastly, constant monitoring and evaluation of the utilization of AI technology in teaching is necessary to maintain high ethics standards. As technology develops and advances at unprecedented levels, so too must the ethics keep pace and adapt to new concerns (Gonzalez & Liu, 2024). Continued research into AI technologies applied in the classroom, and revision of their ethical concerns, keeps school practice current with issues. This adaptability fosters continued dialogue among education communities to construct an ethical stance responding to the evolving face of AI in schooling. Finally, the creation of an ethical standard for the use of AI technologies in the classroom needs to be accomplished in order to protect the interests of students and educators. Placing students' privacy foremost, removing bias, making it transparent, instilling an ethics-laden culture of innovation, and providing ongoing evaluation will allow educational leaders to place AI tools as value-added resources for improving learning in an ethics-guided manner.

6. Implication and Limitation of Study

Research on artificial intelligence (AI) in education has various important implications and limitations. These implications range from better personalization of learning via adaptive education technology that adapts both content and pacing according to individual students, and so on. Artificial intelligence-based analysis is also important and useful in allowing educators and administrators insight into both gaps in educational performance and curriculum effectiveness by providing them with an opportunity for data-informed action and resource allocation. Another important implication is automated administration and automated grading, which is expected to give educators more time for higher-level teaching interactions and socio-emotional issues. Some important limitations of AI in education

research revolve around data issues and biases, as those AI algorithms developed and trained using non-representative data sources may both increase issues and inaccurately categorize students from varied groups. Other important limitations range from infrastructure gaps and barriers, as well as costs and educator preparedness and availability.

7. Conclusion

This research has been successful in mapping the multi-dimensions of Artificial Intelligence (AI) in schools, offering a rich overview of its potential and ethical challenges. The study identified a potpourri of AI technologies actually transforming classroom spaces, varying from intelligent tutoring systems to AI-driven administrative tools. With AI offering very personalized learning experiences and enhanced accessibility arrangements, AI can potentially revolutionize teaching and learning by being capable of responding to individual interests and needs. The report also attests that it is very likely that AI will relieve teachers of some administrative task so that they will be able to spend more time teaching and engaging with their pupils. Research also uncovered a variety of teacher attitudes towards AI use from hope for its bright good features to anxiety over its effects on pedagogy and on student incentives. Most importantly, research demands a call with a sense of urgency for a moral framework that shapes AI technology usage in the classroom to address issues of accessibility, privacy, and consent.

This paper charts a multi-dimensional reality of artificial intelligence in schools, with a potpourri of technologies, ranging from intelligent tutoring systems to administratively oriented AI systems, that are rapidly changing classrooms by providing personalized learning, enhancing accessibility, and potentially unshackling teachers from administrative tasks while also inducing a range of attitudes from optimism to concern. More specifically, this research raises a critical imperative for providing a strong moral and policy compass to navigate the adoption of artificial intelligence technologies in classrooms, with attention to essential ethics of accessibility, privacy, consent, and pedagogy, among other considerations.

8. Recommendations

1. Develop and Promote AI Literacy Programs: To ensure that teachers are prepared to integrate AI into their classrooms effectively, educational institutions should establish AI literacy programs. These programs should focus not only on the technical aspects of AI tools but also on their pedagogical implications and ethical considerations.
2. Emphasize Personalized Learning Models: Educational stakeholders should prioritize the development of AI systems that facilitate personalized learning experiences. This can involve partnerships with AI developers to tailor innovations specifically addressing diverse student needs across different learning environments.
3. Implement Support Mechanisms for Educators: Schools and educational institutions should invest in training and support systems to help teachers adopt AI tools. Providing ongoing professional

development and resources will empower educators to utilize AI effectively, ensuring they are comfortable with the technology and its applications (Adedotun, Et al. 2024).

4. Enhance Accessibility through AI: Continued research and investment should be directed towards developing AI applications that enhance accessibility for students with disabilities. Collaborating with advocacy groups and expert educators can foster innovative solutions that promote inclusivity in educational settings.
5. Encourage Open Dialogue on Ethical Frameworks: Stakeholders in education, including policymakers, educators, and technologists, should engage in collaborative discussions to establish a robust ethical framework for AI in education. This framework should address data privacy, consent, algorithmic bias, and equitable access to technologies.
6. Conduct Longitudinal Studies on AI Impact: Future research should involve longitudinal studies to assess the long-term impacts of AI integration on learning outcomes, teaching practices, and educational equity. Continuous evaluation will help refine AI applications in education and support evidence-based practices.

References

Adedotun, K. O., Elegbede, C. B., Lapite, A. O., Idhalama, O. U., & Aluede, O. (2024). Assessing the role of social media in shaping career aspirations among lecturers in Nigeria: A quantitative analysis. *Global Journal of Social Sciences Studies*, 10(2), 88-103. <https://doi.org/10.55284/gjss.v10i2.1239>

Almalki, A. J., & Maqableh, M. I. (2021). The role of artificial intelligence in making education more inclusive. *Ethics and Information Technology*, 23(1), 43-51.

Anderson, C., & Tran, M. (2023). Predictive analytics in education: Identifying at-risk students. *International Journal of Educational Data Mining*, 9(2), 85-100.

Baker, R. S., & Inventado, P. S. (2021). Educational Data Mining and Learning Analytics. In J. G. McGowan (Ed.), *Advances in Learning Analytics*.

Black, S., & Rivera, L. (2022). Ethical implications of AI in education: A call for transparency. *Journal of Educational Technology*, 15(4), 230-245.

Brown, R., & Smith, L. (2023). Teacher perspectives on AI in the classroom: Barriers and enablers. *Journal of Educational Technology*, 29(3), 145-162.

Carter, L., & Morgan, R. (2023). The role of AI in transforming educational practices. *Educational Research Review*, 29(1), 1-15.

Chen, H., & Thompson, R. (2023). AI-driven adaptive learning systems: Enhancing student engagement. *Journal of Interactive Learning Environments*, 31(3), 201-215.

Chen, H., Wang, Y., & Liu, X. (2023). The equity implications of educational technology: Access and achievement gaps. *Educational Technology Research and Development*, 71(4), 849-861.

Chen, L., Li, Z., & Zhang, N. (2022). Analyzing student engagement through natural language processing. *Computers & Education*, 183, 104570.

Chen, Y., Xu, L., & Fan, M. (2022). Addressing data privacy concerns in AI education tools. *International Journal of Artificial Intelligence in Education*, 32(1), 70-84.

Chung, F., & Tan, M. (2023). Reducing bias in AI tools for education: A review and framework. *Computers & Education*, 211, 104614.

Davis, H., & Kaur, R. (2023). Ethical considerations in the use of AI in education: A systematic review. *Education and Information Technologies*, 28(1), 1-23.

Davis, K., Patel, R., & Lopez, T. (2025). Chatbots in education: Enhancing student satisfaction. *International Journal of Artificial Intelligence in Education*, 32(2), 145-160.

Elegbede, C. B., Adedotun, K. O., Lapite, A. O., Idhalama, O. U., & Aluede, O. (2024). Exploring the use of technology in improving access to education for internally displaced children in Nigeria: A review. *Information Development*, 0(0). <https://doi.org/10.1177/0266669241268228>

Ernesto, J. (2024). Empowering students through technology: The accessibility revolution. *National Federation of the Blind*.

Garcia, A., & Thomas, S. (2023). Intelligent assessments: Feedback mechanisms for personalized learning. *Educational Technology & Society*, 26(1), 43-57.

Garcia, A., & Tran, M. (2025). Training educators for AI integration in classrooms. *Journal of Teacher Education and Practice*, 38(2), 75-90.

Garcia, P., & Mendez, S. (2023). Professional development and AI: Bridging the gap for educators. *Teaching and Teacher Education*, 60, 102-118.

Gonzalez, R., & Liu, T. (2024). Adapting ethical standards in the age of AI: Implications for educators. *Educational Research Review*, 35, 100-117.

Graham, S., Roberts, R., & Elsayed, R. (2023). Adaptive learning systems: Enhancing learning for students with disabilities. *Journal of Special Education Technology*, 38(2), 115-127.

Harrison, J., Miller, A., & Stevenson, L. (2024). Leadership and technology integration: Perceptions of educational leaders. *International Journal of Leadership in Education*, 25(2), 115-130.

Huang, H., Guo, X., & Li, Y. (2021). Chatbot for education: A systematic review of the literature. *Computers & Education*, 166, 104145.

Huang, T. (2022). Intelligent tutoring systems and personalized feedback: A new era in education. *Journal of Educational Technology Systems*, 50(1), 55-72.

Hwang, G. J., Chen, C. H., & Shen, D. (2020). An adaptive learning system based on artificial intelligence for improving students' learning performance in mathematics. *Educational Technology & Society*, 23(3), 12-23.

Idhalama, O. U., & Makori, E. O. (2024). Artificial intelligence, deep learning, machine learning, robotics and digital transformation: applications, implications and future. *Ukrainian Journal of*

Educational Studies and Information Technology, 12(3), 1-21.
<https://doi.org/10.32919/uesit.2024.03.01>

Idhalama, O. U., & Oredo, J. O. (2024). Exploring the next generation Internet of Things (IoT) requirements and applications: A comprehensive overview. *Information Development*, 0(0).
<https://doi.org/10.1177/02666669241267852>

Idhalama, O. U., Makori, E. O., & Oredo, J. O. (2025). Analysing the impact of digital literacy practices on the quality of library services and user satisfaction in public university libraries in Nigeria. *Alexandria*, 35(1-2), 74-88. <https://doi.org/10.1177/09557490251335951>

Idhalama, O. U., Oredo, J. O., & Makori, E. O. (2025). Evaluating the availability and accessibility of digital resources and services in public university libraries in Nigeria. *Alexandria*, 35(1-2), 89-103.
<https://doi.org/10.1177/09557490251335954>

Idhalama, O. U., & Obi, A. I. (2019). Acquisition and management of serials in selected academic libraries in Edo State of Nigeria. *University of Dar es Salaam library journal*, 14(1), 68-81.

Idhalama, O. U., & Nwachukwu, P. I. (2025). "Assessing the application of artificial intelligence and machine learning technologies in library services in Africa". *Library Management*.
<https://doi.org/10.1108/LM-07-2024-0078>

Johnson, E., & Rivera, L. (2023). DreamBox Learning: An adaptive approach to math education. *Journal of Educational Success*, 10(1), 56-73.

Johnson, M. (2022). Leveraging AI to create inclusive classrooms: Innovations in accessibility. *International Journal of Inclusive Education*, 26(9), 856-872.

Kizilcec, R. F., Pérez-Sanagustín, M., & Tscholl, M. (2023). Ethical Implications of AI in Learning Environments. *Journal of Educational Technology*, 18(1), 45-60.

Knight, S., & Laird, J. (2023). Teachers' attitudes towards artificial intelligence: A global overview. *International Journal of Technology in Education and Science*, 7(1), 112-123.

Kukulska-Hulme, A. (2020). The role of AI in supporting student engagement in higher education. *Research in Learning Technology*, 28, 2400.

Kumar, P., & Lawson, D. (2021). Effects of intelligent tutoring systems on student performance: A meta-analysis. *Journal of Educational Psychology*, 113(4), 678-692.

Lee, J., Zhao, C., & Wu, X. (2024). The importance of addressing bias in AI-based educational tools. *Journal of Educational Computing Research*, 62(1), 23-49.

Li, K., Chen, H., & Qiu, P. (2021). Personalized learning based on AI: A meta-analysis. *Educational Psychology Review*, 33(1), 233-260.

Li, Y., & Ma, J. (2022). The role of teacher beliefs in the adoption of AI tools in classrooms. *Journal of Computer Assisted Learning*, 38(4), 870-886.

Liu, S., & Chen, J. (2022). AI in education: Automating tasks and enhancing teacher decision-making. *IEEE Transactions on Education*, 65(3), 342-349.

Long, P., & Siemens, G. (2020). Penalty-free grading: Using AI to support teachers. *Journal of Educational Technology Systems*, 89(2), 224-234.

Lopez, T., & Zhang, Y. (2021). Enhancing student engagement with AI-powered chatbots. *Computers & Education*, 174, 104240.

Lynch, M. (2022). Ethics of artificial intelligence in education: A critical analysis. *Educational Philosophy and Theory*, 54(1), 56-75.

Miller, T., & Darnell, K. (2023). Intelligent tutoring systems: Revolutionizing one-on-one learning. *Artificial Intelligence in Education*, 28(1), 76-92.

Morris, J., & Jacobson, H. (2024). Smart Sparrow: An adaptive learning platform case study. *Journal of Digital Learning in Teacher Education*, 40(3), 233-248.

Osman, M., & Kwan, S. (2023). Trusting AI in education: Addressing teachers' concerns. *Education, Technology & Society*, 26(3), 128-140.

Patel, R., & Desai, A. (2025). Addressing algorithmic bias in educational AI: A framework for equitable technologies. *Computers & Education*, 161, 104040.

Patel, R., Carter, L., & Diaz, M. (2022). Multimodal learning experiences and student outcomes. *Educational Technology Research and Development*, 70(4), 1089-1105.

Peters, M., & Hughes, J. (2024). Personalized learning pathways in modern classrooms. *Journal of Curriculum Studies*, 56(5), 557-570.

Ramirez, L. (2023). Collaboration for inclusivity: Building partnerships in AI-enhanced education. *Partnerships for Education Journal*, 12(1), 22-34.

Riley, P., Lin, A., & Mott, J. (2024). Creating an ethical culture in schools amidst technology adoption. *Journal of Educational Leadership*, 19(2), 89-105.

Rogers, E. M. (2003). *Diffusion of innovations* (5th ed.). Free Press.

Schmidt, M. E., Lee, J., & Teo, H. (2022). Bias in AI and Its Implications for Education: A Review. *International Review of Education*, 68(2), 295-310.

Smith, J. (2024). Teacher agency in the age of AI: Embracing technology in education. *Teaching and Teacher Education*, 113, 103688.

Smith, J., & Lee, A. (2024). Automated grading: Natural language processing in assessment. *International Journal of Educational Research*, 112, 101-115.

Surry, D. W., & Ely, D. P. (2007). Adoption, diffusion, and implementation of instructional technology: A review of literature. In M. A. Fitzgerald, & M. Orey (Eds.), *Instructional technology: Foundations and applications* (pp. 107-125). Libraries Unlimited.

Tate, E., & Jeong, H. (2024). Teachers' emotional responses to AI integration: A qualitative study. *Journal of Technology and Teacher Education*, 32(1), 55-70.

Trinh, N., & Bui, Y. (2023). Collaborative networks for teachers and AI: A pathway to integration. *Journal of Interactive Learning Research*, 34(2), 273-288.

Tschida, C., Chen, W., & Nguyen, D. (2025). AI analytics in learning management systems: A new paradigm for education. *Computers in Human Behavior, 115*, 106611.

Ucar, S., Tasdemir, K., & Bansal, A. (2023). Exploring teachers' readiness to adopt AI in their classrooms. *British Journal of Educational Technology, 54*(5), 1153-1169.

UNESCO. (2021). *Artificial Intelligence in Education: Challenges and Opportunities for Sustainable Development*. Retrieved from <https://unesdoc.unesco.org/ark:/48223/pf0000376327>

Wang, Y., Luan, M., & Chen, S. (2023). The role of AI in streamlining administrative tasks in education: A comprehensive review. *Computers in Human Behavior, 131*, 107155.

Watson, R., Qureshi, M., & Stanton, C. (2022). AI technologies in education: Current trends and future directions. *Journal of Educational Technology Systems, 50*(3), 253-270.

Williams, K., Johnson, P., & Chen, L. (2024). Leveraging adaptive learning technologies for personalized education. *Journal of Learning Analytics, 11*(2), 14-29.

Wong, Y., & Ahmad, J. (2023). Trust and transparency in AI education tools: Building confidence among teachers. *Computers in Human Behavior, 142*, 107736.

Xiao, S., & Chen, H. (2022). Analyzing the efficacy of artificial intelligence in education. *Educational Data Mining, 14*(1), 79-94.

Zhang, J., Pan, W., & Lin, Y. (2023). Cultural influences on teachers' perceptions of AI in education. *International Journal of Educational Management, 37*(4), 987-1005.

Zhang, Q., Chen, Y., & Hu, X. (2024). The impact of professional development on teachers' attitudes toward AI technologies. *Educational Technology Research and Development, 72*(1), 67-85.